1
|
Borbora A, Manna U. Strategies to modulate underwater oil wettability and adhesion. Adv Colloid Interface Sci 2025; 340:103442. [PMID: 39985951 DOI: 10.1016/j.cis.2025.103442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Inspired by the extreme underwater oil repellence found in fish scales, formally defined as underwater superoleophobicity, various functional interfaces have recently been derived. Such heterogeneous oil wettability underwater is attributed to the entrapment of liquid water in an extremely hydrophilic interface decorated with micro- and nanostructures. Designing underwater superoleophobic surfaces with differences in the force of oil adhesion is important for extending its potential utilizations in various and relevant applications. While underwater non-adhesive superoleophobicity enables applications like oil-liquid separation, self-cleaning, anti-fouling, anti-platelet adhesion, etc., the underwater superoleophobic interfaces embedded with the controlled force of oil adhesion remain crucial for another set of applications-including no-loss oil droplet manipulation, transfer, chemical toxin sensing, etc. This review discusses various strategies for deriving such underwater superoleophobic surfaces, emphasizing the need for co-optimizing appropriate surface nanoarchitectonics and hydrophilic chemistry and illustrating strategies for addressing durability and scalability challenges. Further, this review reveals the dominant role of chemical modulations over topography optimization for precise and orthogonal control on both oil wettability and force of oil adhesion. Additionally, strategic post-functionalization approaches are highlighted that enable instrument-free and naked-eye detection of physiological biomarkers and environmental toxins. It also depicts approaches to deriving mechanically durable underwater superoleophobic coatings-improving their suitability for more realistic application in outdoor conditions.
Collapse
Affiliation(s)
- Angana Borbora
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India; Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Uttam Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Gao S, Zhang F, Jin J. Nature-Inspired Superwetting Membranes for Emulsified Oily Water Separation. ACS NANO 2025; 19:11489-11500. [PMID: 40110692 DOI: 10.1021/acsnano.5c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Nature-inspired superhydrophilic and underwater superoleophobic membranes have garnered significant attention due to their promising potential for separating emulsified oily water and addressing water security issues. The exceptional wettability imparts spontaneous water permeability and oil repellency to membranes, accelerating water filtration, enhancing oil isolation, and reducing membrane fouling during the process, thereby achieving fast and efficient oil-water separation. Over the past decade, a series of groundbreaking studies on nature-inspired superwetting membranes have propelled oily water separation technology into a transformative phase of development. In the subsequent phase, people still face the challenge of evolving superwetting membranes with the dual capabilities of purifying water and recovering oil from particularly surfactant-stabilized emulsions to achieve sustainable resource utilization and zero liquid discharge. In this Perspective, we briefly review recent advances in superwetting membranes, emphasizing their advantages, bionic principles, design concepts, fabrication methods, and separation performance for various types of emulsified oily water. Additionally, we present membrane-based strategies for simultaneous water purification and oil recovery from emulsified oily water. Finally, we identify current bottlenecks and propose future direction in this area, focusing on the development of next-generation superwetting membranes for comprehensive separation and zero discharge of true oily water at an industrial scale.
Collapse
Affiliation(s)
- Shoujian Gao
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Feng Zhang
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Soochow University, Suzhou 215123, P. R. China
| | - Jian Jin
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
3
|
Yu Y, Su Z, Peng Y, Zhong Y, Wang L, Xin M, Li M. Recent advances in modifications, biotechnology, and biomedical applications of chitosan-based materials: A review. Int J Biol Macromol 2025; 289:138772. [PMID: 39675610 DOI: 10.1016/j.ijbiomac.2024.138772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a natural polysaccharide with recognized biocompatibility, non-toxicity, and cost-effectiveness, is primarily sourced from crustacean exoskeletons. Its inherent limitations such as poor water solubility, low thermal stability, and inadequate mechanical strength have hindered its widespread application. However, through modifications, chitosan can exhibit enhanced properties such as water solubility, antibacterial and antioxidant activities, adsorption capacity, and film-forming ability, opening up avenues for diverse applications. Despite these advancements, realizing the full potential of modified chitosan remains a challenge across various fields. The purpose of this review article is to conduct a comprehensive evaluation of the chemical modification techniques of chitosan and their applications in biotechnology and biomedical fields. It aims to overcome the inherent limitations of chitosan, such as low water solubility, poor thermal stability, and inadequate mechanical strength, thereby expanding its application potential across various domains. This review is structured into two main sections. The first part delves into the latest chemical modification techniques for chitosan derivatives, encompassing quaternization, Schiff base formation, acylation, carboxylation, and alkylation reactions. The second part provides an overview of the applications of chitosan and its derivatives in biotechnology and biomedicine, spanning areas such as wastewater treatment, the textile and food industries, agriculture, antibacterial and antiviral activities, drug delivery systems, wound dressings, dental materials, and tissue engineering. Additionally, the review discusses the challenges associated with these modifications and offers insights into potential future developments in chitosan-based materials. This review is anticipated to offer theoretical insights and practical guidance to scientists engaged in biotechnology and biomedical research.
