1
|
Shakiba M, Faraji M, Jouybar S, Foroozandeh A, Bigham A, Abdouss M, Saidi M, Vatanpour V, Varma RS. Advanced nanofibers for water treatment: Unveiling the potential of electrospun polyacrylonitrile membranes. ENVIRONMENTAL RESEARCH 2025; 276:121403. [PMID: 40158874 DOI: 10.1016/j.envres.2025.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The challenges pertaining to the potable water scarcity and pollution motivates us to envision innovative strategies. Industrial wastewater containing hazardous heavy metals, synthetic dyes, and oil exacerbates the pursuit of clean drinking water. Among the array of available technologies, electrospun nanofiber membranes have garnered attention due to their efficiency, high surface-to-volume ratio, cost-effectiveness, scalability, and multifunctionality. These membranes possess distinct physical and chemical attributes that position them as ideal solutions to water purification challenges. Their versatility enables effective contaminant removal through filtration, adsorption, and chemical interactions. Polyacrylonitrile (PAN) emerges as a frontrunner among electrospun polymers due to its affordability, remarkable physical and chemical characteristics, and the ease of production. Research efforts have been dedicated to the study of electrospun PAN membranes, exploring modifications in terms of the functionalization of PAN molecular chain, incorporation of appropriate nanoparticles, and composition with other functional polymers. Parameters such as functional groups, hydrophilicity, mechanical properties, porosity, pore structure, reusability, sustainability, zeta potential, and operational conditions significantly influence the performance of electrospun PAN membranes in treating the contaminated water. Despite progress, challenges surrounding fouling, toxicity, scalability, selectivity, and production costs ought to be addressed strategically to enhance their practicality and real-world viability. This review comprehensively scrutinizes the current landscape of available electrospun PAN membranes in water treatment encompassing diverse range of synthesized entities and experimental outcomes. Additionally, the review delves into various approaches undertaken to optimize the performance of electrospun PAN membranes while proposing potential strategies to overcome the existing hindrances. By carefully analyzing the parameters that impact the performance of these membranes, this overview offers invaluable guidelines for researchers and engineers, thus empowering them to design tailored electrospun nanofiber membranes for specific water purification applications. As the innovative research continues and strategic efforts address the current challenges, these membranes can play a pivotal role in enhancing water quality, mitigating water scarcity, and contributing to environmental sustainability. The widespread application of electrospun nanofiber membranes in water treatment has the potential to create a lasting positive impact on global water resources and the environment. A dedicated effort towards their implementation will undoubtedly mark a crucial step towards a more sustainable and water-secure future.
Collapse
Affiliation(s)
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Shirzad Jouybar
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Majid Saidi
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Vahid Vatanpour
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Gao Y, Yan X, Chen Y, Sui Y, Wang N, Wang T, Gao G. 3D Janus sponge with controllable pore size for stable separation of oil-water emulsion and dye contaminants. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137486. [PMID: 39908760 DOI: 10.1016/j.jhazmat.2025.137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The development of separation materials with high flux, anti-oil fouling, long-term stability, and the ability to remove various pollutants is an urgent requirement in the field of oil-water separation. Herein, we designed a Janus sponge with multiple separation functions. Specifically, we first prepared the PCA-CS gel coating on the polyurethane (PU) sponge through the co-deposition of protocatechuic acid (PCA) and chitosan (CS), and then Janus sponge was obtained through bottom-up approach of adsorbing stearic acid (SA) and an ethanol suspension of titanium dioxide (TiO2). The prepared Janus sponge exhibits excellent wetting behavior and oil adhesion resistance, and can maintain stable performance in acidic, alkaline, saline solutions and ultrasonic environment. The pore size of the Janus sponge can be adjusted by mechanical compression to efficiently separate various types of emulsions, dyes and mixed wastewater. Among them, the emulsion and dye separation efficiency can both be above 99.6 %, and can maintain the high flux with 15372.7 L m-2 h-1. More importantly, the prepared Janus sponge can effectively remove the emulsified oil droplets from the wastewater generated by the automotive final assembly shop. Consequently, it can be predicted that Janus sponge exhibits great application potential in emulsion and dye wastewater treatment.
