1
|
Hager L, Schrodt M, Hegelheimer M, Stonawski J, Leuaa P, Chatzichristodoulou C, Hutzler A, Böhm T, Thiele S, Kerres J. Cationic groups in polystyrene/O-PBI blends influence performance and hydrogen crossover in AEMWE. Chem Commun (Camb) 2024; 61:149-152. [PMID: 39624023 DOI: 10.1039/d4cc05067c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This study examines the effect of various quaternary ammonium groups on AEMWE performance and hydrogen crossover in blends of quaternized polystyrenes with O-PBI. Due to their higher hydroxide conductivity (69 mS cm-1 at 80 °C, 90% RH), trimethylammonium groups enable AEMWE to reach 1.0 A cm-2 at 2.0 V. The trimethylammonium groups exhibit low hydrogen crossover, ranging from 1.5% to 0.3%, across current densities of 50 to 1000 mA cm-2. Low hydrogen crossover is essential for AEMWE in terms of safety and efficiency.
Collapse
Affiliation(s)
- Linus Hager
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Maximilian Schrodt
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Manuel Hegelheimer
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Julian Stonawski
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Pradipkumar Leuaa
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kongens, Lyngby, Denmark
| | | | - Andreas Hutzler
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
| | - Thomas Böhm
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
| | - Simon Thiele
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Jochen Kerres
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
- Chemical Resource Beneficiation Faculty of Natural Sciences, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
2
|
Xia Y, Rajappan SC, Chen S, Kraglund MR, Serhiichuk D, Pan D, Jensen JO, Jannasch P, Aili D. Poly(Arylene Alkylene)s with Tetrazole Pendants for Alkaline Ion-Solvating Polymer Electrolytes. CHEMSUSCHEM 2024; 17:e202400844. [PMID: 39115117 PMCID: PMC11632586 DOI: 10.1002/cssc.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Indexed: 12/12/2024]
Abstract
Alkaline ion-solvating membranes derived from a tetrazole functionalized poly(arylene alkylene) are prepared, characterized and evaluated as electrode separators in alkaline water electrolysis. The base polymer, poly[[1,1'-biphenyl]-4,4'-diyl(1,1,1-trifluoropropan-2-yl)], is synthesized by superacid catalyzed polyhydroxyalkylation and subsequently functionalized with tetrazole pendants. After equilibration in aqueous KOH, the relatively acidic tetrazole pendants are deprotonated to form the corresponding potassium tetrazolides. The room temperature ion conductivity is found to peak at 19 mS cm-1 in 5 wt. % KOH, and slightly declines with increasing KOH concentration to 13 mS cm-1 in 30 wt. % KOH. Based on an overall assessment of the mechanical properties, conductivity and electrode activity, 30 wt. % KOH is applied for alkaline electrolysis cell tests. Current densities of up to 1000 mA cm-2 were reached with uncatalyzed Ni-foam electrodes at a cell voltage of less than 2.6 V, with improved gas barrier characteristics compared to that of the several times thicker Zirfon separator.
Collapse
Affiliation(s)
- Yifan Xia
- Department of Energy Conversion and StorageTechnical University of DenmarkElektrovej, Building 375Lyngby2800Denmark
| | - Sinu C. Rajappan
- Department of Energy Conversion and StorageTechnical University of DenmarkElektrovej, Building 375Lyngby2800Denmark
| | - Si Chen
- Polymer & Materials ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| | - Mikkel Rykær Kraglund
- Department of Energy Conversion and StorageTechnical University of DenmarkElektrovej, Building 375Lyngby2800Denmark
| | - Dmytro Serhiichuk
- Department of Energy Conversion and StorageTechnical University of DenmarkElektrovej, Building 375Lyngby2800Denmark
| | - Dong Pan
- Polymer & Materials ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| | - Jens Oluf Jensen
- Department of Energy Conversion and StorageTechnical University of DenmarkElektrovej, Building 375Lyngby2800Denmark
| | - Patric Jannasch
- Polymer & Materials ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| | - David Aili
- Department of Energy Conversion and StorageTechnical University of DenmarkElektrovej, Building 375Lyngby2800Denmark
| |
Collapse
|
3
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
4
|
Henkensmeier D, Cho WC, Jannasch P, Stojadinovic J, Li Q, Aili D, Jensen JO. Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem Rev 2024; 124:6393-6443. [PMID: 38669641 PMCID: PMC11117188 DOI: 10.1021/acs.chemrev.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Traditionally, alkaline water electrolysis (AWE) uses diaphragms to separate anode and cathode and is operated with 5-7 M KOH feed solutions. The ban of asbestos diaphragms led to the development of polymeric diaphragms, which are now the state of the art material. A promising alternative is the ion solvating membrane. Recent developments show that high conductivities can also be obtained in 1 M KOH. A third technology is based on anion exchange membranes (AEM); because these systems use 0-1 M KOH feed solutions to balance the trade-off between conductivity and the AEM's lifetime in alkaline environment, it makes sense to treat them separately as AEM WE. However, the lifetime of AEM increased strongly over the last 10 years, and some electrode-related issues like oxidation of the ionomer binder at the anode can be mitigated by using KOH feed solutions. Therefore, AWE and AEM WE may get more similar in the future, and this review focuses on the developments in polymeric diaphragms, ion solvating membranes, and AEM.
