1
|
Gao H, Qian H, Meng Z, Chang S, Wang X, Han Z, Liu Y. Biomimetic materials for efficient emulsion separation: Based on the perspective of energy. Adv Colloid Interface Sci 2025; 341:103486. [PMID: 40163905 DOI: 10.1016/j.cis.2025.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Purifying emulsified oily wastewater is particularly crucial for solving environmental pollution and water scarcity. Membrane separation shows great potential for emulsified wastewater treatment. However, realizing continued effective emulsion separation remains a significant challenge. Fortunately, various kinds of creative schemes have been proposed to overcome the current dilemma. In this paper, biomimetic emulsion separation materials with unique wettability are introduced. Besides, This article summarizes the recently advanced emulsion separation strategies. First, we analyze the typical wettability theory and explore the trade-off between separation flux and efficiency. After that, based on emulsion types, the current common emulsion separation materials are summarized and analyzed. Notably, the integration of natural biological inspiration has made separation materials full of potential. Further, from the perspective of external energy input or no-external energy input, this article provides an overview of advanced emulsion separation materials and analyzes the potential separation mechanism. Encouragingly, efficient emulsion separation can be realized by membrane characteristics (microstructure, superwettability, electrostatic interaction) or the appropriate external stimulus (photo, electricity, magnetic). Finally, the challenges and trends are summarized. We hope that this article will provide inspiration for the advancement of novel generations of separation materials.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Haiyu Qian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siyu Chang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, PR China.
| |
Collapse
|
2
|
Mohapatra L, Paramanik L, Sabnam S, Yoo SH. Advanced strategies for controlling three-phase boundaries in photocatalysis. NANOSCALE 2024; 16:22099-22119. [PMID: 39540614 DOI: 10.1039/d4nr03651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This review delves into the latest advancements in controlling three-phase boundaries (TPBs) in photocatalytic systems, with a focus on photo(electro)catalytic processes for nitrogen reduction, oxygen reduction, and water reduction. We critically analyze various strategies and advanced materials designed to enhance TPB performance, evaluating their impact on catalytic efficiency and identifying gaps in the existing literature. By examining sophisticated triphasic systems that integrate superwetting materials, we emphasize their essential role in improving light absorption, charge separation, and mass transfer. Key challenges in TPB optimization are discussed, and future research directions are proposed to advance photocatalytic technologies for sustainable energy applications. This review highlights the crucial importance of TPBs in photo(electro)catalysis, aiming to inspire further innovation for more efficient and scalable solutions.
Collapse
Affiliation(s)
- Lagnamayee Mohapatra
- Department of Quantum System Engineering, Jeonbuk National University, Republic of Korea.
| | - Lekha Paramanik
- Department of Quantum System Engineering, Jeonbuk National University, Republic of Korea.
| | - Subhashree Sabnam
- Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, Republic of Korea
| | - Seung Hwa Yoo
- Department of Quantum System Engineering, Jeonbuk National University, Republic of Korea.
- Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Graduate School, Jeonbuk National University, Republic of Korea
| |
Collapse
|
3
|
Huang Y, Gu M, Zhang G, Shen S, Liu D, Zhou X, Hong Y. Improving multifunctional properties of the polyvinylidene fluoride (PVDF) membrane with crosslinked dialdehyde-starch (DAS) and polyethyleneimine (PEI) coating. Int J Biol Macromol 2024; 280:136015. [PMID: 39326596 DOI: 10.1016/j.ijbiomac.2024.136015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Dialdehyde-soluble starch (DAS) and polyethyleneimine (PEI) were used to coat the polyvinylidene fluoride (PVDF) membrane for improving its antifouling and multifunctional properties through a combination of dip-coating and spray-coating techniques. The resulting membrane demonstrated excellent hydrophilicity and underwater oleophobicity due to hydrophilic DAS and PEI on its surface. The membrane achieved an impressive oil removal rate of 99.8 % and a flux 1420.8 ± 26.5 L·m-2·h-1 when it was used for oil-water emulsion separation. The hydration layer formed by the DAS and PEI greatly enhanced the membrane antifouling property, and its flux recovery rate was up to 96.6 % in BSA filtration experiments. The positive charge PEI and the negative charge DAS contributed to high separation efficiency of 99.1 % for the anion dye MO with the membrane D10P20, and high separation efficiency of 88.3 % for the cation dye RhB with the membrane P5D20. In addition, the coating layer was stable due to the cross-linked DAS and PEI. This research contributes greatly to the preparation of antifouling and multifunctional membrane using environmentally friendly material including polysaccharide derivatives and water soluble polymer.
