1
|
Kinfu HH, Rahman MM, Cevallos-Cueva N, Abetz V. Nanofiltration Membranes Containing a Metal-Polyphenol Network Layer: Using Casting Solution pH as a Tool to Tailor the Separation Performance. ACS OMEGA 2024; 9:45870-45883. [PMID: 39583717 PMCID: PMC11579772 DOI: 10.1021/acsomega.4c04804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Thin-film composite (TFC) membranes containing metal-polyphenol network (MPN) selective layers were fabricated using a supramolecular self-assembly between tannic acid (TA) and ferric ion (Fe3+). The TA-Fe3+ thin film was coated on a porous polyacrylonitrile support using aqueous solutions of TA and FeCl3 via a layer-by-layer deposition technique. The pH of the TA solution was used as a tool to alter the membrane characteristics. The surface porosity and water contact angle of the fabricated membranes gradually decreased as the pH of TA casting solutions was increased from 3 to 8.5 for both single-layered and double-layered TA-Fe3+ TFC membranes. This allowed us to tune the water permeance and the retentions of water-soluble neutral and anionic molecules by the MPN membranes by varying the pH of the casting solution. It has been shown that the water permeance decreased from 184 to 156 L·m-2·h-1·bar-1 for single TA-Fe3+ layer coated membranes when the pH was increased from 3 to 8.5, while it declined from 51 to 17 for the double TA-Fe3+ layer. Anionic solutes in aqueous solutions were highly retained compared to neutral components as the TFC membranes had a negative surface charge. Retentions of 95 and 90% were achieved for naphthol green B and orange II dyes by a double-layered M4 membrane fabricated at pH 8.5, while only 13% retention was found for the neutral riboflavin. The neutral dye riboflavin permeated 30.8 times higher than the anionic dye naphthol green B during a mixed dye filtration test through the TFC membrane prepared by using a TA solution of pH 8.5. To the best of our knowledge, this is the highest selectivity of a neutral/anionic dye pair so far reported for a TFC membrane having an MPN selective layer. Moreover, fouling tests have demonstrated that the MPN separation layers exhibit robust stability and adequate antifouling performance with a flux recovery ratio as high as 82%.
Collapse
Affiliation(s)
- Hluf Hailu Kinfu
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Md. Mushfequr Rahman
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Nicolás Cevallos-Cueva
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Volker Abetz
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
- Institute
of Physical Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
2
|
Blagojevic N, Das S, Xie J, Dreyer O, Radjabian M, Held M, Abetz V, Müller M. Toward Predicting the Formation of Integral-Asymmetric, Isoporous Diblock Copolymer Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404560. [PMID: 39206611 DOI: 10.1002/adma.202404560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Indexed: 09/04/2024]
Abstract
The self-assembly and nonsolvent-induced phase separation (SNIPS) process of block copolymers and solvents enables the fabrication of integral-asymmetric, isoporous membranes. An isoporous top layer is formed by evaporation-induced self-assembly (EISA) and imparts selectivity for ultrafiltration of functional macromolecules or water purification. This selective layer is supported by a macroporous bottom structure that is formed by nonsolvent-induced phase separation (NIPS) providing mechanical stability. Thereby the permeability/selectivity tradeoff is optimized. The SNIPS fabrication involves various physical phenomena-e.g., evaporation, self-assembly, macrophase separation, vitrification - and multiple structural, thermodynamic, kinetic, and process parameters. Optimizing membrane properties and rationally designing fabrication processes is a challenge which particle simulation can significantly contribute to. Using large-scale particle simulations, it is observed that 1) a small incompatibility between matrix-forming block of the copolymer and nonsolvent, 2) a glassy arrest that occurs at a smaller polymer concentration, or 3) a higher dynamical contrast between polymer and solvent results in a finer, spongy substructure, whereas the opposite parameter choice gives rise to larger macropores with an elongated shape. These observations are confirmed by comparison to experiments on polystyrene (PS)-block-poly(4-vinylpyridine) (P4VP) diblock copolymer membranes, varying the chemical nature of the coagulant or the temperature of coagulation bath.
