1
|
Li H, Wang X, Li R, Chen L, Cheng G, Xiong J. Synergistic Neuroprotective Effects of Ergothioneine and Lactoferrin in APP/PS1 Transgenic Mice and Mouse N2a Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10186-10200. [PMID: 40243192 DOI: 10.1021/acs.jafc.4c10263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Ergothioneine and lactoferrin show antioxidant and neuroprotective effects, but their interactive effects and underlying mechanisms on Alzheimer's disease are unclear. This study aims to investigate the synergistic neuroprotective effect for a combination of ergothioneine and lactoferrin and the molecular mechanisms in APP/PS1 transgenic mice and neuroblast N2a cells. In transgenic mice, the combination of ergothioneine and lactoferrin improved cognitive function and alleviated typical Alzheimer's disease's pathological characteristics of Aβ aggregation and tau phosphorylation. In N2a cells, compared with ergothioneine or lactoferrin alone, their combination synergistically increased cell viability by approximately 15% and decreased apoptosis by 5% in flow cytometry. The combination of ergothioneine and lactoferrin showed a more enhanced antioxidant efficacy through Keap1/Nrf2-mediated mechanisms in comparison to ergothioneine or lactoferrin alone. In summary, the combination of ergothioneine and lactoferrin synergistically enhances neuroprotection in APP/PS1 transgenic mice and N2a cells, providing a foundation for the development of functional foods for the prevention and control of Alzheimer's disease.
Collapse
Affiliation(s)
- Hui Li
- West China School of Nursing, West China Second University Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruirui Li
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Chen
- West China School of Nursing, West China Second University Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
- Children's Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
- West China School of Nursing, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyuan Xiong
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Lv R, Liu B, Jiang Z, Zhou R, Liu X, Lu T, Bao Y, Huang C, Zou G, Zhang Z, Lu L, Yin Q. Intermittent fasting and neurodegenerative diseases: Molecular mechanisms and therapeutic potential. Metabolism 2025; 164:156104. [PMID: 39674569 DOI: 10.1016/j.metabol.2024.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Neurodegenerative disorders are straining public health worldwide. During neurodegenerative disease progression, aberrant neuronal network activity, bioenergetic impairment, adaptive neural plasticity impairment, dysregulation of neuronal Ca2+ homeostasis, oxidative stress, and immune inflammation manifest as characteristic pathological changes in the cellular milieu of the brain. There is no drug for the treatment of neurodegenerative disorders, and therefore, strategies/treatments for the prevention or treatment of neurodegenerative disorders are urgently needed. Intermittent fasting (IF) is characterized as an eating pattern that alternates between periods of fasting and eating, requiring fasting durations that vary depending on the specific protocol implemented. During IF, depletion of liver glycogen stores leads to the production of ketone bodies from fatty acids derived from adipocytes, thereby inducing an altered metabolic state accompanied by cellular and molecular adaptive responses within neural networks in the brain. At the cellular level, adaptive responses can promote the generation of synapses and neurons. At the molecular level, IF triggers the activation of associated transcription factors, thereby eliciting the expression of protective proteins. Consequently, this regulatory process governs central and peripheral metabolism, oxidative stress, inflammation, mitochondrial function, autophagy, and the gut microbiota, all of which contribute to the amelioration of neurodegenerative disorders. Emerging evidence suggests that weight regulation significantly contributes to the neuroprotective effects of IF. By alleviating obesity-related factors such as blood-brain barrier dysfunction, neuroinflammation, and β-amyloid accumulation, IF enhances metabolic flexibility and insulin sensitivity, further supporting its potential in mitigating neurodegenerative disorders. The present review summarizes animal and human studies investigating the role and underlying mechanisms of IF in physiology and pathology, with an emphasis on its therapeutic potential. Furthermore, we provide an overview of the cellular and molecular mechanisms involved in regulating brain energy metabolism through IF, highlighting its potential applications in neurodegenerative disorders. Ultimately, our findings offer novel insights into the preventive and therapeutic applications of IF for neurodegenerative disorders.