Collapse
Affiliation(s)
- Ying Yu
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Zhongwen Su
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Yonggang Peng
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Yujing Zhong
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Lin Wang
- College of Chemistry and Environment, Ankang University, Qinba Chinese Medicine Resources R&D Center, Ankang 725000, Shaanxi, China.
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China.
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China.
| |
Collapse
|
4
|
Jin M, Shi P, Sun Z, Zhao N, Shi M, Wu M, Ye C, Lin CT, Fu L. Advancements in Polymer-Assisted Layer-by-Layer Fabrication of Wearable Sensors for Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:2903. [PMID: 38733009 PMCID: PMC11086243 DOI: 10.3390/s24092903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent advancements in polymer-assisted layer-by-layer (LbL) fabrication have revolutionized the development of wearable sensors for health monitoring. LbL self-assembly has emerged as a powerful and versatile technique for creating conformal, flexible, and multi-functional films on various substrates, making it particularly suitable for fabricating wearable sensors. The incorporation of polymers, both natural and synthetic, has played a crucial role in enhancing the performance, stability, and biocompatibility of these sensors. This review provides a comprehensive overview of the principles of LbL self-assembly, the role of polymers in sensor fabrication, and the various types of LbL-fabricated wearable sensors for physical, chemical, and biological sensing. The applications of these sensors in continuous health monitoring, disease diagnosis, and management are discussed in detail, highlighting their potential to revolutionize personalized healthcare. Despite significant progress, challenges related to long-term stability, biocompatibility, data acquisition, and large-scale manufacturing are still to be addressed, providing insights into future research directions. With continued advancements in polymer-assisted LbL fabrication and related fields, wearable sensors are poised to improve the quality of life for individuals worldwide.
Collapse
Grants
- (52272053, 52075527, 52102055) the National Natural Science Foundation of China
- (2022YFA1203100, 2022YFB3706602, 2021YFB3701801) the National Key R&D Program of China
- (2021Z120, 2021Z115, 2022Z084, 2022Z191) Ningbo Key Scientific and Technological Project
- (2021A-037-C, 2021A-108-G) the Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 the Youth Fund of Chinese Academy of Sciences
- (2020M681965, 2022M713243) China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- (2021ZDYF020196, 2021ZDYF020198) Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001) the Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Zhuang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mingjiao Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mengfan Wu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
5
|
Wang Q, Xue Q, Li Y. An eco-friendly construction of superwetting alginate-based aerogels with self-cleaning performance for multifunctional water treatment. Int J Biol Macromol 2024; 261:129766. [PMID: 38290629 DOI: 10.1016/j.ijbiomac.2024.129766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The increasingly complex oily wastewater has become a severe environmental issue worldwide, calling for the eco-friendly methods toward multifunctionality, high efficiency and sustainability. This work presents a superwetting alginate-based aerogels prepared by a feasible mineralization without the assistance of intermediates. In this strategy, in-situ grown β-FeOOH nanoparticles on whole porous alginate aerogels, not only provides the hierarchical topography and more -OH groups, enhancing underwater oleophobicity (152 ± 4.4°) and fouling resistance of porous aerogels, but also endows with the outstanding photo-Fenton self-cleaning ability for pollutant degradation. As a result, the outstanding separation selectivity for oil and water (>99.5 %), and superior reusability is achieved without the significant diminution of permeation ability (897-1136 L·m-2·h-1). Furthermore, with the advantage of excellent photocatalytic performance under sunlight, the oily wastewater containing soluble organic pollutants can be remediated by simultaneous separation and photocatalysis decomposition under a gravity-driven filtration solely, revealing a promising potential for complex oily wastewater treatment with the rationally usage of sunlight.