Collapse
Affiliation(s)
- Niklas Blagojevic
- Institute for Theoretical Physics, Georg August University Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Shibananda Das
- Institute for Theoretical Physics, Georg August University Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Jiayu Xie
- Institute for Theoretical Physics, Georg August University Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Oliver Dreyer
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502, Geesthacht, Germany
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Maryam Radjabian
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502, Geesthacht, Germany
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Martin Held
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502, Geesthacht, Germany
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502, Geesthacht, Germany
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg August University Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Zhao R, Zhou J, Bu T, Li H, Jiao Y. Reverse Electrodialysis with Continuous Random Variation in Nanochannel Shape: Salinity Gradient-Driven Power Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1302. [PMID: 39120407 PMCID: PMC11314336 DOI: 10.3390/nano14151302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
The shape of nanochannels plays a crucial role in the ion selectivity and overall performance of reverse electrodialysis (RED) systems. However, current research on two-dimensional nanochannel shapes is largely limited to a few fixed asymmetric forms. This study explores the impact of randomly shaped nanochannels using dimensionless methods, controlling their randomness by varying their length and shape amplitude. The research systematically compares how alterations in the nanochannel length and shape amplitude influence various system performance parameters. Our findings indicate that increasing the nanochannel length can significantly enhance the system performance. While drastic changes in the nanochannel shape amplitude positively affect the system performance, the most significant improvements arise from the interplay between the nanochannel length and shape amplitude. This compounding effect creates a local optimum, resulting in peak system performance. Within the range of dimensionless lengths from 0 to 30, the system reaches its optimal performance at a dimensionless length of approximately 25. Additionally, we explored two other influencing factors: the nanochannel surface charge density and the concentration gradient of the solution across the nanochannel. Optimal performance is observed when the nanochannel has a high surface charge density and a low concentration gradient, particularly with random shapes. This study advances the theoretical understanding of RED systems in two-dimensional nanochannels, guiding research towards practical operational conditions.
Collapse
Affiliation(s)
- Runchen Zhao
- School of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinhui Zhou
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Tianqi Bu
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Li
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yanmei Jiao
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Kinfu HH, Rahman MM, Schneider ES, Cevallos-Cueva N, Abetz V. Using the Assembly Time as a Tool to Control the Surface Morphology and Separation Performance of Membranes with a Tannic Acid-Fe 3+ Selective Layer. MEMBRANES 2024; 14:133. [PMID: 38921500 PMCID: PMC11205845 DOI: 10.3390/membranes14060133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Thin-film composite (TFC) membranes containing a metal-polyphenol network (MPN)-based selective layer were fabricated on a porous polyacrylonitrile support. The MPN layer was formed through coordination-based self-assembly between plant-based tannic acid (TA) and an Fe3+ ion. For the first time, we demonstrate that TFC membranes containing TA-Fe3+ selective layers can separate small organic solutes in aqueous media from equimolar mixtures of solutes. The effect of the assembly time on the characteristics and performance of the fabricated selective layer was investigated. An increase in the assembly time led to the formation of selective layers with smaller effective pore sizes. The tannic acid-Fe3+ selective layer exhibited a low rejection towards neutral solutes riboflavin and poly(ethylene glycol) while high rejections were observed for anionic dyes of orange II and naphthol green B. Permeation selectivities in the range of 2-27 were achieved between neutral and charged dyes in both single- and mixed-solute experiments, indicating the significant role of Donnan exclusion and the charge-selective nature of the membranes. The rejection efficiency improved with an increasing assembly time. Overall, this study demonstrates that the assembly time is a vital casting parameter for controlling the permeance, rejection and selectivity of thin-film composite membranes with a tannic acid-Fe3+ selective layer.
Collapse
Affiliation(s)
- Hluf Hailu Kinfu
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (H.H.K.); (E.S.S.); (N.C.-C.); (V.A.)
| | - Md. Mushfequr Rahman
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (H.H.K.); (E.S.S.); (N.C.-C.); (V.A.)
| | - Erik S. Schneider
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (H.H.K.); (E.S.S.); (N.C.-C.); (V.A.)
| | - Nicolás Cevallos-Cueva
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (H.H.K.); (E.S.S.); (N.C.-C.); (V.A.)
| | - Volker Abetz
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (H.H.K.); (E.S.S.); (N.C.-C.); (V.A.)