Collapse
Affiliation(s)
- Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan 250014, China
| | - Ziying Jiang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Runfa Zhou
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehlstr. 13-17, Mannheim 68167, Germany
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Chunxia Huang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zongyong Zhang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
3
|
Krauklis SA, Towers AE, York JM, Baynard T, Gainey SJ, Freund GG, Steelman AJ. Mouse Testing Methods in Psychoneuroimmunology: Measuring Behavioral Responses. Methods Mol Biol 2025; 2868:163-203. [PMID: 39546231 DOI: 10.1007/978-1-0716-4200-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known, but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. Immunobehavioral phenotyping is a first-line approach when examining the neuroimmune system and its reaction to immune stimulation or suppression. Behavioral response is significantly more sensitive than direct measurement of a single specific bioactive and can quickly and efficiently rule in or out relevance of a particular immune challenge or therapeutic to neuroimmunity. Classically, immunobehavioral research was focused on sickness symptoms related to bacterial infection, but neuroimmune activation is now a recognized complication of diseases and disorders ranging from cancer to diabesity to Alzheimer's. Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity/surrounding environment. In addition, neuroimmune activation can diminish physical activity, precipitate feelings of depression and anxiety, and impair cognitive and executive function. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on pre-experimental conditions that can confound or prevent successful immunobehavioral experimentation.
Collapse
Affiliation(s)
- Steven A Krauklis
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Albert E Towers
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jason M York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tracy Baynard
- Academic Affairs, University of Massachusetts-Boston, Boston, MA, USA
| | - Stephen J Gainey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Gregory G Freund
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
4
|
Hu H, Li F, Cheng S, Qu T, Shen F, Cheng J, Chen L, Zhao Z, Hu H. Alternate-day fasting ameliorated anxiety-like behavior in high-fat diet-induced obese mice. J Nutr Biochem 2024; 124:109526. [PMID: 37931668 DOI: 10.1016/j.jnutbio.2023.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Alternate-day fasting (ADF) has been reported to reduce body weight, neuroinflammation, and oxidative stress damage. However, it is not known whether ADF affects obesity-induced anxiety-like behavior. Here, male C57BL/6 mice were given an alternate fasting and high-fat diet (HFD) or standard chow diet (SD) every other day for 16 or 5 weeks. After the intervention, the degree of anxiety of the mice was evaluated by the open field test (OFT) and the elevated plus maze (EPM) test. Pathological changes in the hippocampus, the expression of Sirt1 and its downstream protein monoamine oxidase A (MAO-A) in the hippocampus, and the expression of 5-hydroxytryptamine (5-HT) were detected. Compared with HFD-fed mice, HFD-fed mice subjected to ADF for 16 weeks had a lower body weight but more brown adipose tissue (BAT), less anxiety behavior, and less pathological damage in the hippocampus, and lower expression of Sirt1 and MAO-A protein and higher 5-HT levels in the hippocampus could be observed. In addition, we noted that long-term ADF intervention could cause anxiety-like behavior in SD mice. Next, we changed the intervention time to 5 weeks. The results showed that short-term ADF intervention could reduce the body weight and increase the BAT mass of SD mice, but it did not affect anxiety. These results indicated that long-term ADF ameliorated obesity-induced anxiety-like behavior and hippocampal damage, but caused anxiety in normal-weight mice. Short-term ADF did not produce adverse emotional reactions in normal-weight mice. Here, we might provide new ideas for the treatment of obesity-induced anxiety.
