1
|
Ren W, Li H, Huang X, Xing X, Yan G, Yang J, Zhang G. Facile strategy for intrinsic low- κ dielectric polymers: molecular design based on space charge conservation. MATERIALS HORIZONS 2024; 11:2875-2885. [PMID: 38545861 DOI: 10.1039/d3mh02034g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The growing need for high-power and compact-size microelectronic integrated circuits (ICs) in modern microelectronic industries and 5G communication systems demands low dielectric constant (κ) polymer dielectrics with excellent temperature capability, mechanical property and processability. However, conventional molecular design strategies often face difficulties of a trade-off between optimizing the dielectric performance of polymers and maintaining the aforementioned properties. Herein, we present an innovative and facile strategy that utilizes the space charge distribution characteristics of the target co-monomer to solve this trade-off. Based on this design strategy, a novel polyaryl ether ketone (PAEK) with two different charge distribution units (BAF and SBI) was designed and synthesized. Both the experimental results and computational simulations confirm that these two components serve to weaken the polarization of molecular chains in the electric field, induce higher molecular chain packing density and fewer weaknesses, and synchronously regulate the κ, dielectric loss (tan δ), thermal and mechanical properties and processability by generating a strong inter-chain electrostatic interaction. The resultant copolymer, PAEK-4F6S, exhibits exceptional low κ and tan δ values of 1.98 and 0.0024 at 1 MHz, respectively, and these values remain stable over a broad frequency (1-106 Hz, 8.2-12.4 GHz) and temperature range (30-150 °C). Furthermore, the resultant copolymer demonstrates excellent thermal stability and mechanical properties, with a glass transition temperature (Tg) of 195 °C, 5 wt% decomposition temperature (Td5%) of 498 °C under N2, tensile strength of 63.5 MPa and tensile modulus of 1011.2 MPa, respectively. The synthesis procedure of these resultant copolymers is facile, and they are found to have favorable solution and melt processing properties, making them suitable for processing and scalable production. More importantly, this design strategy is beneficial for lowering the κ and tan δ values, and simultaneously enhancing the comprehensive performances of the objective polymers, which provides a completely novel and facile approach for the design and fabrication of high performance low-κ polymers suitable for the needs of microelectronics and communication fields.
Collapse
Affiliation(s)
- Wei Ren
- Institute of Materials Science & Technology, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.
| | - Haoning Li
- Institute of Materials Science & Technology, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiao Huang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | | | - Guangming Yan
- Institute of Materials Science & Technology, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.
| | - Jie Yang
- Institute of Materials Science & Technology, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Gang Zhang
- Institute of Materials Science & Technology, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
2
|
Hardian R, Jia J, Diaz-Marquez A, Naskar S, Fan D, Shekhah O, Maurin G, Eddaoudi M, Szekely G. Design of Mixed-Matrix MOF Membranes with Asymmetric Filler Density and Intrinsic MOF/Polymer Compatibility for Enhanced Molecular Sieving. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314206. [PMID: 38517323 DOI: 10.1002/adma.202314206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/03/2024] [Indexed: 03/23/2024]
Abstract
The separation of high-value-added chemicals from organic solvents is important for many industries. Membrane-based nanofiltration offers a more energy-efficient separation than the conventional thermal processes. Conceivably, mixed-matrix membranes (MMMs), encompassing metal-organic frameworks (MOFs) as fillers, are poised to promote selective separation via molecular sieving, synergistically combining polymers flexibility and fine-tuned porosity of MOFs. Nevertheless, conventional direct mixing of MOFs with polymer solutions results in underutilization of the MOF fillers owing to their uniform cross-sectional distribution. Therefore, in this work, a multizoning technique is proposed to produce MMMs with an asymmetric-filler density, in which the MOF fillers are distributed only on the surface of the membrane, and a seamless interface at the nanoscale. The design strategy demonstrates five times higher MOF surface coverage, which results in a solvent permeance five times higher than that of conventional MMMs while maintaining high selectivity. Practically, MOFs are paired with polymers of similar chemical nature to enhance their adhesion without the need for surface modification. The approach offers permanently accessible MOF porosity, which translates to effective molecular sieving, as exemplified by the polybenzimidazole and Zr-BI-fcu-MOF system. The findings pave the way for the development of composite materials with a seamless interface.