Collapse
Affiliation(s)
- Dirk Henkensmeier
- Hydrogen
· Fuel Cell Research Center, Korea
Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST
Green School, Korea University, Seoul 02841, Republic of Korea
| | - Won-Chul Cho
- Department
of Future Energy Convergence, Seoul National
University of Science & Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811, Korea
| | - Patric Jannasch
- Polymer
& Materials Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | | | - Qingfeng Li
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - David Aili
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - Jens Oluf Jensen
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Gjoshi S, Loukopoulou P, Plevova M, Hnat J, Bouzek K, Deimede V. Cycloaliphatic Quaternary Ammonium Functionalized Poly(oxindole biphenyl) Based Anion-Exchange Membranes for Water Electrolysis: Stability and Performance. Polymers (Basel) 2023; 16:99. [PMID: 38201764 PMCID: PMC10780940 DOI: 10.3390/polym16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Mechanically robust anion-exchange membranes (AEMs) with high conductivity and long-term alkali resistance are needed for water electrolysis application. In this work, aryl-ether free polyaromatics containing isatin moieties were prepared via super acid-catalyzed copolymerization, followed by functionalization with alkaline stable cyclic quaternary ammonium (QA) cationic groups, to afford high performance AEMs for application in water electrolysis. The incorporation of side functional cationic groups (pyrrolidinium and piperidinium) onto a polymer backbone via a flexible alkyl spacer aimed at conductivity and alkaline stability improvement. The effect of cation structure on the properties of prepared AEMs was thoroughly studied. Pyrrolidinium- and piperidinium-based AEMs showed similar electrolyte uptakes and no obvious phase separation, as revealed by SAXS and further supported by AFM and TEM data. In addition, these AEMs displayed high conductivity values (81. 5 and 120 mS cm-1 for pyrrolidinium- and piperidinium-based AEM, respectively, at 80 °C) and excellent alkaline stability after 1 month aging in 2M KOH at 80 °C. Especially, a pyrrolidinium-based AEM membrane preserved 87% of its initial conductivity value, while at the same time retaining its flexibility and mechanical robustness after storage in alkaline media (2M KOH) for 1 month at 80 °C. Based on 1H NMR data, the conductivity loss observed after the aging test is mainly related to the piperidinium degradation that took place, probably via ring-opening Hofmann elimination, alkyl spacer scission and nucleophilic substitution reactions as well. The synthesized AEMs were also tested in an alkaline water electrolysis cell. Piperidinium-based AEM showed superior performance compared to its pyrrolidinium analogue, owing to its higher conductivity as revealed by EIS data, further confirming the ex situ conductivity measurements.
Collapse
Affiliation(s)
- Sara Gjoshi
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (S.G.); (P.L.)
| | - Paraskevi Loukopoulou
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (S.G.); (P.L.)
| | - Michaela Plevova
- Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic; (M.P.); (J.H.); (K.B.)
| | - Jaromir Hnat
- Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic; (M.P.); (J.H.); (K.B.)
| | - Karel Bouzek
- Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic; (M.P.); (J.H.); (K.B.)
| | - Valadoula Deimede
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (S.G.); (P.L.)
| |
Collapse
|
6
|
Aili D, Kraglund MR, Rajappan SC, Serhiichuk D, Xia Y, Deimede V, Kallitsis J, Bae C, Jannasch P, Henkensmeier D, Jensen JO. Electrode Separators for the Next-Generation Alkaline Water Electrolyzers. ACS ENERGY LETTERS 2023; 8:1900-1910. [PMID: 37090167 PMCID: PMC10111418 DOI: 10.1021/acsenergylett.3c00185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Multi-gigawatt-scale hydrogen production by water electrolysis is central in the green transition when it comes to storage of energy and forming the basis for sustainable fuels and materials. Alkaline water electrolysis plays a key role in this context, as the scale of implementation is not limited by the availability of scarce and expensive raw materials. Even though it is a mature technology, the new technological context of the renewable energy system demands more from the systems in terms of higher energy efficiency, enhanced rate capability, as well as dynamic, part-load, and differential pressure operation capability. New electrode separators that can support high currents at small ohmic losses, while effectively suppressing gas crossover, are essential to achieving this. This Focus Review compares the three main development paths that are currently being pursued in the field with the aim to identify the advantages and drawbacks of the different approaches in order to illuminate rational ways forward.
Collapse
Affiliation(s)
- David Aili
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| | - Mikkel Rykær Kraglund
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| | - Sinu C. Rajappan
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| | - Dmytro Serhiichuk
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| | - Yifan Xia
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| | - Valadoula Deimede
- Department
of Chemistry, University of Patras, 26504, Patras, Greece
| | - Joannis Kallitsis
- Department
of Chemistry, University of Patras, 26504, Patras, Greece
| | - Chulsung Bae
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| | - Patric Jannasch
- Polymer
& Materials Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Dirk Henkensmeier
- Hydrogen·Fuel
Cell Research Center, Korea Institute of
Science andTechnology, Seoul 02792, Republic
of Korea
- Division
of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Green School, Korea University, Seoul 02841, Republic
of Korea
| | - Jens Oluf Jensen
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
| |
Collapse
|