Collapse
Affiliation(s)
- Huijuan Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of pharmacy, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Fan Li
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaoli Cheng
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tingting Qu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fanqi Shen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Chronic Fatigue, Depression and Anxiety Symptoms in Long COVID Are Strongly Predicted by Neuroimmune and Neuro-Oxidative Pathways Which Are Caused by the Inflammation during Acute Infection. J Clin Med 2023; 12:jcm12020511. [PMID: 36675440 PMCID: PMC9865328 DOI: 10.3390/jcm12020511] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Long-term coronavirus disease 2019 (long COVID) is associated with physio-somatic (chronic fatigue syndrome and somatic symptoms) and affective (depression and anxiety) symptoms. The severity of the long COVID physio-affective phenome is largely predicted by increased peak body temperature (BT) and lowered oxygen saturation (SpO2) during the acute infectious phase. This study aims to delineate whether the association of BT and SpO2 during the acute phase and the long COVID physio-affective phenome is mediated by neurotoxicity (NT) resulting from activated immune-inflammatory and oxidative stress pathways. METHODS We recruited 86 patients with long COVID (3-4 months after the acute phase) and 39 healthy controls and assessed serum C-reactive protein (CRP), caspase 1, interleukin (IL) 1β, IL-18, IL-10, myeloperoxidase (MPO), advanced oxidation protein products (AOPPs), total antioxidant capacity (TAC), and calcium (Ca), as well as peak BT and SpO2 during the acute phase. RESULTS Cluster analysis revealed that a significant part (34.9%) of long COVID patients (n = 30) show a highly elevated NT index as computed based on IL-1β, IL-18, caspase 1, CRP, MPO, and AOPPs. Partial least squares analysis showed that 61.6% of the variance in the physio-affective phenome of long COVID could be explained by the NT index, lowered Ca, and peak BT/SpO2 in the acute phase and prior vaccinations with AstraZeneca or Pfizer. The most important predictors of the physio-affective phenome are Ca, CRP, IL-1β, AOPPs, and MPO. CONCLUSION The infection-immune-inflammatory core of acute COVID-19 strongly predicts the development of physio-affective symptoms 3-4 months later, and these effects are partly mediated by neuro-immune and neuro-oxidative pathways.
Collapse
|
6
|
Bilen A, Calik I, Yayla M, Dincer B, Tavaci T, Cinar I, Bilen H, Cadirci E, Halici Z, Mercantepe F. Does daily fasting shielding kidney on hyperglycemia-related inflammatory cytokine via TNF-α, NLRP3, TGF-β1 and VCAM-1 mRNA expression. Int J Biol Macromol 2021; 190:911-918. [PMID: 34492249 DOI: 10.1016/j.ijbiomac.2021.08.216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the effects of blood glucose control and the kidneys' functions, depending on fasting, in the streptozotocin-induced diabetes model in rats via TNF-α, NLRP-3, TGF-β1 and VCAM-1 mRNA expression in the present study. 32 Wistar albino rats were allocated randomly into four main groups; H (Healthy, n = 6), HF (Healthy fasting, n = 6), D (Diabetes, n = 10), DF (Diabetes and fasting, n = 10). Blood glucose and HbA1c levels significantly increased in the D group compared to the healthy ones (p < 0.05). However, the fasting period significantly improved blood glucose and HbA1c levels 14 days after STZ induced diabetes in rats compared to the D group. Similar findings we obtained for serum (BUN-creatinine) and urine samples (creatinine and urea levels). STZ induced high glucose levels significantly up-regulated TNF-α, NLRP-3, TGF-β1 and VCAM-1 mRNA expression and fasting significantly decreased these parameters when compared to diabetic rats. Histopathological staining also demonstrated the protective effects of fasting on diabetic kidney tissue. In conclusion, intermittent fasting regulated blood glucose level as well as decreasing harmful effects of diabetes on kidney tissue. The fasting period significantly decreased the hyperglycemia-related inflammatory cytokine damage on kidneys and also reduced apoptosis in favor of living organisms.
Collapse
Affiliation(s)
- Arzu Bilen
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ilknur Calik
- Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Taha Tavaci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Habip Bilen
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey; Ataturk University, Clinical Research, Development and Design Application and Research Center, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey; Ataturk University, Clinical Research, Development and Design Application and Research Center, Erzurum, Turkey
| | - Filiz Mercantepe
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
7
|
Wang C, Yu Q, Li D, Sun N, Huang Y, Zhang YX, Zhou WX. Reduced D-Serine Release May Contribute to Impairment of Long-Term Potentiation by Corticosterone in the Perforant Path-Dentate Gyrus. Neurochem Res 2021; 46:2359-2375. [PMID: 34146194 DOI: 10.1007/s11064-021-03380-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023]
Abstract
Long-term potentiation (LTP) is a neurobiological mechanism of cognitive function, and the N-methyl-D-aspartate (NMDA) receptors is fundamental for LTP. Previous studies showed that over activation of NMDA receptors may be a crucial cause of LTP and cognitive impairment induced by stress or corticosterone. However, other studies showed that the function of NMDA receptors is insufficient since the NMDA receptors co-agonist D-serine could improve stress-induced cognitive impairment. The purpose of this study is to clarify whether over activation of NMDA receptors or hypofunction of NMDA receptors is involved in hippocampal impairment of LTP by corticosterone and the underlying mechanisms. Results showed that hippocampal LTP and object location recognition memory were impaired in corticosterone-treated mice. Corticosterone increased the glutamate level in hippocampal tissues, neither NMDA receptors antagonist nor its subtype antagonists alleviated impairment of LTP, while enhancing the function of NMDA receptors by D-serine did alleviate impairment of LTP by corticosterone, suggesting that hypofunction of NMDA receptors might be one of the main reasons for impairment of LTP by corticosterone. Further results showed that the level of D-serine and its precursor L-serine did not change. D-serine release-related protein Na+-independent alanine-serine-cysteine transporter-1 (ASC-1) in the cell membrane was decreased and increasing D-serine release by the selective activator of ASC-1 antiporter activity alleviated impairment of LTP by corticosterone. Taken together, this study demonstrates that hypofunction of NMDA receptors may be involved in impairment of LTP by corticosterone and reduced D-serine release may be an important reason for its hypofunction, which is an important complement to existing mechanisms of corticosterone-induced LTP and cognitive impairment.
