1
|
Guo S, He J, Han H, Han R, Shou J, Ai C, Tang R, Gu S, Tang J, Yu G. A phase-transition ionic liquid endows COF-based mixed matrix membranes with efficient CO 2 separation. Chem Commun (Camb) 2025; 61:8212-8215. [PMID: 40337779 DOI: 10.1039/d5cc01328c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The interfacial compatibility of COF-based MMMs was significantly enhanced through the incorporation of thermoresponsive phase-transition ionic liquids. The IL@DAAQ-COF was synthesized in situ, with the ionic liquid (IL) playing a key role in modulating the COF channel and enhancing the CO2 affinity. The resulting membrane exhibited a CO2 permeability of 17 449 Barrer and a CO2/N2 selectivity of 27.2, surpassing the 2019 Jansen/McKeown upper bound.
Collapse
Affiliation(s)
- Shuyu Guo
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Jingrao He
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Hailong Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Rui Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Junxi Shou
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Chenxiang Ai
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Ruiren Tang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Shuai Gu
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Juntao Tang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Guipeng Yu
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
2
|
Christensen CSQ, Hansen N, Motadayen M, Lock N, Henriksen ML, Quinson J. A review of metal-organic frameworks and polymers in mixed matrix membranes for CO 2 capture. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:155-186. [PMID: 39968168 PMCID: PMC11833178 DOI: 10.3762/bjnano.16.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Polymeric membranes offer an appealing solution for sustainable CO2 capture, with potential for large-scale deployment. However, balancing high permeability and selectivity is an inherent challenge for pristine membranes. To address this challenge, the development of mixed matrix membranes (MMMs) is a promising strategy. MMMs are obtained by carefully integrating porous nano-fillers into polymeric matrices, enabling the simultaneous enhancement of selectivity and permeability. In particular, metal-organic frameworks (MOFs) have gained recognition as MMM fillers for CO2 capture. Here, a review of the current state, recent advancements, and challenges in the fabrication and engineering of MMMs with MOFs for selective CO2 capture is proposed. Key considerations and promising research directions to fully exploit the gas separation potential of MOF-based MMMs in CO2 capture applications are highlighted.
Collapse
Affiliation(s)
- Charlotte Skjold Qvist Christensen
- Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
- Centre for Water Technology (WATEC), Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Nicholas Hansen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Mahboubeh Motadayen
- Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus N, Denmark
| | - Nina Lock
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, 8200 Aarhus N, Denmark
| | - Martin Lahn Henriksen
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, 8200 Aarhus N, Denmark
| | - Jonathan Quinson
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, 8200 Aarhus N, Denmark
| |
Collapse
|
3
|
Qiu B, Gao Y, Gorgojo P, Fan X. Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation: Modification Strategies and Meta-Analysis. NANO-MICRO LETTERS 2025; 17:114. [PMID: 39847125 PMCID: PMC11757663 DOI: 10.1007/s40820-024-01610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored. PIM-1 is the most investigated PIMs, and hence here we review the state-of-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis. Additionally, the development of PIM-1-based thin film composite membranes is commented as well, shedding light on their potential in industrial gas separation. We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.
Collapse
Affiliation(s)
- Boya Qiu
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Yong Gao
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China
| | - Patricia Gorgojo
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza, Mariano Esquillor, 50018, Zaragoza, Spain.
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Xiaolei Fan
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China.
- Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, 315048, People's Republic of China.
| |
Collapse
|
4
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Wood AC, Johnson EC, Prasad RRR, Sullivan MV, Turner NW, Armes SP, Staniland SS, Foster JA. Phage Display Against 2D Metal-Organic Nanosheets as a New Route to Highly Selective Biomolecular Recognition Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406339. [PMID: 39535384 DOI: 10.1002/smll.202406339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Peptides are important biomarkers for various diseases, however distinguishing specific amino-acid sequences using artificial receptors remains a major challenge in biomedical sensing. This study introduces a new approach for creating highly selective recognition surfaces using phage display biopanning against metal-organic nanosheets (MONs). Three MONs (ZIF-7, ZIF-7-NH2, and Hf-BTB-NH2) are added to a solution containing every possible combination of seven-residue peptides attached to bacteriophage hosts. The highest affinity peptides for each MON are isolated through successive bio-panning rounds. Comparison of the surface properties of the MONs and high-affinity peptides provide useful insights into the relative importance of electrostatic, hydrophobic, and co-ordination bonding interactions in each system, aiding the design of future MONs. Coating of the Hf-BTB-NH2 MONs onto a quartz crystal microbalance (QCM) produced a five-fold higher signal for phage with the on-target peptide sequence compared to those with generic sequences. Surface plasmon resonance (SPR) studies produce a 4600-fold higher equilibrium dissociation constant (KD) for on-target sequences and are comparable to those of antibodies (KD = 4 x 10-10 m). It is anticipated that insights from the biopanning approach, combined with the highly tunable nature of MONs, will lead to a new generation of highly selective recognition surfaces for use in biomedical sensors.