Collapse
Affiliation(s)
- Yixuan Huang
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Mengqi Gu
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Ganwei Zhang
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Shusu Shen
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Dapeng Liu
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Xiaoji Zhou
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Yaoliang Hong
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| |
Collapse
|
4
|
Hossain MT, Shahid MA, Mahmud N, Habib A, Rana MM, Khan SA, Hossain MD. Research and application of polypropylene: a review. DISCOVER NANO 2024; 19:2. [PMID: 38168725 PMCID: PMC10761633 DOI: 10.1186/s11671-023-03952-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Polypropylene (PP) is a versatile polymer with numerous applications that has undergone substantial changes in recent years, focusing on the demand for next-generation polymers. This article provides a comprehensive review of recent research in PP and its advanced functional applications. The chronological development and fundamentals of PP are mentioned. Notably, the incorporation of nanomaterial like graphene, MXene, nano-clay, borophane, silver nanoparticles, etc., with PP for advanced applications has been tabulated with their key features and challenges. The article also conducts a detailed analysis of advancements and research gaps within three key forms of PP: fiber, membrane, and matrix. The versatile applications of PP across sectors like biomedical, automotive, aerospace, and air/water filtration are highlighted. However, challenges such as limited UV resistance, bonding issues, and flammability are noted. The study emphasizes the promising potential of PP while addressing unresolved concerns, with the goal of guiding future research and promoting innovation in polymer applications.
Collapse
Affiliation(s)
- Md Tanvir Hossain
- Department of Textile Engineering, Bangladesh University of Business and Technology (BUBT), Dhaka, 1216, Bangladesh
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Abdus Shahid
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh.
| | - Nadim Mahmud
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Ahasan Habib
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Masud Rana
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Shadman Ahmed Khan
- Department of Textile Engineering, Bangladesh University of Business and Technology (BUBT), Dhaka, 1216, Bangladesh
| | - Md Delwar Hossain
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| |
Collapse
|
5
|
Wen J, Cheng W, Zhang Y, Zhou Y, Zhang Y, Yang L. Highly efficient removal of Cr(VI) from wastewater using electronegative SA/EGCG@Ti/SA/PVDF sandwich membrane. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132073. [PMID: 37467613 DOI: 10.1016/j.jhazmat.2023.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The use of green, non-toxic raw materials is of great significance to the sustainable development of the environment, among which epigallocatechin gallate (EGCG) is a renewable carbon source from plants. At present, there is a lack of research on the metal-polyphenol nanomaterials their use in water decontamination. In this study, a novel SA/EGCG@Ti/SA/PVDF (SESP) sandwich membrane was prepared to effectively solve the problems of difficult recovery of nanomaterials and the leaching of metal ions. The membrane was made by scraping SA on the surface of the PVDF substrate as the bottom protective layer, depositing EGCG@Ti NPs as the functional layer, then coating SA as the surface isolation layer, and finally cross-linking with anhydrous calcium chloride. Results showed that EGCG@Ti NPs dispersed well on the surface of the SA/PVDF basement membrane. SESP sandwich membrane had good hydrothermal and acid-base stability, and it can be applied to wastewater with multiple co-existing heavy metals (e.g., Cu, Pb, Cd, and Ni). The contact angle and pure water flux of the SESP sandwich membrane with a negatively charged surface were 14.0-15.6° and 171.40 L/m2 h, respectively. The pure water flux of the regenerated membrane after BSA pollution recovered to 98.68 L/m2 h, and the interception efficiency and the interception flux of Cr(VI) were 100 % and 72.92 L/m2 h at 40 min of interception, respectively. Additionally, the removal efficiency of Cr(VI) by SESP sandwich membrane was maintained above 83 % for simulated wastewater and 100 % for actual wastewater after five adsorption-desorption cycles. Cr(VI) and Cr(III) can be removed simultaneously with the negatively charged SESP sandwich membrane. EDS and XPS analysis showed that the removal of Cr(VI) was controlled by the Donnan effect, anion exchange, chelation/complexation, and reduction mechanism. In contrast, Cr(III) was mainly influenced by electrostatic attraction and chelation/complexation mechanisms. In conclusion, the newly prepared sandwich membrane has good application potential in treating Cr(VI) wastewater.
Collapse
Affiliation(s)
- Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Research Institute of Hunan University in Chongqing, Chongqing, PR China.
