1
|
Moretto E, Kobus M, Maison W. Interaction of Grafted Polymeric N-oxides with Charged Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11136-11146. [PMID: 40275485 PMCID: PMC12060641 DOI: 10.1021/acs.langmuir.5c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Grafted polymeric N-oxides have recently attracted interest for antifouling applications, drug delivery, wastewater purification, and electronic devices. Their function depends on the efficiency of the grafting process and the following postgrafting oxidation step. These two parameters govern the solvent-accessible charge density on the surface, an important parameter, which is notoriously hard to determine. In this study, a novel colorimetric quantitative assay for polymeric N-oxides was developed. It allows the determination of the surface charge density of grafted polymeric N-oxides. The method is based on the adsorption of acid fuchsin (AF) to grafted N-oxides through reversible electrostatic interactions between the positively charged nitrogen atoms of the N-oxide functionality and the sulfonate groups of the dye. The process depends thus on the pH-switchable properties of polymeric N-oxides. Adsorption was achieved at a pH value of 3, where N-oxides are almost fully protonated (typical pKa 4-5). AF was desorbed from the surface at pH 7 and quantified via visible adsorption spectroscopy (UV-vis) at 556 nm to determine the amount of surface-grafted functional groups. Charge densities of diverse N-oxides grafted by free radical polymerization from polyethylene (PE) were determined to be in the range 1-3 × 1015 N+-O-/cm2. Notably, N-oxides can form covalent bonds with electron-deficient triarylmethane dyes like AF. This nucleophilic reactivity of N-oxides does not compromise the proposed assay, but it may be of relevance for dye adsorption and desorption in wastewater purification.
Collapse
Affiliation(s)
- Erica Moretto
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, Hamburg 20146, Germany
| | - Michelle Kobus
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, Hamburg 20146, Germany
| | - Wolfgang Maison
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, Hamburg 20146, Germany
| |
Collapse
|
2
|
Wang Z, Yuan S, Wang D, Zhang N, Shen Y, Wang Z. N-Oxide Zwitterionic-Based Antifouling Loose Nanofiltration Membranes with Superior Water Permeance and Effective Dye/Salt Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5856-5865. [PMID: 40068006 DOI: 10.1021/acs.est.5c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Loose nanofiltration (LNF) membranes with high permeance and separation selectivity are highly desired for the effective separation of organic dyes and inorganic salts. Herein, a novel polyamide LNF membrane was fabricated using zwitterionic amine reactant trimethylamine N-oxide-based polyethylenimine (TPEI) and trimesoyl chloride (TMC) via interfacial polymerization (IP). A thin, loose, and smooth polyamide layer was formed due to the low diffusion rate and modified chemical structure of TPEI. The optimized membrane (NF-TPEI) exhibited an extremely high water permeance of 213.0 L m-2 h-1 bar-1, accompanied by outstanding dye rejections of Congo Red (99.8%), Coomassie Brilliant Blue R250 (99.5%), and Evans Blue (99.9%). Meanwhile, the membrane possessed low rejections (<7.0%) of inorganic salts (Na2SO4, MgSO4, MgCl2, and NaCl). Additionally, the NF-TPEI membrane exhibited outstanding antifouling performance, achieving a superior recovery ratio of 96.0 and 98.1% after the filtration of humic acid and sodium alginate solution, respectively. Compared to the commercial NF270 membrane, the NF-TPEI membrane exhibited significantly improved separation performance in terms of permeance and fouling resistance, which provided more possibilities for high-performance LNF membranes toward the treatment of wastewater with organic contaminants.