Collapse
Affiliation(s)
- Amelia C Wood
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Edwin C Johnson
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Ram R R Prasad
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Mark V Sullivan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Nicholas W Turner
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Sarah S Staniland
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Jonathan A Foster
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| |
Collapse
|
6
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
7
|
Jia Q, Lasseuguette E, Kaur H, Naden AB, Ferrari MC, Wright PA. Zinc triazolate oxalate CALF-20 with platelet morphology and its PEBAX-based mixed matrix membranes for CO 2/N 2 separation. Chem Commun (Camb) 2024; 60:11128-11131. [PMID: 39268921 DOI: 10.1039/d4cc03461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
CALF-20, [Zn2(1,2,4-triazolate)2(oxalate)] shows remarkable performance in post-combustion carbon capture, even under humid conditions1 but its reported crystal morphology hinders its applicability in mixed matrix membranes (MMMs). Here, a route to its preparation as platelets a few tens of nm thick is reported. These were incorporated into a PEBAX MH1567 polymer matrix and the resultant MMMs display improvement in CO2 permeability and CO2/N2 selectivity.
Collapse
Affiliation(s)
- Qian Jia
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| | - Elsa Lasseuguette
- School of Engineering, University of Edinburgh, Robert Stevenson Rd, Edinburgh EH9 3FB, UK.
| | - Harpreet Kaur
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| | - Aaron B Naden
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| | - Maria-Chiara Ferrari
- School of Engineering, University of Edinburgh, Robert Stevenson Rd, Edinburgh EH9 3FB, UK.
| | - Paul A Wright
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| |
Collapse
|
8
|
Dong Y, Zhang Y, Liu P, Zhu S, Peng X, Hu X, Zhang X, Chen Y. A metal-organic framework signaling probe-mediated immunosensor for the economical and rapid determination of enrofloxacin in milk. Food Chem 2024; 449:139050. [PMID: 38581779 DOI: 10.1016/j.foodchem.2024.139050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/02/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Ensuring the safety of animal-derived foods requires the reliable and swift identification of enrofloxacin residues to monitor the presence of antibiotics. In this regard, we synthesized, tuned, and investigated the optical properties of a bimetallic metal-organic framework (Ce/Zr-UiO 66). The investigation was facilitated by employing a polydopamine-coated pipette tip with high adsorption efficiency, serving as an immunoreactive carrier. Subsequently, an immunofunctionalized variant of Ce/Zr-UiO 66, referred to as Ce/Zr-UiO 66@ Bovine serum albumin-enrofloxacin, was developed as an optical probe for the rapid and sensitive identification of enrofloxacin across a variety of samples. The method can accurately detect enrofloxacin at concentrations as low as 0.12 ng/mL, with a determination time of under 15 min; furthermore, it demonstrates exceptional efficacy when applied to food, environmental, and clinical samples. The implementation of this methodology offers a valuable means for cost-effective, rapid, and on-site enrofloxacin determination.
Collapse
Affiliation(s)
- Yiming Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Puyue Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shiyi Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xuewen Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaobo Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiya Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
9
|
Arshad N, Batool SR, Razzaq S, Arshad M, Rasheed A, Ashraf M, Nawab Y, Nazeer MA. Recent advancements in polyurethane-based membranes for gas separation. ENVIRONMENTAL RESEARCH 2024; 252:118953. [PMID: 38636643 DOI: 10.1016/j.envres.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
Collapse
Affiliation(s)
- Noureen Arshad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Liberty Mills Limited, Karachi, 75700, Pakistan.