Collapse
Affiliation(s)
- Yiyan Gao
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology, Changchun 130012, China
| | - Xiaojuan Yan
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology, Changchun 130012, China
| | - Ying Chen
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology, Changchun 130012, China
| | - Ying Sui
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology, Changchun 130012, China
| | - Ning Wang
- School of Chemistry and Life Sciences, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Tianyu Wang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology, Changchun 130012, China.
| | - Guanghui Gao
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
3
|
Li D, Liu W, Peng T, Liu Y, Zhong L, Wang X. Janus Textile: Advancing Wearable Technology for Autonomous Sweat Management and Beyond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409730. [PMID: 40042440 DOI: 10.1002/smll.202409730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/09/2025] [Indexed: 04/03/2025]
Abstract
To alleviate the discomfort caused by excessive sweating, there is a growing emphasis on developing wearable textiles that can evacuate sweat autonomously. These advanced fabrics, unlike their absorbent and retention-prone predecessors, harness the Janus structure-distinguished by its asymmetric wettability-to facilitate one-way transport of liquid. This unique characteristic has significant potential in addressing issues related to excessive bodily moisture and propelling the realm of smart wearables. This review offers a comprehensive overview of the advancements in Janus-structured textiles within the wearable field, delving into the mechanisms behind their unidirectional liquid transport, which rely on chemical gradient and curvature gradient strategies, alongside the methodologies for achieving asymmetric wettability. It further spotlights the multifaceted applications of Janus-based textiles in wearables, including moisture and thermal management, wound care, and sweat analysis. In addition to examining existing hurdles, the review also explores avenues for future innovation, envisioning a new era of Janus textiles tailored for personalized comfort and health monitoring capabilities.
Collapse
Affiliation(s)
- Dan Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Tianhan Peng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yunya Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Lieshuang Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|
4
|
Liu J, Xu Z, Wang H, Zhao Y, Lin T. Directional Liquid Transport in Thin Fibrous Matrices: Enhancement of Advanced Applications. ACS NANO 2025; 19:5913-5937. [PMID: 39912713 DOI: 10.1021/acsnano.4c17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Directional liquid transport fibrous matrices (DLTFMs) have the unique ability to direct liquid movement in a single direction through their thickness. Beyond their inherent liquid transport function, DLTFMs can also enhance the effectiveness of additional functionalities. This review focuses on recent advances in DLTFMs, particularly the role of DLTs in enhancing secondary functions. We begin with a brief overview of the historical development and major achievements in DLTFM research, followed by an outline of the classification, fabrication techniques, and basic functions derived from their natural liquid transport properties. The integration of DLT to enhance secondary functionalities such as responsiveness, thermal regulation, and wearable technology for innovative applications in various sectors is then discussed. The review concludes with a discussion of key challenges and prospects in the field, including the durability and reliability of DLT performance, the precise regulation of fluid transport rates, the resilience and longevity of DLTFMs in harsh environments, and the impact of DLT variations on performance enhancement. The goal of this review is to stimulate further innovative studies on DLTFMs and to promote their practical implementation in a variety of industries.