| | - Wenxing Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yichen Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lisha Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
6
|
Li DS, Pan Z, Cai CC, Li TT, Lou CW, Lin JH, Ren HT. Synergy of Adsorption and Photocatalytic Reduction for Efficient Removal of Cr(VI) with Polyvinylidene Fluoride@Polyvinyl Alcohol-FeC 2O 4/Bi 2.15WO 6. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10601-10610. [PMID: 37467429 DOI: 10.1021/acs.langmuir.3c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Although the photocatalytic reduction of Cr(VI) to Cr(III) by traditional powder photocatalysts is a promising method, the difficulty and poor recovery of photocatalysts from water hinder their wide practical applications. Herein, we present that FeC2O4/Bi2.15WO6 (FeC2O4/BWO) composites were tightly bonded to modified polyvinylidene fluoride (PVDF) membranes by chemical grafting with the aid of polyvinyl alcohol (PVA) to form photocatalytic composite membranes (PVDF@PVA-FeC2O4/BWO). The contact angle of PVDF@PVA-FeC2O4/BWO (0.06 wt % of FeC2O4/BWO) is 48.0°, which is much lower than that of the pure PVDF membrane (80.5°). Meanwhile, the permeate flux of 61.43 g m-2 h-1 and water flux of 250.60 L m-2 h-1 were observed for PVDF@PVA-FeC2O4/BWO composite membranes. The tensile strength of composite membranes reached 48.84 MPa, which was 9.8 times higher than that of PVDF membrane. It was found that the PVDF@PVA-FeC2O4/BWO membrane exhibited excellent photocatalytic Cr(VI) reduction performance under both simulated and real sunlight irradiation. The adsorption for Cr(VI) by PVDF@PVA-FeC2O4/BWO can reach 47.6% in the dark process within 30 min, and the removal percentage of Cr(VI) could reach 100% with a rate constant k value of 0.2651 min-1 after 10 min of light exposure, indicating a synergistic effect of adsorption and photoreduction for Cr(VI) removal by the composite membrane. The PVDF@PVA-FeC2O4/BWO membrane had good stability and reusability after seven consecutive cycles. Most importantly, the influences of foreign ions on Cr(VI) reduction were investigated to mimic real sewage, which revealed that no obvious adverse effects can be found with the presence of common foreign ions in sewage. The photocatalytic membrane material developed in this study provides a new idea for treating Cr(VI)-containing wastewater and has a more significant application prospect.
Collapse
Affiliation(s)
- Da-Shuai Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Ze Pan
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Chao-Chen Cai
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
7
|
Cheng B, Yan S, Li Y, Zheng L, Wen X, Tan Y, Yin X. In-situ growth of robust and superhydrophilic nano-skin on electrospun Janus nanofibrous membrane for oil/water emulsions separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Wang Y, Yang S, Zhang J, Chen Z, Zhu B, Li J, Liang S, Bai Y, Xu J, Rao D, Dong L, Zhang C, Yang X. Scalable and switchable CO 2-responsive membranes with high wettability for separation of various oil/water systems. Nat Commun 2023; 14:1108. [PMID: 36849553 PMCID: PMC9970982 DOI: 10.1038/s41467-023-36685-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Smart membranes with responsive wettability show promise for controllably separating oil/water mixtures, including immiscible oil-water mixtures and surfactant-stabilized oil/water emulsions. However, the membranes are challenged by unsatisfactory external stimuli, inadequate wettability responsiveness, difficulty in scalability and poor self-cleaning performance. Here, we develop a capillary force-driven confinement self-assembling strategy to construct a scalable and stable CO2-responsive membrane for the smart separation of various oil/water systems. In this process, the CO2-responsive copolymer can homogeneously adhere to the membrane surface by manipulating the capillary force, generating a membrane with a large area up to 3600 cm2 and excellent switching wettability between high hydrophobicity/underwater superoleophilicity and superhydrophilicity/underwater superoleophobicity under CO2/N2 stimulation. The membrane can be applied to various oil/water systems, including immiscible mixtures, surfactant-stabilized emulsions, multiphase emulsions and pollutant-containing emulsions, demonstrating high separation efficiency (>99.9%), recyclability, and self-cleaning performance. Due to robust separation properties coupled with the excellent scalability, the membrane shows great implications for smart liquid separation.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Shaokang Yang
- School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Jingwei Zhang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Bo Zhu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Shijing Liang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China.
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
9
|
Zhang Y, Tan L, Han N, Tian S, Li W, Wang W, Wu Y, Sun Z, Zhang X. Janus ZIF-8/P(AN-MA) hybrid microfiltration membrane with selected wettability for highly efficient separation of water/oil emulsions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Preparation and stability enhancement of anchor bonded 3D-network extracting membrane for nickel extraction. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Dan H, Ji K, Gao Y, Yin W, Gao B, Yue Q. Fabrication of superhydrophobic Enteromorpha-derived carbon aerogels via NH 4H 2PO 4 modification for multi-behavioral oil/water separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155869. [PMID: 35561933 DOI: 10.1016/j.scitotenv.2022.155869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Hydrophobic and oleophilic biomass-based block materials are considered to be highly promising candidates used for oil/water separation. However, the crucial hydrophobic modification process often involves various toxic and hazardous organic substances or requires high energy inputs. Inspired by the flame retardant principle of phosphorus-containing flame retardants, herein, an Enteromorpha-derived carbon (ADP-EP) aerogel with a water contact angle of 144.2° was prepared by successive freeze-shaping, freeze-drying and low-temperature carbonization treatment (300 °C), using NH4H2PO4 (ADP) as a modifier. The results demonstrated that the introduction of NH4H2PO4 could largely facilitate the removal of oxygenated groups from the pristine EP aerogels and enhance their surface roughness, thereby achieving surface hydrophobic modification. Featuring intrinsic low density, rich porosity and strong lipophilicity, the as-fabricated ADP-EP aerogels exhibited exceptional performance in both oil spill adsorption (~140 g/g) and water-in-oil emulsion separation. Moreover, the good reusability for oil uptake was also realized thanks to its robust mechanical compressibility and thermal stability. This work provides a facile, economical and eco-friendly route to obtain a desirable hydrophobic/oleophilic surface.
