1
|
Duan X, Mi Y, Lei T, Ma XYD, Chen Z, Kong J, Lu X. Highly Elastic Spongelike Hydrogels for Impedance-Based Multimodal Sensing. ACS NANO 2025; 19:2909-2921. [PMID: 39761359 DOI: 10.1021/acsnano.4c16694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Hydrogel-based sensors have been widely studied for perceiving the environment. However, the simplest type of resistive sensors still lacks sensitivity to localized strain and other extractable data. Enhancing their sensitivity and expanding their functionality to perceive multiple stimuli simultaneously are highly beneficial yet require optimal material design and proper testing methods. Herein, we report a highly elastic, sponge-like hydrogel and its derived multimodal iontronic sensor. By unidirectional freeze casting of poly(vinyl alcohol) (PVA) with electrospun cellulose nanofibers (CNF), a hierarchical structure with aligned PVA channels supported by interlaced CNF tangles is created. The structure ensures both efficient mass transport and good elasticity, enhancing reversible compressibility and ionic conductivity. Combining this sponge hydrogel with impedance-based measurement methods allows the development of multimodal sensors capable of detecting local strain, position, and material type of object-in-contact. Integrating these sensing capabilities, a two-dimensional small motion monitor, a 3D input interface, and a material identification gripper are demonstrated. This study provides a simple approach to versatile multimodal sensors.
Collapse
Affiliation(s)
- Xiangyu Duan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Yongzhen Mi
- Institute of High Performance Computing (IHPC), Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, Connexis #16-16, Singapore 138632, Republic of Singapore
| | - Tingyu Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Xiu Yun Daphne Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| |
Collapse
|
2
|
Dutta A, Karamikamkar S, Nofar M, Behzadfar E. Nanoporous air filtering systems made from renewable sources: benefits and challenges. NANOSCALE 2024; 16:15059-15077. [PMID: 39072362 DOI: 10.1039/d4nr01688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There is a crucial need for air purification systems due to increasing air contamination, while conventional air-filtering materials face challenges in eliminating gaseous and particulate pollutants. This review examines the development and characteristics of nanoporous polymeric materials developed from renewable resources, which have rapidly advanced in recent years. These materials offer more sustainable alternatives for nanoporous structures made out of conventional polymers and significantly impact the properties of porous polymers. The review explores nanoporous materials' production from renewable sources, filtering mechanisms, physicochemical makeup, and sensing capabilities. The recent advancements in this field aim to enhance production techniques, lower pressure drop, and improve adsorption efficiency. Currently, supporting approaches include using adsorbent layers and binders to immobilize nanoporous materials. Furthermore, the prospects and challenges of nanoporous materials obtained from renewable sources used for air purification are discussed.
Collapse
Affiliation(s)
- Arnab Dutta
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ehsan Behzadfar
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
3
|
Du Y, Jiang P, Yang X, Fu R, Liu L, Miao C, Wang Y, Sai H. Hydrophobic Silk Fibroin-Agarose Composite Aerogel Fibers with Elasticity for Thermal Insulation Applications. Gels 2024; 10:266. [PMID: 38667686 PMCID: PMC11049485 DOI: 10.3390/gels10040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Aerogel fibers, characterized by their ultra-low density and ultra-low thermal conductivity, are an ideal candidate for personal thermal management as they hold the potential to effectively reduce the energy consumption of room heating and significantly contribute to energy conservation. However, most aerogel fibers have weak mechanical properties or require complex manufacturing processes. In this study, simple continuous silk fibroin-agarose composite aerogel fibers (SCAFs) were prepared by mixing agarose with silk fibroin through wet spinning and rapid gelation, followed by solvent replacement and supercritical carbon dioxide treatment. Among them, the rapid gelation of the SCAFs was achieved using agarose physical methods with heat-reversible gel properties, simplifying the preparation process. Hydrophobic silk fibroin-agarose composite aerogel fibers (HSCAFs) were prepared using a simple chemical vapor deposition (CVD) method. After CVD, the HSCAFs' gel skeletons were uniformly coated with a silica layer containing methyl groups, endowing them with outstanding radial elasticity. Moreover, the HSCAFs exhibited low density (≤0.153 g/cm3), a large specific surface area (≥254.0 m2/g), high porosity (91.1-94.7%), and excellent hydrophobicity (a water contact angle of 136.8°). More importantly, they showed excellent thermal insulation performance in low-temperature (-60 °C) or high-temperature (140 °C) environments. The designed HSCAFs may provide a new approach for the preparation of high-performance aerogel fibers for personal thermal management.
Collapse
Affiliation(s)
- Yuxiang Du
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Pengjie Jiang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Rui Fu
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Lipeng Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Changqing Miao
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yaxiong Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Huazheng Sai
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| |
Collapse
|
4
|
Zhang W, Li Z, Luo R, Guo Q, Xu F, Yang F, Zhang M, Jia L, Yuan S. Design of tandem CuO/CNTs composites for enhanced tetracycline degradation and antibacterial activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Cheng Y, Li J, Chen M, Zhang S, He R, Wang N. Environmentally friendly and antimicrobial bilayer structured fabrics with integrated interception and sterilization for personal protective mask. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Metal-organic frameworks decorated wood aerogels for efficient particulate matter removal. J Colloid Interface Sci 2022; 629:182-188. [DOI: 10.1016/j.jcis.2022.08.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
|
8
|
Iskandar MA, Yahya EB, Abdul Khalil HPS, Rahman AA, Ismail MA. Recent Progress in Modification Strategies of Nanocellulose-Based Aerogels for Oil Absorption Application. Polymers (Basel) 2022; 14:polym14050849. [PMID: 35267674 PMCID: PMC8912783 DOI: 10.3390/polym14050849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Oil spills and oily wastewater have become a major environmental problem in recent years, directly impacting the environment and biodiversity. Several techniques have been developed to solve this problem, including biological degradation, chemicals, controlled burning, physical absorption and membrane separation. Recently, biopolymeric aerogels have been proposed as a green solution for this problem, and they possess superior selective oil absorption capacity compared with other approaches. Several modification strategies have been applied to nanocellulose-based aerogel to enhance its poor hydrophobicity, increase its oil absorption capacity, improve its selectivity of oils and make it a compressible and elastic magnetically responsive aerogel, which will ease its recovery after use. This review presents an introduction to nanocellulose-based aerogel and its fabrication approaches. Different applications of nanocellulose aerogel in environmental, medical and industrial fields are presented. Different strategies for the modification of nanocellulose-based aerogel are critically discussed in this review, presenting the most recent works in terms of enhancing the aerogel performance in oil absorption in addition to the potential of these materials in near future.
Collapse
Affiliation(s)
- M. A. Iskandar
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.A.I.); (A.A.R.)
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence:
| | - A. A. Rahman
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.A.I.); (A.A.R.)
| | - M. A. Ismail
- Teraju Saga Sdn. Bhd. MP813, Jalan Melaka Perdana 2, Taman Melaka Perdana, Alor Gajah, Melaka 78000, Malaysia;
| |
Collapse
|