1
|
Xu S, Zhao P, Liu H, Jiang Y, Song W, Tang CY, Wang X. Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:902-912. [PMID: 39807584 DOI: 10.1021/acs.est.4c08370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS). The SDBS-induced nanobubbles continuously facilitated the migration of the top layer of AL toward the upper space. During this process, the surface area of sunken AL in the cave-like structures initially exhibited an increase and then a decrease. Additionally, the larger interface significantly enhanced the surface area and delayed the rise in the top layer of AL in the cave-like structures. Therefore, the TFC membrane, utilizing a substrate with a pore size of 1.00 μm and assisted by 0.30 mM SDBS, exhibited remarkable flux enhancement (>63%) and reduced reverse sodium salt flux (>35%) in a forward osmosis system. Moreover, the roughness factor was introduced to directly quantify the effective surface area, which had a good correlation with the water flux. Our findings demonstrated the significant potential of utilizing substrates with a large pore size to overcome the inherent limitations of the TFC membrane.
Collapse
Affiliation(s)
- Subo Xu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Hao Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Yao Jiang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, PR China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518000, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
2
|
Gan Q, Hu Y, Wu C, Yang Z, Peng LE, Tang CY. Nanofoamed Polyamide Membranes: Mechanisms, Developments, and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20812-20829. [PMID: 39529485 DOI: 10.1021/acs.est.4c06434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Thin film composite (TFC) polyamide membranes have been widely applied for environmental applications, such as desalination and water reuse. The separation performance of TFC polyamide membranes strongly depends on their nanovoid-containing roughness morphology. These nanovoids not only influence the effective filtration area of the polyamide film but also regulate the water transport pathways through the film. Although there have been ongoing debates on the formation mechanisms of nanovoids, a nanofoaming theory─stipulating the shaping of polyamide roughness morphology by nanobubbles of degassed CO2 and the vapor of volatile solvents─has gained much attention in recent years. In this review, we provide a comprehensive summary of the nanofoaming mechanism, including related fundamental principles and strategies to tailor nanovoid formation for improved membrane separation performance. The effects of nanovoids on the fouling behaviors of TFC membranes are also discussed. In addition, numerical models on the role of nanovoids in regulating the water transport pathways toward improved water permeance and antifouling ability are highlighted. The comprehensive summary on the nanofoaming mechanism in this review provides insightful guidelines for the future design and optimization of TFC polyamide membranes toward various environmental applications.
Collapse
Affiliation(s)
- Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Yaowen Hu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, P.R. China
| |
Collapse
|
3
|
Zhao S, Peng J, Meng C, Wei S, Kang Z, Chen K, Zhao S, Yuan B, Li P, Hou Y, Xia D, Niu QJ. Ultrafast Water Transport of Reverse Osmosis Membrane Based on Quasi-Vertically Oriented 2D Interlayer. NANO LETTERS 2024; 24:14329-14336. [PMID: 39480247 DOI: 10.1021/acs.nanolett.4c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Interlayered thin-film composite (i-TFC) membranes based on 2D materials have been widely studied due to their high efficiency in mass transfer. However, the randomly stacked 2D nanosheets usually increase the fluid path length to some extent. Herein, in situ-grown quasi-vertically oriented 2D ZIF-L was introduced as an interlayer for preparing high-performance reverse osmosis (RO) membranes. Through the optimization of the crystal growth based on the inert polyethylene substrate, the novel i-TFC RO membrane via interfacial polymerization shows an outstanding water permeance (5.50 L m-2 h-1 bar-1) and good NaCl rejection (96.3%). The membrane also shows promising potential in domestic water purification and organic solvent separation applications. Compared with the randomly stacked ZIF-L interlayer, the advantages of the vertically oriented one were ascribed to the excellent storage capacity of the amine monomers and the intensified gutter effect. This work will encourage more exploration on the interlayer architectures for high-performance i-TFC membranes.