Collapse
Affiliation(s)
- Hongbing Dan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Kaidi Ji
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
12
|
Cao M, Xiao F, Yang Z, Chen Y, Lin L. Purification of oil-containing emulsified wastewater via PAN nanofiber membrane loading PVP-UiO-66-NH2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Liu N, Yang Z, Sun Y, Shan L, Li H, Wang Z. Slippery Mechanism for Enhancing Separation and Anti-fouling of the Superhydrophobic Membrane in a Water-in-Oil Emulsion: Evaluating Water Adhesion of the Membrane Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8312-8323. [PMID: 35767278 DOI: 10.1021/acs.langmuir.2c00767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Water removal from water-in-oil emulsions with superhydrophobic microporous membranes is an important industrial process, where the interface property between the membrane and feed becomes critical. Here, superhydrophobic isotactic polypropylene (iPP) microporous membranes with the "lotus effect" and "rose-petal effect" were prepared via utilizing micromolding phase separation, where the former surface exhibited a water contact angle of 153° and a sliding angle of 3.2°, while the latter surface exhibited a water contact angle of 151° and adhesive characteristics. Surface topography and wettability analysis revealed that surface hydrophobicity and water adhesion could be improved by reducing the periodic distance and diameter and increasing the height of the micron-scale structure. When treating both water-in-oil emulsions and water-in-oil emulsions containing BSA pollutants, the iPP membrane with the "lotus effect" was superior to that with the "rose-petal effect" in terms of oil permeate flux, separation efficiency, anti-fouling ability, and recyclability (20 cycles). To explain this phenomenon, a "slippery" mechanism was introduced that correlated the sliding angle to the slippery surface of the iPP membrane with the "lotus effect" and its anti-water adhesion property. This work proposed a theoretical platform for investigating the effect of water adhesion on superhydrophobic membranes in terms of oil-water separation efficiency and anti-fouling ability, thereby providing a definite basis for preparing superhydrophobic membranes with efficient separation and fouling resistance capabilities.
Collapse
Affiliation(s)
- Ning Liu
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhensheng Yang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yue Sun
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Linna Shan
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhiying Wang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
14
|
Wang L, Zhou B, Bi Z, Wang C, Zheng L, Niu H, Cui P, Wang D, Li Q. Fabrication of Breathable Janus Membranes with Gradient Unidirectional Permeability by Micro-imprinting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Zhang Z, Zhang P, Gao Y, Yun J. Fabrication of superhydrophobic copper meshes via simply soaking for oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Wang Y, Yang H, Yang Y, Zhu L, Zeng Z, Liu S, Li Y, Liang Z. Poly(vinylidene fluoride) membranes with underwater superoleophobicity for highly efficient separation of oil-in-water emulsions in resisting fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Dmitrieva ES, Anokhina TS, Novitsky EG, Volkov VV, Borisov IL, Volkov AV. Polymeric Membranes for Oil-Water Separation: A Review. Polymers (Basel) 2022; 14:polym14050980. [PMID: 35267801 PMCID: PMC8912433 DOI: 10.3390/polym14050980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
This review is devoted to the application of bulk synthetic polymers such as polysulfone (PSf), polyethersulfone (PES), polyacrylonitrile (PAN), and polyvinylidene fluoride (PVDF) for the separation of oil-water emulsions. Due to the high hydrophobicity of the presented polymers and their tendency to be contaminated with water-oil emulsions, methods for the hydrophilization of membranes based on them were analyzed: the mixing of polymers, the introduction of inorganic additives, and surface modification. In addition, membranes based on natural hydrophilic materials (cellulose and its derivatives) are given as a comparison.
Collapse
Affiliation(s)
| | - Tatyana S. Anokhina
- Correspondence: ; Tel.: +7-(495)-647-59-27 (ext. 202); Fax: +7-(495)-633-85-20
| | | | | | | | | |
Collapse
|
18
|
Lin Z, Liu Y, Zhang Z, Yao J. Preparation and Characterization of OH/SiO2-TiO2/PES Composite Hollow Fiber Membrane Using Gas-liquid Membrane Contactor for CO2/CH4 Separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|