Collapse
Affiliation(s)
- Ziming Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yun Shen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P.R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
3
|
Ding Y, Zhang M, Ding M, Ji X, Song X, Ding C. Ultrasensitive Electrochemical Biosensor Based on Efficient PDA-APDMAO Antifouling Interface and Dual-Signal Ratio Strategy for Trace Detection of Alpha-Fetoprotein in Human Serum. Anal Chem 2024; 96:14108-14115. [PMID: 39167423 DOI: 10.1021/acs.analchem.4c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In electrochemical analysis, developing biosensors that can resist the nonspecific adsorption of interfering biomolecules in human serum remains a huge challenge, which depends on the design of efficient antifouling materials. Herein, 3-aminopropyldimethylamine oxide (APDMAO) biomimetic zwitterions were prepared as antifouling interfaces. Among them, the unique positive and negative charges (N+-O-) of APDMAO promoted its hydrogen bonding with water molecules, forming a firm hydration barrier that endowed it with strong and stable antifouling performance. Meanwhile, its inherent amino groups could copolymerize with the biomimetic adhesive dopamine to form a thin layer of quinone intermediates, providing conditions for the subsequent binding of aptamers and signal probes. Importantly, the biomimetic APDMAO with functional groups and one-step oxidation characteristics solved the challenges of zwitterionic synthesis and modification, as well as improved biocompatibility of the sensing interface, thereby expanding the application potential of zwitterions as antifouling materials in sensing analysis. Thiol-containing alpha-fetoprotein (AFP) aptamers modified with methylene blue (MB) were coupled under controllable potential, greatly reducing the incubation time, which promoted the productization application of biosensors. In addition, the ratio sensing strategy using MB as internal standard factors and concanavalin-silver nanoparticles (ConA-Ag NPs) as signal probes was introduced to reduce background and instrument interferences, thus improving detection accuracy. On this basis, the proposed antifouling electrochemical biosensor achieved sensitive and accurate AFP detection over a wide dynamic range (10 fg/mL-10 ng/mL), with a low detection limit of 3.41 fg/mL (3σ/m). This work provides positive insights into the development of zwitterionic antifouling materials and clinical detection of liver cancer markers in human serum.
Collapse
Affiliation(s)
- Yan Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Minghao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mengli Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoting Ji
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xianzhen Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
4
|
Lv W, Wang Y, Fu H, Liang Z, Huang B, Jiang R, Wu J, Zhao Y. Recent advances of multifunctional zwitterionic polymers for biomedical application. Acta Biomater 2024; 181:19-45. [PMID: 38729548 DOI: 10.1016/j.actbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Zwitterionic polymers possess equal total positive and negative charges in the repeating units, making them electrically neutral overall. This unique property results in superhydrophilicity, which makes the zwitterionic polymers highly effective in resisting protein adsorption, thus endowing the drug carriers with long blood circulation time, inhibiting thrombus formation on biomedical devices in contact with blood, and ensuring the good sensitivity of sensors in biomedical application. Moreover, zwitterionic polymers have tumor-targeting ability and pH-responsiveness, rendering them ideal candidates for antitumor drug delivery. Additionally, the high ionic conductivity of zwitterionic polymers makes them an important raw material for ionic skin. Zwitterionic polymers exhibit remarkable resistance to bacterial adsorption and growth, proving their suitability in a wide range of biomedical applications such as ophthalmic applications, and wound dressings. In this paper, we provide an in-depth analysis of the different structures and characteristics of zwitterionic polymers and highlight their unique qualities and suitability for biomedical applications. Furthermore, we discuss the limitations and challenges that must be overcome to realize the full potential of zwitterionic polymers and present an optimistic perspective for zwitterionic polymers in the biomedical fields. STATEMENT OF SIGNIFICANCE: Zwitterionic polymers have a series of excellent properties such as super hydrophilicity, anti-protein adsorption, antibacterial ability and good ionic conductivity. However, biomedical applications of multifunctional zwitterionic polymers are still a major field to be explored. This review focuses on the design and application of zwitterionic polymers-based nanosystems for targeted and responsive delivery of antitumor drugs and cancer diagnostic agents. Moreover, the use of zwitterionic polymers in various biomedical applications such as biomedical devices in contact with blood, biosensors, ionic skin, ophthalmic applications and wound dressings is comprehensively described. We discuss current results and future challenges for a better understanding of multifunctional zwitterionic polymers for biomedical applications.