Collapse
Affiliation(s)
- Shengchao Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianquan Peng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chenchen Meng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shengchao Wei
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zixi Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kuo Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Siheng Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Bingbing Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Peng Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yingfei Hou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Daohong Xia
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Q Jason Niu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Geng H, Zhang W, Zhao X, Shao W, Wang H. Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application. MEMBRANES 2024; 14:190. [PMID: 39330531 PMCID: PMC11434543 DOI: 10.3390/membranes14090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The global shortage of clean water is a major problem, even in water-rich regions. To solve this problem, low-cost and energy-efficient water treatment methods are needed. Membrane separation technology (MST), as a separation method with low energy consumption, low cost, and good separation effect, has been widely used to deal with seawater desalination, resource recovery, industrial wastewater treatment, and other fields. With the continuous progress of scientific and technological innovation and the increasing demand for use, NF/RO membranes based on the TFC structure are constantly being upgraded. This paper presents the recent research progress of NF and RO membranes based on TFC structures and their applications in different fields, especially the formation mechanism and regulation of selective layer structures and the modification methods of selective layers. Our summary provides fundamental insights into the understanding of NF and RO membrane processes and hopefully triggers further thinking on the development of membrane filtration process optimization.
Collapse
Affiliation(s)
- Huibin Geng
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Weihao Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoxu Zhao
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Haitao Wang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
5
|
Kalutantirige FC, He J, Yao L, Cotty S, Zhou S, Smith JW, Tajkhorshid E, Schroeder CM, Moore JS, An H, Su X, Li Y, Chen Q. Beyond nothingness in the formation and functional relevance of voids in polymer films. Nat Commun 2024; 15:2852. [PMID: 38605028 PMCID: PMC11009415 DOI: 10.1038/s41467-024-46584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Voids-the nothingness-broadly exist within nanomaterials and impact properties ranging from catalysis to mechanical response. However, understanding nanovoids is challenging due to lack of imaging methods with the needed penetration depth and spatial resolution. Here, we integrate electron tomography, morphometry, graph theory and coarse-grained molecular dynamics simulation to study the formation of interconnected nanovoids in polymer films and their impacts on permeance and nanomechanical behaviour. Using polyamide membranes for molecular separation as a representative system, three-dimensional electron tomography at nanometre resolution reveals nanovoid formation from coalescence of oligomers, supported by coarse-grained molecular dynamics simulations. Void analysis provides otherwise inaccessible inputs for accurate fittings of methanol permeance for polyamide membranes. Three-dimensional structural graphs accounting for the tortuous nanovoids within, measure higher apparent moduli with polyamide membranes of higher graph rigidity. Our study elucidates the significance of nanovoids beyond the nothingness, impacting the synthesis‒morphology‒function relationships of complex nanomaterials.
Collapse
Affiliation(s)
| | - Jinlong He
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lehan Yao
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Stephen Cotty
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Shan Zhou
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - John W Smith
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
- NIH Resource for Macromolecular Modelling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA
| | - Charles M Schroeder
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA
| | - Hyosung An
- Department of Petrochemical Materials Engineering, Chonnam National University, Yeosu, Jeollanam-do, 59631, South Korea
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Qian Chen
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Long L, Guo H, Zhang L, Gan Q, Wu C, Zhou S, Peng LE, Tang CY. Engraving Polyamide Layers by In Situ Self-Etchable CaCO 3 Nanoparticles Enhances Separation Properties and Antifouling Performance of Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6435-6443. [PMID: 38551393 DOI: 10.1021/acs.est.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P R China
| | - Lingyue Zhang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chenyue Wu
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| |
Collapse
|
7
|
Zhang Y, Wang H, Guo J, Cheng X, Han G, Lau CH, Lin H, Liu S, Ma J, Shao L. Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes. Science 2023; 382:202-206. [PMID: 37824644 DOI: 10.1126/science.adi9531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Existing polyamide (PA) membrane synthesis protocols are underpinned by controlling diffusion-dominant liquid-phase reactions that yield subpar spatial architectures and ionization behavior. We report an ice-confined interfacial polymerization strategy to enable the effective kinetic control of the interfacial reaction and thermodynamic manipulation of the hexagonal polytype (Ih) ice phase containing monomers to rationally synthesize a three-dimensional quasilayered PA membrane for nanofiltration. Experiments and molecular simulations confirmed the underlying membrane formation mechanism. Our ice-confined PA nanofiltration membrane features high-density ionized structure and exceptional transport channels, realizing superior water permeance and excellent ion selectivity.