Collapse
Affiliation(s)
- Qiaozhi Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Qingwang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China.
| | - Ying Li
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
6
|
Song C, Rutledge GC. Three-Dimensional Imaging of Emulsion Separation through Liquid-Infused Membranes Using Confocal Laser Scanning Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11468-11480. [PMID: 37540768 DOI: 10.1021/acs.langmuir.3c01477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
The removal of emulsified oils from water has always been a challenge due to the kinetic stability resulting from the small droplet size and the presence of stabilizing agents. Membrane technology can treat such mixtures, but fouling of the membrane leads to dramatic reductions in the process capacity. Liquid-infused membranes (LIMs) can potentially resolve the issue of fouling. However, their low permeate flux compared with conventional hydrophilic membranes remains a limitation. To gain insight into the mechanism of transport, we use 3D images acquired by confocal laser scanning microscopy (CLSM) to reconstruct the sequence of events occurring during startup and operation of the LIM for removal of dispersed oil from oil-in-water emulsions. We find evidence for coalescence of oil droplets on the surface of and formation of oil channels within the LIM. Using image analysis, we find that the rate at which oil channels are formed within the membrane and the number of channels ultimately govern the permeate flux of oil through the LIMs. Oil concentration in the feed affects the rate of coalescence of oil on the surface of the LIM, which, in turn, affects the channel formation dynamics. The channel formation dynamics also depend on the viscosity of the infused liquid and the operating pressure. A higher affinity to the pore wall for infused liquid than permeating liquid is essential to antifouling behavior. Overall, this work offers insight into the selective permeation of a dispersed liquid phase through a LIM.
Collapse
Affiliation(s)
- Chen Song
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregory C Rutledge
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Cai J, Chen Q, Chang C. Spray-assisted LBL assembly of chitosan/nanocellulose as coatings of commercial membranes for oil-in-water emulsion separation. Int J Biol Macromol 2023; 242:124852. [PMID: 37182625 DOI: 10.1016/j.ijbiomac.2023.124852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Owing to the limitation of their wettability and pore size, lab filter membrane could not separate oil/water emulsions. Herein, we present surface modification of commercial membranes with chitosan/nanocellulose coatings via a spray-assisted layer-by-layer (LBL) assembly technology. By alternate spraying chitosan (CS) solution and TEMPO-oxidized tunicate cellulose nanofiber (TCNF) suspension, (CS/TCNF)n multilayers were obtained, where n denotes the number of bilayers. The (CS/TCNF)6 coated membrane possessed superhydrophilicity, underwater superoleophobicity, and outperforming anti-oil-fouling properties, which could effectively separate various oil-in-water emulsions. Importantly, the (CS/TCNF)6 coated membrane not only had stable permeate flux with nearly 100 % recovery ratio for the separation of pump oil-in-water emulsion, but also exhibited good harsh-environment-tolerant property. This work provided a novel strategy for designing and preparing stable anti-oil-fouling membranes for oily wastewater treatment.