Collapse
Affiliation(s)
- Junye Liu
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Zhiguang Xu
- College of Biological, Chemical Sciences and Engineering, China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Hongxia Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Tong Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
5
|
Srishti, Kumar A. Sustainable approach to oil recovery from oil spills through superhydrophobic jute fabric. MARINE POLLUTION BULLETIN 2023; 197:115701. [PMID: 37890316 DOI: 10.1016/j.marpolbul.2023.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Ecosystems suffer from increased oil exploitation and frequent oil spills, which calls for effective, environment-friendly, and economically viable solutions. To address this, abandoned gunny sacks as the concerned jute fabric were superhydrophobically (water contact angle ∼159°) modified, incorporating titanium dioxide (TiO2) nanoparticles and hexadecyltrimethoxysilane (HDTMS), rendering a facile drop casting procedure. The modified superhydrophobic-superoleophilic jute fabric has been identified as a high-performance filter with superior reusability that can separate oil-water mixtures in challenging environmental conditions (including potent acidic, alkaline, highly saline, aqueous, frigid, and blistering water environments) while maintaining high separation efficiency. In continuation, static conditions indulging a batch and continuous oil separation performance and dynamic conditions stimulating turbulence in the oil-water mixture were proficiently carried out, mimicking real-world circumstances. As a result, the modified jute fabric has the advantages of high separation efficiency, stable recyclable properties, and outstanding durability, highlighting its enormous potential for use in practical applications.
Collapse
Affiliation(s)
- Srishti
- Department of Chemical Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India
| | - Aditya Kumar
- Department of Chemical Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India.
| |
Collapse
|
6
|
Wang M, Li L, Yan H, Liu X, Li K, Li Y, You Y, Yang X, Song H, Wang P. Poly(arylene ether)s-Based Polymeric Membranes Applied for Water Purification in Harsh Environment Conditions: A Mini-Review. Polymers (Basel) 2023; 15:4527. [PMID: 38231952 PMCID: PMC10707801 DOI: 10.3390/polym15234527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Confronting the pressing challenge of freshwater scarcity, polymeric membrane-based water treatment technology has emerged as an essential and effective approach. Poly(arylene ether)s (PAEs) polymers, a class of high-performance engineering thermoplastics, have garnered attention in recent decades as promising membrane materials for advanced water treatment approaches. The PAE-Based membranes are employed to resist the shortages of most common polymeric membranes, such as chemical instability, structural damage, membrane fouling, and shortened lifespan when deployed in harsh environments, owing to their excellent comprehensive performance. This article presents the advancements in the research of several typical PAEs, including poly(ether ether ketone) (PEEK), polyethersulfone (PES), and poly(arylene ether nitrile) (PEN). Techniques for membrane formation, modification strategies, and applications in water treatment have been reviewed. The applications encompass processes for oil/water separation, desalination, and wastewater treatment, which involve the removal of heavy metal ions, dyes, oils, and other organic pollutants. The commendable performance of these membranes has been summarized in terms of corrosion resistance, high-temperature resistance, anti-fouling properties, and durability in challenging environments. In addition, several recommendations for further research aimed at developing efficient and robust PAE-based membranes are proposed.
Collapse
Affiliation(s)
- Mengxue Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Lingsha Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Haipeng Yan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Xidi Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Kui Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Ying Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Yong You
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China;
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Huijin Song
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| |
Collapse
|
7
|
Zhang H, Guo Z. Biomimetic materials in oil/water separation: Focusing on switchable wettabilities and applications. Adv Colloid Interface Sci 2023; 320:103003. [PMID: 37778250 DOI: 10.1016/j.cis.2023.103003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Clean water resources are crucial for human society, as the leakage and discharge of oily wastewater not only harm the economy but also disrupt our living environment. Therefore, there is an urgent need for efficient oil-water separation technology. Surfaces with switchable superwetting behavior have garnered significant attention due to their importance in both fundamental research and practical applications. This review introduces the fundamental principles of wettability in the oil-water separation process, the basic theory of switchable wettability, and the mechanisms involved in oil-water separation. Subsequently, the review discusses the research progress, challenges, and issues associated with three conventional types of special wettability materials: superhydrophobic/superoleophilic materials, superhydrophilic/superoleophobic materials, and superhydrophilic/underwater superoleophobic materials. Most importantly, it provides a detailed exploration of recent advancements in switchable wettability smart materials, which combine elements of traditional special wettability materials. These include stimulus-responsive smart materials, pre-wetting-induced materials, and Janus materials. The discussion covers key response factors, detailed examples of representative works, design concepts, and fabrication strategies. Finally, the review offers a comprehensive summary of switchable superwetting smart materials, encompassing their advantages and disadvantages, persistent challenges, and future prospects.