Collapse
Affiliation(s)
- Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Hao Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jing Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiquan Cheng
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Gang Han
- College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University Perth, Perth, Western Australia
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
8
|
Ren H, Zhang X, Li Y, Zhang D, Huang F, Zhang Z. Preparation of Cross-Sectional Membrane Samples for Scanning Electron Microscopy Characterizations Using a New Frozen Section Technique. MEMBRANES 2023; 13:634. [PMID: 37505000 PMCID: PMC10383886 DOI: 10.3390/membranes13070634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Characterization of the cross-sectional morphologies of polymeric membranes are critical in understanding the relationship of structure and membrane separation performances. However, preparation of cross-sectional samples with flat surfaces for scanning electron microscopy (SEM) characterizations is challenging due to the toughness of the non-woven fabric support. In this work, a new frozen section technique was developed to prepare the cross-sectional membrane samples. A special mold was self-designed to embed membranes orientationally. The frozen section parameters, including the embedding medium, cryostat working temperature, and sectioning thickness were optimized. The SEM characterizations demonstrated that the frozen section technique, using ultrapure water as the embedding medium at a working temperature of -30 °C and a sectioning thickness of 0.5 µm, was efficient for the preparation of the membrane samples. Three methods of preparation for the cross-sectional polymeric membranes, including the conventional liquid nitrogen cryogenic fracture, the broad ion beam (BIB) polishing, and the frozen section technique were compared, which showed that the modified frozen section method was efficient and low cost. This developed method could not only accelerate the development of membrane technology but also has great potential for applications in preparation of other solid samples.
Collapse
Affiliation(s)
- Hongyun Ren
- Center of Analytical Instrument, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian Zhang
- Center of Analytical Instrument, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yi Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Dandan Zhang
- Center of Analytical Instrument, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fuyi Huang
- Center of Analytical Instrument, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zixing Zhang
- Center of Analytical Instrument, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
9
|
Perry LA, Chew NGP, Grzebyk K, Cay-Durgun P, Lind ML, Sitaula P, Soukri M, Coronell O. Correlating the Role of Nanofillers with Active Layer Properties and Performance of Thin-Film Nanocomposite Membranes. DESALINATION 2023; 550:116370. [PMID: 37274380 PMCID: PMC10237506 DOI: 10.1016/j.desal.2023.116370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thin-film nanocomposite (TFN) membranes are emerging water-purification membranes that could provide enhanced water permeance with similar solute removal over traditional thin-film composite (TFC) membranes. However, the effects of nanofiller incorporation on active layer physico-chemical properties have not been comprehensively studied. Accordingly, we aimed to understand the correlation between nanofillers, active layer physico-chemical properties, and membrane performance by investigating whether observed performance differences between TFN and control TFC membranes correlated with observed differences in physico-chemical properties. The effects of nanofiller loading, surface area, and size on membrane performance, along with active layer physico-chemical properties, were characterized in TFN membranes incorporated with Linde Type A (LTA) zeolite and zeolitic imidazole framework-8 (ZIF-8). Results show that nanofiller incorporation up to ~0.15 wt% resulted in higher water permeance and unchanged salt rejection, above which salt rejection decreased 0.9-25.6% and 26.1-48.3% for LTA-TFN and ZIF-8-TFN membranes, respectively. Observed changes in active layer physico-chemical properties were generally unsubstantial and did not explain observed changes in TFN membrane performance. Therefore, increased water permeance in TFN membranes could be due to preferential water transport through porous structures of nanofillers or along polymer-nanofiller interfaces. These findings offer new insights into the development of high-performance TFN membranes for water/ion separations.