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Sadia Razzaq
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Mubeen Arshad
- Department of Prosthodontics, Baqai Medical University, Karachi, 74600, Pakistan
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Munir Ashraf
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Functional Textile Research Group, National Textile University, Faisalabad, 37610, Pakistan
| | - Yasir Nawab
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; National Center for Composite Materials, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Biomaterials and Tissue Engineering Research Laboratory, National Textile University, Faisalabad, 37610, Pakistan.
| |
Collapse
|
10
|
Katare A, Sikha S, Mandal B. Synergistic enhancement of CO 2/N 2 separation performance via Ce-MOF-infused chitosan mixed matrix membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33061-y. [PMID: 38561537 DOI: 10.1007/s11356-024-33061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Reticular chemistry, exemplified by metal-organic frameworks (MOFs), has proven invaluable in creating porous materials with finely tuned structures to address critical global energy and environmental challenges. In this context, the need for efficient carbon dioxide (CO2) capture and utilization has taken center stage. One promising approach involves the integration of MOFs into polymer matrix to develop mixed matrix membranes (MMMs). In this work, cerium-based MOFs (Ce-MOF) were selected due to their robust CO2 capture capabilities, while chitosan (CS) was chosen as the polymer matrix due to its reasonably good selectivity and balanced CO2 permeance for the development of MMMs for CO2/N2 (20/80 vol%) separation. A comprehensive suite of analytical techniques, including FTIR, XRD, FESEM, XPS, TGA, EDX, FETEM, and BET, was applied for precise characterization of both the MOF and MMMs. Various operational parameters, such as Ce-MOF content and temperature, were systematically explored to investigate the CO2 capture efficiency of the synthesized MMMs. The results revealed that the optimized Ce-MOF-embedded CS MMMs consistently outperformed the bare CS membranes.
Collapse
Affiliation(s)
- Aviti Katare
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sikha Sikha
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
11
|
Wang C, Wu J, Wang Y, Cheng P, Sun S, Wang T, Lei Z, Niu X, Xu L. CO 2-Philic Nanocomposite Polymer Matrix Incorporated with MXene Nanosheets for Ultraefficient CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14152-14161. [PMID: 38469868 DOI: 10.1021/acsami.3c19504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The incorporation of two-dimensional (2D) functional nanosheets in polymeric membranes is a promising material strategy to overcome their inherent performance trade-off behavior. Herein, we report a novel nanocomposite membrane design by incorporating MXene, a 2D sheet-like nanoarchitecture known for its advantageous lamellar morphology and surface functionalities, into a cross-linked polyether block amide (Pebax)/poly(ethylene glycol) methyl ether acrylate (PEGMEA) blend matrix, which delivered exceptional CO2/N2 and CO2/H2 separation performances that are critical to industrial CO2 capture applications. The finely dispersed Ti3C2Tx nanosheets in the blend polymer matrix led to an expansion of the free volume within the resultant mixed matrix membrane (MMM), giving rise to a substantially enhanced CO2 permeability of up to 1264.6 barrer, which is 102% higher than that of the pristine polymer. Moreover, these MXene-incorporated MMMs exhibited preferential sorption for CO2 over light gases, which contributed to an exceptional CO2/N2 and CO2/H2 selectivity (64.3 and 19.2, respectively) even at a small loading of only 1 wt %, allowing the overall performance to not only surpass the latest upper bounds but also exceed many previously reported high-performance nanosheet-based nanocomposite membranes. Long-term performance tests have also demonstrated the good stability of these membranes. This composite membrane design strategy reveals the remarkable potential of combining a blend copolymer matrix with ultrathin MXene nanosheets to achieve superior gas separation performance for environmentally important gas separations.
Collapse
Affiliation(s)
- Chen Wang
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, China
| | - Ji Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yinglin Wang
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, China
| | - Pengfei Cheng
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, China
| | - Shanfu Sun
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, China
| | - Tianliang Wang
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, China
| | - Zhaohui Lei
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, China
| | - Xialu Niu
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, China
| | - Luping Xu
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, China
| |
Collapse
|
12
|
Lu C, Chen X. Ultrafast Ion Transfer of Metal-Organic Framework Interface for Highly Efficient Energy Storage. NANO LETTERS 2024; 24:3267-3272. [PMID: 38416580 DOI: 10.1021/acs.nanolett.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Flexible supercapacitors are favorable for wearable electronics. However, their high-rate capability and mechanical properties are limited because of unsatisfactory ion transfer kinetics and interfacial modulus mismatch inside devices. Here, we develop a metal-organic framework interface with superior electrical and mechanical properties for supercapacitors. The interfacial mechanism facilitates ultrafast ion transfer with an energy barrier reduction of 43% compared with that of conventional transmembrane transport. It delivers high specific capacity at a wide rate range and exhibits ultrastability beyond 30000 charge-discharge cycles. Furthermore, meliorative modulus mismatch benefited from ultrathin interface design that improves mechanical properties of flexible supercapacitors. It delivers a stable energy supply under various mechanical conditions like bending and twisting status and displays ultrastable mechanical properties with performance retention of 95.5% after 10 000 bending cycles. The research paves the way for interfacial engineering for ultrastable electrochemical devices.