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Zhang Z, Gao L, Boes A, Bajer B, Stotz J, Apitius L, Jakob F, Schneider ES, Sperling E, Held M, Emmler T, Schwaneberg U, Abetz V. An enzymatic continuous-flow reactor based on a pore-size matching nano- and isoporous block copolymer membrane. Nat Commun 2024; 15:3308. [PMID: 38632275 PMCID: PMC11024217 DOI: 10.1038/s41467-024-47007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Continuous-flow biocatalysis utilizing immobilized enzymes emerged as a sustainable route for chemical synthesis. However, inadequate biocatalytic efficiency from current flow reactors, caused by non-productive enzyme immobilization or enzyme-carrier mismatches in size, hampers its widespread application. Here, we demonstrate a general-applicable and robust approach for the fabrication of a high-performance enzymatic continuous-flow reactor via integrating well-designed scalable isoporous block copolymer (BCP) membranes as carriers with an oriented and productive immobilization employing material binding peptides (MBP). Densely packed uniform enzyme-matched nanochannels of well-designed BCP membranes endow the desired nanoconfined environments towards a productive immobilized phytase. Tuning nanochannel properties can further regulate the complex reaction process and fortify the catalytic performance. The synergistic design of enzyme-matched carriers and efficient enzyme immobilization empowers an excellent catalytic performance with >1 month operational stability, superior productivity, and a high space-time yield (1.05 × 105 g L-1 d-1) via a single-pass continuous-flow process. The obtained performance makes the designed nano- and isoporous block copolymer membrane reactor highly attractive for industrial applications.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Liang Gao
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Alexander Boes
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Barbara Bajer
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Johanna Stotz
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Lina Apitius
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Felix Jakob
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Erik S Schneider
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Evgeni Sperling
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Martin Held
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Thomas Emmler
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Ulrich Schwaneberg
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany.
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany.
| | - Volker Abetz
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
- Universität Hamburg, Institute of Physical Chemistry, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| |
Collapse
|
6
|
Utievskyi Y, Neumann C, Sindlinger J, Schutjajew K, Oschatz M, Turchanin A, Ueberschaar N, Schacher FH. Polyoxometalate-Modified Amphiphilic Polystyrene- block-poly(2-(dimethylamino)ethyl methacrylate) Membranes for Heterogeneous Glucose to Formic Acid Methyl Ester Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2498. [PMID: 37764527 PMCID: PMC10536830 DOI: 10.3390/nano13182498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Herein, we present a new heterogeneous catalyst active toward glucose to formic acid methyl ester oxidation. The catalyst was fabricated via electrostatic immobilization of the inorganic polyoxometalate HPA-5 catalyst H8[PMo7V5O40] onto the pore surface of amphiphilic block copolymer membranes prepared via non-solvent-induced phase separation (NIPS). The catalyst immobilization was achieved via wet impregnation due to strong coulombic interactions between protonated tertiary amino groups of the polar poly(2-(dimethylamino)ethyl methacrylate) block and the anionic catalyst. Overall, three sets of five consecutive catalytic cycles were performed in an autoclave under 90 °С and 11.5 bar air pressure in methanol, and the corresponding yields of formic acid methyl ester were quantified via head-space gas chromatography. The obtained results demonstrate that the membrane maintains its catalytic activity over multiple cycles, resulting in high to moderate yields in comparison to a homogeneous catalytic system. Nevertheless, presumably due to leaching, the catalytic activity declines over five catalytic cycles. The morphological and chemical changes of the membrane during the prolonged catalysis under harsh conditions were examined in detail using different analytic tools, and it seems that the underlying block copolymer is not affected by the catalytic process.