Collapse
Affiliation(s)
- Jiaqian Cai
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qianqian Chen
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Zhang J, Qu W, Li X, Wang Z. Surface engineering of filter membranes with hydrogels for oil-in-water emulsion separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Tian S, He Y, Zhang L, Li S, Bai Y, Wang Y, Wu J, Yu J, Guo X. CNTs/TiO2- loaded carbonized nanofibrous membrane with two-type self-cleaning performance for high efficiency oily wastewater remediation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Mo Y, Zhang F, Dong H, Zhang X, Gao S, Zhang S, Jin J. Ultrasmall Cu 3(PO 4) 2 Nanoparticles Reinforced Hydrogel Membrane for Super-antifouling Oil/Water Emulsion Separation. ACS NANO 2022; 16:20786-20795. [PMID: 36475618 DOI: 10.1021/acsnano.2c07977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane fouling is a persistent and crippling challenge for oily wastewater treatment due to the high susceptibility of membranes to contamination. A feasible strategy is to design a robust and stable hydration layer on the membrane surface to prevent contaminates. A hydrogel illustrates a distinct category of materials with outstanding antifouling performance but is limited by its weak mechanical property. In this research, we report a reinforced hydrogel on a membrane by in situ growing ultrasmall hydrophilic Cu3(PO4)2 nanoparticles in a copper alginate (CuAlg) layer via metal-ion-coordination-mediated mineralization. The embeddedness of hydrophilic Cu3(PO4)2 nanoparticle with a size of 3-5 nm endows the CuAlg/Cu3(PO4)2 composite hydrogel with enhanced mechanical property as well as reinforced hydrate ability. The as-prepared CuAlg/Cu3(PO4)2 modified membrane exhibits a superior oil-repulsive property and achieves a nearly zero flux decline for separating surfactant stabilized oil-in-water emulsions with a high permeate flux up to ∼1330 L m-2 h-1 bar-1. Notably, it is capable of keeping similar permeate flux for both pure water and oil-in-water emulsions during filtration, which is superior to the currently reported membranes, indicating its super-antifouling properties.
Collapse
Affiliation(s)
- Yuyue Mo
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Hefeng Dong
- China State Shipbuilding Corporation System Engineering Research Institute, Beijing100036, China
| | - Xingzhen Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Shoujian Gao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
11
|
Mittag A, Rahman MM, Hafez I, Tajvidi M. Development of Lignin-Containing Cellulose Nanofibrils Coated Paper-Based Filters for Effective Oil-Water Separation. MEMBRANES 2022; 13:1. [PMID: 36676808 PMCID: PMC9862162 DOI: 10.3390/membranes13010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
New methods of oil-water separation are needed as industrialization has increased the prevalence of oil-water mixtures on Earth. As an abundant and renewable resource with high oxygen and grease barrier properties, mechanically refined cellulose nanofibrils (CNFs) may have promising applications for oil-water separations. The unbleached form of these nanofibrils, lignin-containing CNFs (LCNFs), have also been found to display extraordinary barrier properties and are more environmentally friendly and cost-effective than CNFs. Herein, both wet and dry LCNF-modified filter papers have been developed by coating commercial filter paper with an LCNF suspension utilizing vacuum filtration. The LCNF-modified filters were tested for effectiveness in separating oil-water emulsions, and a positive relationship was discovered between a filter's LCNF coat weight and its oil collection capabilities. The filtration time was also analyzed for various coat weights, revealing a trend of high flux for low LCNF coat weights giving-way-to predictions of a coat weight upper limit. Additionally, it was found that wet filters tend to have higher flux values and oil separation efficiency values than dry filters of the same LCNF coat weight. Results confirm that the addition of LCNF to commercial filter papers has the potential to be used in oil-water separation.
Collapse
Affiliation(s)
- Anna Mittag
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Md Musfiqur Rahman
- Laboratory of Renewable Nanomaterials, School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Islam Hafez
- Laboratory of Renewable Nanomaterials, School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Mehdi Tajvidi
- Laboratory of Renewable Nanomaterials, School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA
| |
Collapse
|
12
|
Bai L, Ding A, Li G, Liang H. Application of cellulose nanocrystals in water treatment membranes: A review. CHEMOSPHERE 2022; 308:136426. [PMID: 36113655 DOI: 10.1016/j.chemosphere.2022.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials have brought great changes to human society, and development has gradually shifted the focus to environmentally friendly applications. Cellulose nanocrystals (CNCs) are new one-dimensional nanomaterials that exhibit environmental friendliness and ensure the biological safety of water environment. CNCs have excellent physical and chemical properties, such as simple preparation process, nanoscale size, high specific surface area, high mechanical strength, good biocompatibility, high hydrophilicity and antifouling ability. Because of these characteristics, CNCs are widely used in ultrafiltration membranes, nanofiltration membranes and reverse osmosis membranes to solve the problems hindering development of membrane technology, such as insufficient interception and separation efficiency, low mechanical strength and poor antifouling performance. This review summarizes recent developments and uses of CNCs in water treatment membranes and discusses the challenges and development prospects of CNCs materials from the perspectives of ecological safety and human health by comparing them with traditional one-dimensional nanomaterials.