Collapse
Affiliation(s)
- Chao Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xi Chen
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
Mizrahi Rodriguez K, Lin S, Wu AX, Storme KR, Joo T, Grosz AF, Roy N, Syar D, Benedetti FM, Smith ZP. Penetrant-induced plasticization in microporous polymer membranes. Chem Soc Rev 2024; 53:2435-2529. [PMID: 38294167 DOI: 10.1039/d3cs00235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Penetrant-induced plasticization has prevented the industrial deployment of many polymers for membrane-based gas separations. With the advent of microporous polymers, new structural design features and unprecedented property sets are now accessible under controlled laboratory conditions, but property sets can often deteriorate due to plasticization. Therefore, a critical understanding of the origins of plasticization in microporous polymers and the development of strategies to mitigate this effect are needed to advance this area of research. Herein, an integrative discussion is provided on seminal plasticization theory and gas transport models, and these theories and models are compared to an exhaustive database of plasticization characteristics of microporous polymers. Correlations between specific polymer properties and plasticization behavior are presented, including analyses of plasticization pressures from pure-gas permeation tests and mixed-gas permeation tests for pure polymers and composite films. Finally, an evaluation of common and current state-of-the-art strategies to mitigate plasticization is provided along with suggestions for future directions of fundamental and applied research on the topic.
Collapse
Affiliation(s)
- Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Kayla R Storme
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taigyu Joo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Aristotle F Grosz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Naksha Roy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Duha Syar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Ignatusha P, Lin H, Kapuscinsky N, Scoles L, Ma W, Patarachao B, Du N. Membrane Separation Technology in Direct Air Capture. MEMBRANES 2024; 14:30. [PMID: 38392657 PMCID: PMC10889985 DOI: 10.3390/membranes14020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Direct air capture (DAC) is an emerging negative CO2 emission technology that aims to introduce a feasible method for CO2 capture from the atmosphere. Unlike carbon capture from point sources, which deals with flue gas at high CO2 concentrations, carbon capture directly from the atmosphere has proved difficult due to the low CO2 concentration in ambient air. Current DAC technologies mainly consider sorbent-based systems; however, membrane technology can be considered a promising DAC approach since it provides several advantages, e.g., lower energy and operational costs, less environmental footprint, and more potential for small-scale ubiquitous installations. Several recent advancements in validating the feasibility of highly permeable gas separation membrane fabrication and system design show that membrane-based direct air capture (m-DAC) could be a complementary approach to sorbent-based DAC, e.g., as part of a hybrid system design that incorporates other DAC technologies (e.g., solvent or sorbent-based DAC). In this article, the ongoing research and DAC application attempts via membrane separation have been reviewed. The reported membrane materials that could potentially be used for m-DAC are summarized. In addition, the future direction of m-DAC development is discussed, which could provide perspective and encourage new researchers' further work in the field of m-DAC.
Collapse
Affiliation(s)
- Pavlo Ignatusha
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Noe Kapuscinsky
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ludmila Scoles
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| | - Weiguo Ma
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| | - Bussaraporn Patarachao
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| | - Naiying Du
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| |
Collapse
|
15
|
Astorino C, De Nardo E, Lettieri S, Ferraro G, Pirri CF, Bocchini S. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). MEMBRANES 2023; 13:903. [PMID: 38132907 PMCID: PMC10744731 DOI: 10.3390/membranes13120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Membrane-based Polymers of Intrinsic Microporosity (PIMs) are promising candidates for energy-efficient industrial gas separations, especially for the separation of carbon dioxide over methane (CO2/CH4) and carbon dioxide over nitrogen (CO2/N2) for natural gas/biogas upgrading and carbon capture from flue gases, respectively. Compared to other separation techniques, membrane separations offer potential energy and cost savings. Ultra-permeable PIM-based polymers are currently leading the trade-off between permeability and selectivity for gas separations, particularly in CO2/CH4 and CO2/N2. These membranes show a significant improvement in performance and fall within a linear correlation on benchmark Robeson plots, which are parallel to, but significantly above, the CO2/CH4 and CO2/N2 Robeson upper bounds. This improvement is expected to enhance the credibility of polymer membranes for CO2 separations and stimulate further research in polymer science and applied engineering to develop membrane systems for these CO2 separations, which are critical to energy and environmental sustainability. This review aims to highlight the state-of-the-art strategies employed to enhance gas separation performances in PIM-based membranes while also mitigating aging effects. These strategies include chemical post-modification, crosslinking, UV and thermal treatment of PIM, as well as the incorporation of nanofillers in the polymeric matrix.