Collapse
Affiliation(s)
- Lamar A. Perry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
- Curriculum in Applied Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Nick Guan Pin Chew
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Kasia Grzebyk
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Pinar Cay-Durgun
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Laura Lind
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Paban Sitaula
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Mustapha Soukri
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
10
|
Xu GR, An ZH, Min-Wang, Ke-Xu, Zhao HL, Liu Q. Polyamide Layer Modulation for PA-TFC Membranes Optimization: Developments, Mechanisms, and Implications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Li Y, Shi M. Controlled solvent activation by iron (III) acetylacetonate for improving polyamide reverse osmosis membrane performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Armstrong MD, Vickers R, Coronell O. Trends and errors in reverse osmosis membrane performance calculations stemming from test pressure and simplifying assumptions about concentration polarization and solute rejection. J Memb Sci 2022; 660:120856. [PMID: 36186741 PMCID: PMC9521160 DOI: 10.1016/j.memsci.2022.120856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A primary goal in the design of reverse osmosis (RO) membranes is to improve water-solute selectivity and water permeance. These transport properties are commonly calculated in the literature using the solution-diffusion model with selectivity (A/B, bar-1) defined as the ratio between water permeance (A, L.m-2.h-1.bar-1) and solute permeance (B, L.m-2.h-1). In calculating transport properties, researchers often use simplifying assumptions about concentration polarization (CP; i.e., assuming negligible CP or a certain extent of CP) and solute rejection (i.e., assuming solute rejection is approximately 1 to enable the explicit use of the CP modulus in solute permeance calculations). Although using these assumptions to calculate transport properties is common practice, we could not find a study that evaluated the errors associated with using them. The uncertainty in these errors could impede unequivocally identifying manufacturing approaches that break through the commonly plotted trade-off frontier between selectivity and water permeance (A/B vs. A); however, we did not find in the literature a study that quantified such errors. Accordingly, we aimed to: (1) quantify the error in transport properties (A, B, and A/B) calculated using common simplifying assumptions about CP and rejection; and (2) determine if using simplifying assumptions affects conclusions drawn about membrane performance or trends concerning the trade-off frontier. Results show that compared with the case where no simplifying assumptions were made, simplified calculations were least accurate at low pressures for water permeance (up to 78% overestimation) and high pressures for solute permeance (up to 188% overestimation). Accordingly, the corresponding selectivities were least accurate at low pressure (up to 111% overestimation) and high pressure (up to 66% underestimation), and conclusions drawn about membrane performance and trade-off trends were pressure-dependent. Importantly, even in the absence of simplifying assumptions, selectivity results were pressure-dependent, indicating the importance of standardizing test conditions for the continued use of current performance metrics (i.e., A/B and A). We propose a two-pressure approach-collecting data for A and B at a high and a low pressure, respectively-combined with simplifying assumptions for more accurate simplified estimations of selectivity (< 10% absolute error). Our work contributes to a better understanding of the effects of operating pressure and key simplifying assumptions commonly used in calculating RO membrane performance metrics and interpretation of corresponding results.
Collapse
Affiliation(s)
- Mikayla D. Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Riley Vickers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Dai R, Yang Z, Qiu Z, Long L, Tang CY, Wang Z. Distinct impact of substrate hydrophilicity on performance and structure of TFC NF and RO polyamide membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Armstrong MD, Vickers R, Coronell O. Dataset of reverse osmosis membrane transport properties calculated with and without assumptions about concentration polarization and solute rejection and the errors associated with each assumption. Data Brief 2022; 44:108538. [PMID: 36060824 PMCID: PMC9436753 DOI: 10.1016/j.dib.2022.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
The data shared in this work represent aspects of the performance of reverse osmosis membranes during filtration. We present pressure, permeate flux, and solute rejection data gathered during cross-flow filtration experiments, which were used to (i) model water and solute permeation through the membranes and (ii) calculate concentration polarization moduli and a suite of transport properties, including water permeance, solute permeance, and water-solute selectivity. Membrane transport properties were calculated with the different approaches commonly used to simplify transport property calculations. Typical calculations of these transport properties often use simplifying assumptions (e.g., negligible concentration polarization and solute rejection close to 100%). However, the extent of the errors associated with using simplifying assumptions in this context were not previously known or quantified. This publication and corresponding dataset pertain to figures presented in the accompanying work (Armstrong et al., 2022) [1].