Collapse
Affiliation(s)
- Wenfeng Lv
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanhui Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Huayu Fu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ziyang Liang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bangqi Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ruiqin Jiang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
5
|
Kobus M, Friedrich T, Zorn E, Burmeister N, Maison W. Medicinal Chemistry of Drugs with N-Oxide Functionalities. J Med Chem 2024; 67:5168-5184. [PMID: 38549449 PMCID: PMC11017254 DOI: 10.1021/acs.jmedchem.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Molecules with N-oxide functionalities are omnipresent in nature and play an important role in Medicinal Chemistry. They are synthetic or biosynthetic intermediates, prodrugs, drugs, or polymers for applications in drug development and surface engineering. Typically, the N-oxide group is critical for biomedical applications of these molecules. It may provide water solubility or decrease membrane permeability or immunogenicity. In other cases, the N-oxide has a special redox reactivity which is important for drug targeting and/or cytotoxicity. Many of the underlying mechanisms have only recently been discovered, and the number of applications of N-oxides in the healthcare field is rapidly growing. This Perspective article gives a short summary of the properties of N-oxides and their synthesis. It also provides a discussion of current applications of N-oxides in the biomedical field and explains the basic molecular mechanisms responsible for their biological activity.
Collapse
Affiliation(s)
- Michelle Kobus
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Timo Friedrich
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Eilika Zorn
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Nils Burmeister
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Wolfgang Maison
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Zhao Z, Gao W, Chang Y, Yang Y, Shen H, Li T, Zhao S. Asymmetric Triple-Functional Janus Membrane for Blood Oxygenation. Adv Healthc Mater 2024; 13:e2302708. [PMID: 38010837 DOI: 10.1002/adhm.202302708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/18/2023] [Indexed: 11/29/2023]
Abstract
The oxygenation membrane, a core material of extracorporeal membrane oxygenation (ECMO), is facing challenges in balancing anti-plasma leakage, gas exchange efficiency, and hemocompatibility. Here, inspired by the asymmetric structural features of alveolus pulmonalis, a novel triple-functional membrane for blood oxygenation with a Janus architecture is proposed, which is composed of a hydrophobic polydimethylsiloxane (PDMS) layer to prevent plasma leakage, an ultrathin polyamide layer to enhance gas exchange efficiency with a CO2 :O2 permeance ratio of ≈10.7, and a hydrophilic polyzwitterionic layer to improve the hemocompatibility. During the simulated ECMO process, the Janus oxygenation membrane exhibits excellent performance in terms of thrombus formation and plasma leakage prevention, as well as adequate O2 transfer rate (17.8 mL min-1 m-2 ) and CO2 transfer rate (70.1 mL min-1 m-2 ), in comparison to the reported oxygenation membranes. This work presents novel concepts for the advancement of oxygenation membranes and demonstrates the application potential of the asymmetric triple-functional Janus oxygenation membrane in ECMO.
Collapse
Affiliation(s)
- Zhenyi Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin, 300072, P. R. China
| | - Wenqing Gao
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, P. R. China
| | - Yun Chang
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, P. R. China
| | - Yue Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin, 300072, P. R. China
| | - Hechen Shen
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, P. R. China
| | - Tong Li
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, P. R. China
| | - Song Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin, 300072, P. R. China
| |
Collapse
|
7
|
Pan LC, Hsieh SY, Chen WC, Lin FT, Lu CH, Cheng YL, Chien HW, Yang H. Self-Assembly of Shark Scale-Patterned Tunable Superhydrophobic/Antifouling Structures with Visual Color Response. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37436935 DOI: 10.1021/acsami.3c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The stacked riblet-like shark scales, also known as dermal denticles, allow them to control the boundary layer flow over the skin and to reduce interactions with any biomaterial attached, which guide the design of antifouling coatings. Interestingly, shark scales are with a wide variation in geometry both across species and body locations, thereby displaying diversified antifouling capabilities. Inspired by the multifarious denticles, a stretchable shark scale-patterned silica hollow sphere colloidal crystal/polyperfluoroether acrylate-polyurethane acrylate composite film is engineered through a scalable self-assembly approach. Upon stretching, the patterned photonic crystals feature different short-term antibacterial and long-term anti-biofilm performances with a distinguished color response under varied elongation ratios. To gain a better understanding, the dependence of elongation ratio on antiwetting behaviors, antifouling performances, and structural color changes has also been investigated in this research.