Collapse
Affiliation(s)
- Huimin Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
8
|
Qi MY, Wang PL, Huang LZ, Yuan Q, Mai T, Ma MG. Cellulose nanofiber/MXene/luffa aerogel for all-weather and high-efficiency cleanup of crude oil spills. Int J Biol Macromol 2023:124895. [PMID: 37196710 DOI: 10.1016/j.ijbiomac.2023.124895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
The remediation of heavy crude oil spills is a global challenge because frequent crude oil spills cause long-term damage to local living beings and marine ecosystems. Herein, a solar-driven and Joule-driven self-heated aerogel were developed as an all-weather adsorbent to efficiently absorb crude oil by obviously decreasing the viscosity of crude oil. The cellulose nanofiber (CNF)/MXene/luffa (CML) aerogel was fabricated via a simple freeze-drying method using CNF, MXene, and luffa as raw materials, and then coated with a layer of polydimethylsiloxane (PDMS) to make it hydrophobic and further increase oil-water selectivity. The aerogel can quickly reach 98 °C under 1 sun (1.0 kW/m2), which remains saturated temperature after 5 times photothermal heating/cooling cycles, indicating that the aerogel has great photothermal conversation capability and stability. Meanwhile, the aerogel can also rapidly rise to 110.8 °C with a voltage of 12 V. More importantly, the aerogel achieved the highest temperature of 87.2 °C under outdoor natural sunlight, providing a possibility for promising applications in practical situations. The remarkable heating capability enables the aerogel to decrease the viscosity of crude oil substantially and increase the absorption rate of crude oil by the physical capillary action. The proposed all-weather aerogel design provides a sustainable and promising solution for cleaning up crude oil spills.
Collapse
Affiliation(s)
- Meng-Yu Qi
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Pei-Lin Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | - Ling-Zhi Huang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qi Yuan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Tian Mai
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
9
|
Wang J, Chen B, Lin H, Li R. Efficient oily wastewater treatment by a novel electroflotation-membrane separation system consisting a Ni-Cu-P membrane prepared by electroless nickel plating. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163135. [PMID: 37003320 DOI: 10.1016/j.scitotenv.2023.163135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023]
Abstract
Electroflotation-membrane separation system with a conductive membrane has recently emerged as a promising technology for oily wastewater treatment. However, the conductive membrane prepared by electroless plating often suffers the problems of low stability and high activation cost. To solve these problems, this work proposed a new strategy regarding surface metallization of polymeric membrane by surface nickel-catalyzed electroless nickel plating of nickel‑copper‑phosphorus alloys for the first time. It was found that, addition of copper source remarkably enhanced the membranes' hydrophilicity, corrosion resistance and fouling resistance. The Ni-Cu-P membrane had an underwater oil contact angle of up to 140°, and simultaneously possessed rejection rate > 98 % with rather high flux of 65,663.0 L·m-2·h-1 and excellent cycling stability when separating n-hexane/water mixtures under gravity drive. The permeability is higher than the state-of-the-art membranes for oil/water separation. The Ni-Cu-P membrane as the cathode can be assembled into an electroflotation-membrane separation system, allowing to separate oil-in-water emulsion with 99 % rejection. Meanwhile, the applied electric field significantly improved membrane flux and fouling resistance (flux recovery up to 91 %) when separate kaolin suspensions. Polarization curve and Nyquist curve analysis further confirmed that addition of Cu element obviously enhanced corrosion resistance of the Ni modified membrane. This work provided a novel strategy to make up high-efficiency membranes for oily wastewater treatment.
Collapse
Affiliation(s)
- Jing Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
10
|
Zhao M, Liu Y, Zhang J, Jiang H, Chen R. Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Li Y, Fan T, Cui W, Wang X, Ramakrishna S, Long YZ. Harsh environment-tolerant and robust PTFE@ZIF-8 fibrous membrane for efficient photocatalytic organic pollutants degradation and oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|