Collapse
Affiliation(s)
- Mikayla D. Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Riley Vickers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Vacuum-assisted MPD loading toward promoted nanoscale structure and enhanced water permeance of polyamide RO membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Liu L, Chen X, Feng S, Wan Y, Luo J. Enhancing the Antifouling Ability of a Polyamide Nanofiltration Membrane by Narrowing the Pore Size Distribution via One-Step Multiple Interfacial Polymerization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36132-36142. [PMID: 35881887 DOI: 10.1021/acsami.2c09408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Application of nanofiltration membranes in industries still has to contend with membrane fouling that causes a significant loss of separation performance. Herein, an innovative approach to design antifouling membranes with a narrowed pore size distribution by interfacial polymerization (IP) assisted by silane coupling agents is reported. An aqueous solution of piperazine anhydrous (PIP) and γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560) is employed to perform IP with an organic solution of trimesoyl chloride and tetraethyl orthosilicate (TEOS) on a porous support. In accordance with the results of molecular dynamics and dissipative particle dynamics simulations, the reactive additive KH560 accelerates the diffusion rate of PIP to enrich at the reaction boundary. Moreover, the hydrolysis/condensation of KH560 and TEOS at the aqueous/organic interface forms an interpenetrating network with the polyamide network, which regulates the separation layer structure. The characterization results indicate that the polyamide-silica membrane has a denser, thicker, and uniform separation layer. The mean pore size of the polyamide-silica membrane and the traditional polyamide membrane is 0.62 and 0.74 nm, respectively, and these correspond to the geometric standard deviation (namely, pore size distribution) of 1.39 and 1.97, respectively. It is proved that the narrower pore size distribution endows the polyamide-silica membrane with stronger antifouling performance (flux decay ratio decreases from 18.4 to 3.8%). Such a membrane also has impressive long-term antifouling stability during cane molasses decolorization at a high temperature (50 °C). The outcomes of this study not only provide a novel one-step multiple IP strategy to prepare antifouling nanofiltration membranes but also emphasize the importance of pore size distribution in fouling control for various industrial liquid separations.
Collapse
Affiliation(s)
- Lulu Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
17
|
Re-thinking polyamide thin film formation: How does interfacial destabilization dictate film morphology? J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Gan Q, Peng LE, Guo H, Yang Z, Tang CY. Cosolvent-Assisted Interfacial Polymerization toward Regulating the Morphology and Performance of Polyamide Reverse Osmosis Membranes: Increased m-Phenylenediamine Solubility or Enhanced Interfacial Vaporization? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10308-10316. [PMID: 35767677 DOI: 10.1021/acs.est.2c01140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cosolvent-assisted interfacial polymerization (IP) can effectively enhance the separation performance of thin film composite (TFC) reverse osmosis (RO) membranes. However, the underlying mechanisms regulating the formation of their polyamide (PA) rejection films remain controversial. The current study reveals two essential roles of cosolvents in the IP reaction: (1) directly promoting interfacial vaporization with their lower boiling points and (2) increasing the solubility of m-phenylenediamine (MPD) in the organic phase, thereby indirectly promoting the IP reaction. Using a series of systematically chosen cosolvents (i.e., diethyl ether, acetone, methanol, and toluene) with different boiling points and MPD solubilities, we show that the surface morphologies of TFC RO membranes were regulated by the combined direct and indirect effects. A cosolvent favoring interfacial vaporization (e.g., lower boiling point, greater MPD solubility, and/or higher concentration) tends to create greater apparent thickness of the rejection layer, larger nanovoids within the layer, and more extensive exterior PA layers, leading to significantly improved membrane water permeance. We further demonstrate the potential to achieve better antifouling performance for the cosolvent-assisted TFC membranes. The current study provides mechanistic insights into the critical roles of cosolvents in IP reactions, providing new tools for tailoring membrane morphology and separation properties toward more efficient desalination and water reuse.
Collapse
Affiliation(s)
- Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
19
|
Zhou S, Long L, Yang Z, So SL, Gan B, Guo H, Feng SP, Tang CY. Unveiling the Growth of Polyamide Nanofilms at Water/Organic Free Interfaces: Toward Enhanced Water/Salt Selectivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10279-10288. [PMID: 35802136 DOI: 10.1021/acs.est.1c08691] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The permeance and selectivity of a reverse osmosis (RO) membrane are governed by its ultrathin polyamide film, yet the growth of this critical film during interfacial polymerization (IP) has not been fully understood. This study investigates the evolution of a polyamide nanofilm at the aqueous/organic interface over time. Despite its thickness remaining largely constant (∼15 nm) for the IP reaction time ranging from 0.5 to 60 min, the density of the polyamide nanofilm increased from 1.25 to 1.36 g cm-3 due to the continued reaction between diffused m-phenylenediamine and dangling acyl chloride groups within the formed polyamide film. This continued growth of the polyamide nanofilm led to a simultaneous increase in its crosslinking degree (from 50.1 to 94.3%) and the healing of nanosized defects, resulting in a greatly enhanced rejection of 99.2% for NaCl without sacrificing water permeance. Using humic acid as a molecular probe for sealing membrane defects, the relative contributions of the increased crosslinking and reduced defects toward better membrane selectivity were resolved, which supports our conceptual model involving both enhanced size exclusion and healed defects. The fundamental insights into the growth mechanisms and the structure-property relationship of the polyamide nanofilm provide crucial guidance for the further development and optimization of high-performance RO membranes.