Collapse
Affiliation(s)
- Carmela Astorino
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Eugenio De Nardo
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Stefania Lettieri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Giuseppe Ferraro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Sergio Bocchini
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
16
|
Tian Z, Li D, Zheng W, Chang Q, Sang Y, Lai F, Wang J, Zhang Y, Liu T, Antonietti M. Heteroatom-doped noble carbon-tailored mixed matrix membranes with ultrapermeability for efficient CO 2 separation. MATERIALS HORIZONS 2023; 10:3660-3667. [PMID: 37350178 DOI: 10.1039/d3mh00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Membranes with ultrapermeability for CO2 are desired for future large-scale carbon capture projects, because of their excellent separative productivity and economic efficiency. Herein, we demonstrate that a membrane with ultrapermeability for CO2 can be constructed by combining N/O para-doped noble carbons, C2NxO1-x, with high-permeability polymer PIM-1. The optimal PIM-1/C2NxO1-x membranes exhibit superior CO2 permeability (22110 Barrer) with a CO2/N2 selectivity of 15.5, and an unprecedented CO2 permeability of 37272 Barrer can be obtained after a PEG activation treatment, far surpassing the 2008 upper bound. Both broad experiments and molecular dynamics simulations reveal that the numerous ordered polar channels of C2NxO1-x and their excellent compatibility with PIM-1 are responsible for the superior CO2 separation performance of the membrane. Although this is the first study on C2N-type gas separation membranes, the outstanding results indicate that noble carbon building blocks may pave a new avenue to advance high-performance CO2 separation membranes.
Collapse
Affiliation(s)
- Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Dongyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Weigang Zheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Qishuo Chang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yudong Sang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Jing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
17
|
Abstract
The demand for monitoring chemical and physical information surrounding, air quality, and disease diagnosis has propelled the development of devices for gas sensing that are capable of translating external stimuli into detectable signals. Metal-organic frameworks (MOFs), possessing particular physiochemical properties with designability in topology, specific surface area, pore size and/or geometry, potential functionalization, and host-guest interactions, reveal excellent development promises for manufacturing a variety of MOF-coated sensing devices for multitudinous applications including gas sensing. The past years have witnessed tremendous progress on the preparation of MOF-coated gas sensors with superior sensing performance, especially high sensitivity and selectivity. Although limited reviews have summarized different transduction mechanisms and applications of MOF-coated sensors, reviews summarizing the latest progress of MOF-coated devices under different working principles would be a good complement. Herein, we summarize the latest advances of several classes of MOF-based devices for gas sensing, i.e., chemiresistive sensors, capacitors, field-effect transistors (FETs) or Kelvin probes (KPs), electrochemical, and quartz crystal microbalance (QCM)-based sensors. The surface chemistry and structural characteristics were carefully associated with the sensing behaviors of relevant MOF-coated sensors. Finally, challenges and future prospects for long-term development and potentially practical application of MOF-coated sensing devices are pointed out.
Collapse
Affiliation(s)
- Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
18
|
Olabi AG, Alami AH, Ayoub M, Aljaghoub H, Alasad S, Inayat A, Abdelkareem MA, Chae KJ, Sayed ET. Membrane-based carbon capture: Recent progress, challenges, and their role in achieving the sustainable development goals. CHEMOSPHERE 2023; 320:137996. [PMID: 36754298 DOI: 10.1016/j.chemosphere.2023.137996] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/20/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The rapid growth in the consumption of fossil fuels resulted in climate change and severe health issues. Among the different proposed methods to control climate change, carbon capture technologies are the best choice in the current stage. In this study, the various membrane technologies used for carbon capture and their impact on achieving sustainable development goals (SDGs) are discussed. Membrane-based carbon capture processes in pre-combustion and post-combustion, which are known as membrane gas separation (MGS) and membrane contactor (MC), respectively, along with the process of fabrication and the different limitations that hinder their performances are discussed. Additionally, the 17 SDGs, where each representing a crucial topic in the current global task of a sustainable future, that are impacted by membrane-based carbon capture technologies are discussed. Membrane-based carbon capture technologies showed to have mixed impacts on different SDGs, varying in intensity and usefulness. It was found that the membrane-based carbon capture technologies had mostly influenced SDG 7 by enhancement in the zero-emission production, SDG 9 by providing 38-42% cost savings compared to liquid absorption, SDG 3 through reducing pollution and particulate matter emissions by 23%, and SDG 13, with SDG 13 being the most positively influenced by membrane-based carbon capture technologies, as they significantly reduce the CO2 emissions and have high CO2 capture yields (80-90%), thus supporting the objectives of SDG 13 in combatting climate change.