Collapse
Affiliation(s)
- Yurii Utievskyi
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Christof Neumann
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstraße 10, 07743 Jena, Germany
| | - Julia Sindlinger
- Mass Spectrometry Platform, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Konstantin Schutjajew
- Institute for Technical Chemistry and Environmental Chemistry (ITUC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Martin Oschatz
- Institute for Technical Chemistry and Environmental Chemistry (ITUC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
7
|
Tsaur L, Wiesner UB. Non-Equilibrium Block Copolymer Self-Assembly Based Porous Membrane Formation Processes Employing Multicomponent Systems. Polymers (Basel) 2023; 15:polym15092020. [PMID: 37177169 PMCID: PMC10180547 DOI: 10.3390/polym15092020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Porous polymer-derived membranes are useful for applications ranging from filtration and separation technologies to energy storage and conversion. Combining block copolymer (BCP) self-assembly with the industrially scalable, non-equilibrium phase inversion technique (SNIPS) yields membranes comprising periodically ordered top surface structures supported by asymmetric, hierarchical substructures that together overcome performance tradeoffs typically faced by materials derived from equilibrium approaches. This review first reports on recent advances in understanding the top surface structural evolution of a model SNIPS-derived system during standard membrane formation. Subsequently, the application of SNIPS to multicomponent systems is described, enabling pore size modulation, chemical modification, and transformation to non-polymeric materials classes without compromising the structural features that define SNIPS membranes. Perspectives on future directions of both single-component and multicomponent membrane materials are provided. This points to a rich and fertile ground for the study of fundamental as well as applied problems using non-equilibrium-derived asymmetric porous materials with tunable chemistry, composition, and structure.
Collapse
Affiliation(s)
- Lieihn Tsaur
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Simon A, Zhang Z, Abetz C, Abetz V, Segal-Peretz T. Atomic layer deposition enables multi-modal three-dimensional electron microscopy of isoporous membranes. NANOSCALE 2023; 15:3219-3229. [PMID: 36722895 DOI: 10.1039/d2nr05477a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Block copolymers (BCPs) are promising materials for water purification. They enable the fabrication of integral asymmetric isoporous membranes with high permeability and good selectivity. Commonly, the characterization of such hierarchical structures is performed by conventional electron microscopy (EM) means, namely scanning and transmission electron microscopy (SEM and TEM, respectively). However, due to the inherent lack of contrast between BCP domains, external contrast agents are required to achieve informative, high-resolution imaging. In addition, such EM techniques are typically limited to a certain cross-section or surface morphology only. In this paper, we harness the selective growth of AlOx in the pore-forming domains of BCPs to create an internal and stable contrast difference between the blocks. This in turn allowed us to perform advanced three-dimensional characterization of the membranes with focused ion beam (FIB)-SEM and TEM tomography, providing an understanding of the 3D structure and properties such as 3D geometry of the pores, 3D tortuosity, and 3D permeability. This 3D characterization also provides better correlations between the membrane structure and its performance. Such knowledge can allow better design and fine-tuning of BCP membranes and other membranes for their applications.
Collapse
Affiliation(s)
- Assaf Simon
- Department of Chemical Engineering, Technion, Haifa-3200003, Israel.
| | - Zhenzhen Zhang
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Str.1, 21502 Geesthacht, Germany.
| | - Clarissa Abetz
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Str.1, 21502 Geesthacht, Germany.
| | - Volker Abetz
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Str.1, 21502 Geesthacht, Germany.
- Universität Hamburg, Institute of Physical Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | |
Collapse
|
9
|
Huang JH, Shao L, Zhang YQ, Zhang YJ, Wang K, Ma J, Drioli E, Cheng XQ. Relationship between the Hansen solubility parameter and changes in membrane mass-transfer channels: A quantitative model. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103263. [PMID: 35630741 PMCID: PMC9145934 DOI: 10.3390/molecules27103263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
Abstract
The ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation.
Collapse
|
11
|
Gemmer L, Hu Q, Niebuur BJ, Kraus T, Balzer BN, Gallei M. A block copolymer templated approach for the preparation of nanoporous polymer structures and cellulose fiber hybrids by ozone treatment. Polym Chem 2022. [DOI: 10.1039/d2py00562j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous nanostructures were derived after self-assembly of amphiphilic block copolymers and subsequent ozone-mediated block segment degradation. Highly ordered pores were obtained for BCP films and for coatings at cellulose fibers’ surfaces.
Collapse
Affiliation(s)
- Lea Gemmer
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| | - Qiwei Hu
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bart-Jan Niebuur
- INM – Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Tobias Kraus
- INM – Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Colloid and Interface Chemistry, Universität des Saarlandes, Campus D2 2, 66123 Saarbrücken, Germany
| | - Bizan N. Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|