Collapse
Affiliation(s)
- Shenghua Zhou
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Sik Lui So
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Shien-Ping Feng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| |
Collapse
|
20
|
Zhang X, Tian J, Xu R, Cheng X, Zhu X, Loh CY, Fu K, Zhang R, Wu D, Ren H, Xie M. In Situ Chemical Modification with Zwitterionic Copolymers of Nanofiltration Membranes: Cure for the Trade-Off between Filtration and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28842-28853. [PMID: 35709360 PMCID: PMC9247986 DOI: 10.1021/acsami.2c05311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Breaking the trade-off between filtration performance and antifouling property is critical to enabling a thin-film nanocomposite (TFC) nanofiltration (NF) membrane for a wide range of feed streams. We proposed a novel design route for TFC NF membranes by grafting well-defined zwitterionic copolymers of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and 2-aminoethyl methacrylate hydrochloride (AEMA) on the polyamide surfaces via an in situ surface chemical modification process. The successful grafting of a zwitterionic copolymer imparted the modified NF membranes with better surface hydrophilicity, a larger actual surface area (i.e., nodular structures), and a thinner polyamide layer. As a result, the water permeability of the modified membrane (i.e., TFC-10) was triple that of the pristine TFC membrane while maintaining high Na2SO4 rejection. We further demonstrated that the TFC-10 membrane possessed exceptional antifouling properties in both static adsorption tests and three cycles of dynamic protein and humic acid fouling tests. To recap, this work provides valuable insights and strategies for the fabrication of TFC NF membranes with simultaneously enhanced filtration performance and antifouling property.
Collapse
Affiliation(s)
- Xinyu Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jiayu Tian
- School
of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Ruiyang Xu
- International
Education School, Shandong Polytechnic College
(SDPC), Jining 272100, PR China
| | - Xiaoxiang Cheng
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ching Yoong Loh
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Kaifang Fu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ruidong Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Daoji Wu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
- .
Phone: +44(0)1225 383246
| | - Huixue Ren
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ming Xie
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
21
|
Le T, Jamshidi E, Beidaghi M, Esfahani MR. Functionalized-MXene Thin-Film Nanocomposite Hollow Fiber Membranes for Enhanced PFAS Removal from Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25397-25408. [PMID: 35608926 DOI: 10.1021/acsami.2c03796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to adverse health effects and the broad sources of per- and polyfluoroakyl substances (PFAS), PFAS removal is a critical research area in water purification. We demonstrate the functionalization of thin-film composite (TFC) hollow fiber nanofiltration (HFN) membranes by MXene nanosheets during the interfacial polymerization (IP) process for enhanced removal of perfluorooctane sulfonic acid (PFOS) from water. A MXene-polyamide (PA) selective layer was fabricated on top of a polysulfone (PSF) hollow fiber support via IP of trimesoyl chloride (TMC) and a mixture of piperazine (PIP) and MXene nanosheets to form MXene-PA thin-film nanocomposite (TFN) membranes. Incorporating MXene nanosheets during the IP process tuned the morphology and negative surface charge of the selective layer, resulting in enhanced PFOS rejection from 72% (bare TFC) to more than 96% (0.025 wt % MXene TFN), while the water permeability was also increased from 13.19 (bare TFC) to 29.26 LMH/bar (0.025 wt % MXene TFN). Our results demonstrate that both electrostatic interaction and size exclusion are the main factors governing the PFOS rejection, and both are determined by PA selective layer structural and chemical properties. The lamella structure and interlayer of MXene nanosheets inside the PA layer provided different transport mechanisms for water, ions, and PFAS molecules, resulting in enhanced water permeability and PFAS rejection due to traveling through the membrane by both diffusions through the PA layer and the MXene intralayer channels. MXene nanosheets showed very promising capability as a 2D additive for tuning the structural and chemical properties of the PA layer at the permeability-rejection tradeoff.
Collapse
Affiliation(s)
- Tin Le
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Elnaz Jamshidi
- Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Majid Beidaghi
- Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|