Collapse
Affiliation(s)
- A G Olabi
- Sustainable and Renewable Energy Engineering Dept., University of Sharjah, Sharjah 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abdul Hai Alami
- Sustainable and Renewable Energy Engineering Dept., University of Sharjah, Sharjah 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Mohamad Ayoub
- Sustainable and Renewable Energy Engineering Dept., University of Sharjah, Sharjah 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Haya Aljaghoub
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Industrial Engineering and Engineering Management, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shamma Alasad
- Mechanical Engineering Department, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Abrar Inayat
- Sustainable and Renewable Energy Engineering Dept., University of Sharjah, Sharjah 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Mohammad Ali Abdelkareem
- Sustainable and Renewable Energy Engineering Dept., University of Sharjah, Sharjah 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, South Korea.
| | - Enas Taha Sayed
- Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|
19
|
Liu Q, Chen M, Chen G, Liu G, Xu R, Jin W. Molecular design of two-dimensional graphdiyne membrane for selective transport of CO2 and H2 over CH4, N2, and CO. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
20
|
Introducing defect-engineering 2D layered MOF nanosheets into Pebax matrix for CO2/CH4 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Mohsenpour S, Guo Z, Almansour F, Holmes SM, Budd PM, Gorgojo P. Porous silica nanosheets in PIM-1 membranes for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Sun Y, Geng C, Zhang Z, Qiao Z, Zhong C. Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
|
24
|
Toward the truth of condensing-water membrane for efficient biogas purification: Experimental and modeling analyses. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Mohsenpour S, Ameen AW, Leaper S, Skuse C, Almansour F, Budd PM, Gorgojo P. PIM-1 membranes containing POSS - graphene oxide for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Engineering CAU-10-H for preparation of mixed matrix membrane for gas separations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Functionalized two-dimensional g-C3N4 nanosheets in PIM-1 mixed matrix membranes for gas separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Mixed matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Hu Z, Miu J, Zhang X, Jia M, Yao J.
UiO‐66‐NH
2
particle size effects on gas separation performance of cellulose acetate composite membranes. J Appl Polym Sci 2022. [DOI: 10.1002/app.52810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhirong Hu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Jiayu Miu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Xiong‐Fei Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Mingmin Jia
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory for Environment Functional Materials Huaiyin Normal University Huaian China
| | - Jianfeng Yao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing China
| |
Collapse
|
30
|
Ultrathin Ni-Co nanosheets with disparate-CO2-affinity nanodomains in membranes to improve gas separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Budd PM, Foster AB. Seeking synergy in membranes: blends and mixtures with polymers of intrinsic microporosity. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Fan D, Ozcan A, Ramsahye NA, Maurin G, Semino R. Putting Forward NUS-8-CO 2H/PIM-1 as a Mixed Matrix Membrane for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16820-16829. [PMID: 35349279 DOI: 10.1021/acsami.2c00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mixed matrix membranes (MMMs) composed of NUS-8 metal-organic framework (MOF) nanosheets dispersed into a polymer of intrinsic microporosity 1 (PIM-1) polymer matrix are known to be promising candidates for CO2/N2 separation because of a solubility-driven separation mechanism. In this work, we predict that a chemical functionalization of the organic linker of NUS-8 by a CO2-philic function confers an even better separation performance to the resulting MMM. Our simulations revealed that the NUS-8-CO2H/PIM-1 composite exhibits a 3-fold increase in CO2/N2 selectivity versus the NUS-8/PIM-1 analogue while achieving a high CO2 permeability (6700 barrer). We demonstrated that this improved level of performance is due to an increase both in the total MOF/polymer interfacial pore volume and in the CO2-affinity due to the chemical functionalization. These results suggest that an appropriate choice of chemical functionalization of a MOF is a promising strategy to improve gas separation performances for MMM composites that exhibit a solubility-driven separation mechanism.
Collapse
Affiliation(s)
- Dong Fan
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Aydin Ozcan
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Naseem A Ramsahye
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Guillaume Maurin
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Rocio Semino
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| |
Collapse
|