Collapse
Affiliation(s)
- Liang-Cheng Pan
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Shang-Yu Hsieh
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Wei-Cheng Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82444, Taiwan
| | - Fang-Tzu Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Chieh-Hsuan Lu
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Ya-Lien Cheng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82444, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| |
Collapse
|
8
|
Wei Q, Feng S, Wu L. Glomerular endothelium-inspired anticoagulant surface coating on polyethersulfone hemodialysis membrane. MATERIALS CHEMISTRY AND PHYSICS 2023; 297:127364. [DOI: 10.1016/j.matchemphys.2023.127364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
|
9
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Wei Q, Feng S, Zhang Z, Liu L, Wu L. A high-protein retained PES hemodialysis membrane with tannic acid as a multifunctional modifier. Colloids Surf B Biointerfaces 2022; 220:112921. [PMID: 36252532 DOI: 10.1016/j.colsurfb.2022.112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
A high protein retention polyethersulfone (PES) membrane was prepared by nonsolvent-induced phase separation and surface coating, which exhibited enhanced hemocompatibility and antioxidant stress performance. The cross-linked network was constructed by tannic acid (TA) and alpha-lipoic acid (α-LA) on the surface of the membrane, which controlled the pores to a reasonable size. The enrichment of heparin-like groups on the membrane surface, implemented by "hydrophobic interaction" and "click reaction", confers anticoagulant properties; the presence of a large number of phenolic hydroxyl groups from TA and the introduction of α-LA allows the modified membranes to intervene in oxidative stress. The hemocompatibility characterizations included plasma recalcification time (PRT), activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and hemolysis rate (HR). Additionally, the DPPH ABTS radical scavenging capacity was tested to evaluate the antioxidant performance. The results show that the modified membrane presents an outstanding protein retention rate (99.3%) along with permeability. In addition, the PRT is prolonged to 341.7 s, and the DPPH• scavenging ability reaches 0.74 µmol•cm-2. The membranes can be easily prepared and present excellent comprehensive performance. This work provides a simple and facile strategy for the fabrication of hemodialysis membranes with controllable pore sizes.
Collapse
Affiliation(s)
- Qianyu Wei
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shuman Feng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, China
| | - Zezhen Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lulu Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Xiangxing Road 6, Zhongshan 528400, Guangdong, China.
| |
Collapse
|
11
|
Zhang N, Cheng K, Zhang J, Li N, Yang X, Wang Z. A dual-biomimetic strategy to construct zwitterionic anti-fouling membrane with superior emulsion separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Liu Y, Han Q, Li G, Lin H, Liu F, Li Q, Deng G. Anticoagulation polyvinyl chloride extracorporeal circulation catheters for heparin-free treatment. J Mater Chem B 2022; 10:8302-8314. [PMID: 36165336 DOI: 10.1039/d2tb01584f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracorporeal circulation (ECC) catheters have potential to be blood compatible and could be used to prevent thrombotic occlusion. Here, we produced heparin-mimicking anticoagulation PVC tubing on a large scale by synthesizing a heparin-mimicking polymer (HMP) and co-extruding. The PVC@HMP catheter was evaluated using whole human blood in vitro, which indicated it could prevent plasma protein attachment, reduce platelet adhesion and activation, and inhibit coagulation factors (XII, XI, IX, and VIII). Moreover, the anticoagulation PVC tubing was assembled into extracorporeal circulation with a New Zealand rabbit model, manifesting excellent real-time antithrombogenic properties without systemic heparin anticoagulation in vivo. The rapid recovery of coagulation factors after operation further confirmed its superiority over heparin, which would not completely inactivate the activity of those coagulation factors (XII, XI, IX and VIII). In addition, the PVC@HMP-1 catheters remain patent after being implanted in rats for 28 days without apparent inflammation and mortality complications. The anticoagulation PVC tubes could be used to construct various systemic and integrative anticlotting biomedical devices, which would dramatically reduce the introduction of heparin into blood circulation, thus preventing side effects and promoting the development of heparin-free treatment.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, P. R. China
| | - Qiu Han
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, P. R. China.