Collapse
Affiliation(s)
- Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Aiming Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
13
|
Wang Y, He Y, Yu J, Li H, Li S, Tian S. A freestanding dual-cross-linked membrane with robust anti-crude oil-fouling performance for highly efficient crude oil-in-water emulsion separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Wang D, Gao Y, Gao S, Huang H, Min F, Li Y, Seeger S, Jin J, Chu Z. Antifouling superhydrophilic porous glass membrane based on sulfobetaine prepared by thiol−ene click chemistry for high-efficiency oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Wu Y, Wu W, Farag MA, Shao P. Functionalized cellulose nanocrystal embedded into citrus pectin coating improves its barrier, antioxidant properties and potential application in food. Food Chem 2022; 401:134079. [PMID: 36115226 DOI: 10.1016/j.foodchem.2022.134079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 02/01/2023]
Abstract
Due to the hydrophilic of the pectin material, the coating has poor barrier properties and a negative preservation effect on fresh fruits. In this study, citrus pectin coating with improved barrier and antioxidant properties was prepared by embedding with functional cellulose nanocrystals (CNC). It was assessed that cellulose nanocrystals grafted with p-coumaric acid (CNC-P) were uniformly dispersed in the pectin matrix to improve coating barrier properties. The addition of 8 % CNC-P to the pectin coating led to a decrease in water vapor and oxygen permeability from the coating by 12.6 % and 22.3 %, respectively. Additionally, the grafted p-coumaric acid (PA) introduced antioxidant properties to the cellulose nanocrystals. The fresh-cut fruits preservation assay showed that the coating containing CNC-P exerted a stronger inhibition effect of the browning process within 8 h than other coatings. This study suggests that pectin coating embedded with CNC-P has the potential to be used in food packaging.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang, Hangzhou 310014, China
| | - Weina Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang, Hangzhou 310014, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang, Hangzhou 310014, China.
| |
Collapse
|
16
|
He XT, Li BY, Liu JX, Tao WQ, Li Z. Facile fabrication of 2D MOF-Based membrane with hierarchical structures for ultrafast Oil-Water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Su X, Huang S, Wu W, Li K, Xie H, Wu Y, Zhang X, Xie X. Protonated cross-linkable nanocomposite coatings with outstanding underwater superoleophobic and anti-viscous oil-fouling properties for crude oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129129. [PMID: 35584584 DOI: 10.1016/j.jhazmat.2022.129129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Superhydrophilic/underwater superoleophobic coatings that effectively prevent viscous oil contamination have been of considerable interest for the great potential in oil spill remediation and oilfield wastewater treatment. In the present work, a protonated cross-linkable nanocomposite coating with robust underwater superoleophobicity and intensified hydration capability is proposed through the synthesis of active polymeric nanocomplex (PNC), cross-linking reaction between PNC and hydrophilic chitosan (CS), and final protonation to further improve water affinity. Benefiting from the hierarchical structure and strong hydration capability induced by electrostatic interactions and hydrogen bondings, the nanocomposite coating coated textile exhibits excellent superhydrophilicity (within 0.28 s with water contact angle reaching 0°), underwater superoleophobicity (underwater crude oil contact angle at 160°), and ultralow oil adhesion even to highly viscous silicone oil. Moreover, the nanocomposite coating presents a robust chemical resistance, mechanical tolerance, and storage stability. Simultaneously, the nanocomposite coating adapts well to various porous substrates (e.g., stainless steel mesh and Ni sponge) with great anti-oil-fouling and self-cleaning performances. Importantly, the coating coated textile is successfully applied in crude oil/water separation with excellent efficiency and repeatability. The findings conceivably stand out as a new methodology to fabricate superhydrophilic/underwater superoleophobic materials with outstanding anti-viscous oil-fouling property for practically treating oily wastewater.
Collapse
Affiliation(s)
- Xiaojing Su
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shengqi Huang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wenjian Wu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Huali Xie
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yunhui Wu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaofan Zhang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xin Xie
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
18
|
Alginate-based nanofibrous membrane with robust photo-Fenton self-cleaning property for efficient crude oil/water emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Bio-inspired mineral-hydrogel hybrid coating on hydrophobic PVDF membrane boosting oil/water emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120383] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|