Collapse
Affiliation(s)
- Rifan Hardian
- Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division (PSE), Sustainable Separation Engineering Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jiangtao Jia
- Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division (PSE), Functional Materials Design Discovery, and Development Laboratory (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Supriyo Naskar
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Dong Fan
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Osama Shekhah
- Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division (PSE), Functional Materials Design Discovery, and Development Laboratory (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Mohamed Eddaoudi
- Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division (PSE), Functional Materials Design Discovery, and Development Laboratory (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Science Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gyorgy Szekely
- Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division (PSE), Sustainable Separation Engineering Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Chang YS, Kumari P, Munro CJ, Szekely G, Vega LF, Nunes S, Dumée LF. Plasticization mitigation strategies for gas and liquid filtration membranes - A review. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Aburabie J, Nassrullah H, Hashaikeh R. Fine-tuning of carbon nanostructures/alginate nanofiltration performance: Towards electrically-conductive and self-cleaning properties. CHEMOSPHERE 2023; 310:136907. [PMID: 36265705 DOI: 10.1016/j.chemosphere.2022.136907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Electrically-conductive membranes became the center of attention owing to their enhanced ion selectivity and self-cleaning properties. Carbon nanostructures (CNS) attain high electrical conductivity, and fast water transport. Herein, we adopt a water-based, simple method to entrap CNS within Alginate network to fabricate self-cleaning nanofiltration membranes. CNS are embedded into membranes to improve the swelling/shrinkage resistivity, and to achieve electrical-conductivity. The CaAlg PEG-formed pores are tuned by organic-inorganic network via silane crosslinking. Flux/rejection profiles of Na2SO4 are studied/optimized in reference to fabrication parameters. 90% Na2SO4 rejection (7 LMH) is achieved for silane-CaAlg200-10% CNS membranes. Membranes exhibit outstanding electrical conductivity (∼2858 S m-1), which is attractive for fouling control. CaAlg/CNS membranes are tested to treat dye/saline water via two-stage filtration, namely, dye/salt separation and desalination. A successful dye/salt separation is achieved at the first stage with a rejection of 100%-RB and only 3.1% Na2SO4, and 54% Na2SO4 rejection in the second stage.
Collapse
Affiliation(s)
- Jamaliah Aburabie
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Haya Nassrullah
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates; Chemical and Biomolecular Engineering Division, New York University, Tandon School of Engineering, NY, 11201, USA
| | - Raed Hashaikeh
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| |
Collapse
|
5
|
Aristizábal SL, Upadhyaya L, Falca G, Gebreyohannes AY, Aijaz MO, Karim MR, Nunes SP. Acid-free fabrication of polyaryletherketone membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Beshahwored SS, Huang YH, Abdi ZG, Hu CC, Chung TS. Polybenzimidazole (PBI) membranes cross-linked with various cross-linkers and impregnated with 4-sulfocalix [4]arene (SCA4) for organic solvent nanofiltration (OSN). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Abdulhamid MA, Szekely G. Organic solvent nanofiltration membranes based on polymers of intrinsic microporosity. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Xu Y, Peng G, Li W, Zhu Y, Mai Z, Mamrol N, Liao J, Shen J, Zhao Y. Enhanced organic solvent nanofiltration of aligned Kevlar composite membrane by incorporated with amino-polystyrene nanospheres. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Reversible crosslinking of polybenzimidazole-based organic solvent nanofiltration membranes using difunctional organic acids: Toward sustainable crosslinking approaches. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Cross-Linking Combined with Surfactant Bilayer Assembly Enhances the Hydrophilic and Antifouling Properties of PTFE Microfiltration Membranes. SEPARATIONS 2021. [DOI: 10.3390/separations9010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The inherent strong hydrophobicity of Polytetrafluoroetylene (PTFE) microfiltration membranes results in low separation efficiency and easy contamination. In order to enhance its hydrophilic and antifouling properties, we first modified the PTFE microfiltration membrane by using Polyethylene glycol laurate (PEGML) for first layer deposition and then used Polyvinyl alcohol (PVA)/citric acid (CA) cross-linked coatings for second layer deposition. The Scanning Electron Microscope (SEM) results showed that the fibers and nodes of the modified PTFE microfiltration membrane were coated with PVA/CA hydrophilic coating. FT-IR Spectromete and X-ray photoelectron spectrometer (XPS) analysis results confirmed that crosslinking of PVA and CA occurred and that PEGML and PVA/CA were successfully deposited onto the membrane surface. The modification conditions were optimized by hydrophilicity testing, and the best hydrophilicity of the modified membrane was achieved when the crosslinking content of PEGML was 2 g·L−1, PVA was 5 g·L−1, and CA was 2 g·L−1. PTFE microfiltration membranes modified by the optimal conditions achieved a water flux of 396.9 L·m−2·h−1 (three times that of the original membrane) at low operating pressures (0.05 MPa), and the contact angle decreased from 120° to 40°. Meanwhile, the modified PTFE microfiltration membrane has improved contamination resistance and good stability of the hydrophilic coating.
Collapse
|