| | - Guiliang Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, P. R. China
| | - Haibo Lin
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, P. R. China.
| | - Fu Liu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, P. R. China
| | - Qiang Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, P. R. China
| | - Gang Deng
- The Ningbo Central Blood Station, Ningbo, 315201, P. R. China
| |
Collapse
|
13
|
Wang Y, Liu Y, Han Q, Lin H, Liu F. A novel poly (4-methyl-1-pentene)/polypropylene (PMP/PP) thin film composite (TFC) artificial lung membrane for enhanced gas transport and excellent hemo-compatibility. J Memb Sci 2022; 649:120359. [PMID: 36570331 PMCID: PMC9758018 DOI: 10.1016/j.memsci.2022.120359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
Abstract
Extracorporeal membrane oxygenation is a technique that provides short-term supports to the heart and lungs. It removes CO2 from the blood and provides enough oxygen, which is a huge help in the fight against COVID-19. As the key component, the artificial lung membranes have evolved in three generations including silicon, polypropylene and poly (4-methyl-1-pentene). Herein, we for the first time design and fabricate a novel poly (4-methyl-1-pentene)/polypropylene (PMP/PP) thin film composite (TFC) membrane with the anticoagulant coating composed of poly (sodium 4-styrenesulfonate) and cross-linked poly (vinyl alcohol). Poly (sodium 4-styrenesulfonate) provides sulfonic acid groups to inhibit the coagulant factors (FVIII and FXII), and cross-linked poly (vinyl alcohol) increase the stability of the anticoagulant coating and further improve the hydrophilicity via abundant hydroxyl groups to depress the protein adsorption. Long-term anticoagulant property was demonstrated by whole human blood for 28 days. Blood compatibility was evaluated by hemolysis rate, anticoagulation activity (APTT, TT and PT), complement activation, platelet activation and contact activation. Pure CO2, O2 and N2 permeation rates were determined to evaluate the mass transfer properties of PMP/PP TFC membranes. Gas permeation results revealed that gas permeation flux increased in the TFC membranes because of the decrease of crystallinity. Overall, the so prepared PMP/PP membrane shows good CO2/O2 selectivity and blood compatibility as novel TFC artificial lung membrane.
Collapse
Affiliation(s)
- Yiwen Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, China, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
| | - Yang Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, China, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
| | - Qiu Han
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
| | - Haibo Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, China, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
| |
Collapse
|
14
|
Liu X, Wu H, Wu P. Synchronous Engineering for Biomimetic Murray Porous Membranes Using Isocyanate. NANO LETTERS 2022; 22:3077-3086. [PMID: 35343706 DOI: 10.1021/acs.nanolett.2c00423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly permselective and durable membranes are desirable for massive separation applications. However, currently most membranes prepared using nonsolvent-induced phase separation (NIPS) suffer from low permeability and a high fouling tendency due to the great challenges in a rational design and also practical approach for membrane optimization. Inspired by the natural Murray network from vascular plants, we developed a hierarchical membrane via a straightforward yet robust strategy, using isocyanate as a multifunctional additive. Thanks to the integrated functions of a phase separation regulator, blowing agent, cross-linker, and functionalization anchor of isocyanate, our strategy is featured as a perfect combination of a phase separation and chemical reaction, and it enables synchronous engineering of the membrane hierarchy on porosity and components. The representative membrane exhibits superior water permeance (334 L/m2·h·bar), protein retention (>98%), and antifouling ability (flux recover ratio ∼ 98%). This work highlights a versatile path for pursuing a highly enhanced performance of NIPS-made membranes, from the fancy perspective of Murray bionics.
Collapse
Affiliation(s)
- Xueyuan Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Huiqing Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Peiyi Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| |
Collapse
|