Collapse
Affiliation(s)
- Chen Wang
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Qi Yu
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Dong Li
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Na Sun
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yan Huang
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| | - Yong-Xiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| | - Wen-Xia Zhou
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| |
Collapse
|
8
|
Carteri RB, Menegassi LN, Feldmann M, Kopczynski A, Rodolphi MS, Strogulski NR, Almeida AS, Marques DM, Porciúncula LO, Portela LV. Intermittent fasting promotes anxiolytic-like effects unrelated to synaptic mitochondrial function and BDNF support. Behav Brain Res 2021; 404:113163. [PMID: 33549686 DOI: 10.1016/j.bbr.2021.113163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/05/2023]
Abstract
Anxiety disorders are linked to mitochondrial dysfunction and decreased neurotrophic support. Since anxiolytic drugs target mitochondria, non-pharmacological approaches to improve mitochondrial metabolism such as intermittent fasting (IF) may cause parallel behavioral benefits against anxiety disorders. Here, we investigated whether a chronic IF regimen could induce anxiolytic-like effects concomitantly to modulation in mitochondrial bioenergetics and trophic signaling in mice brain. A total of 44 Male C57BL/6 J mice (180 days old) were assigned to two dietary regimens: a normal, ad libitum diet (AL group) and an alternate-day fasting (IF group), where animals underwent 10 cycles of 24 h food restriction followed by 24 h ad libitum access. Animals underwent the open field test, dark/light box and elevated plus maze tasks. Isolated nerve terminals were obtained from mice brain and used for mitochondrial respirometry, hydrogen peroxide production and assessment of membrane potential dynamics, calcium handling and western blotting. We showed that IF significantly alters total daily food intake and food consumption patterns but not body weight. There were no differences in the exploratory and locomotory parameters. Remarkably, animals from IF showed decreased anxiety-like behavior. Mitochondrial metabolic responses in different coupling states and parameters linked with H2O2 production, Ca2+ buffering and electric gradient were not different between groups. Finally, no alterations in molecular indicators of apoptotic death (Bax/Bcl-2 ratio) and neuroplasticity (proBDNF/BDNF and synaptophysin were observed). In conclusion, IF exerts anxiolytic-like effect not associated with modulation in synaptic neuronergetics or expression of neurotrophic proteins. These results highlight a potential benefit of intermittent fasting as a nutritional intervention in anxiety-related disorders.
Collapse
Affiliation(s)
- Randhall B Carteri
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Centro Universitário Metodista - Instituto Porto Alegre (IPA), Porto Alegre, Brazil.
| | - Lizia Nardi Menegassi
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marceli Feldmann
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Afonso Kopczynski
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marcelo Salimen Rodolphi
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Nathan Ryzewski Strogulski
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Amanda Staldoni Almeida
- Laboratório de Estudos sobre o Sistema Purinérgico - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Daniela Melo Marques
- Laboratório de Estudos sobre o Sistema Purinérgico - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Lisiane O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Luis Valmor Portela
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Xiaoyaosan improves depressive-like behaviors by regulating the NLRP3 signaling pathway in the rat cerebral cortex. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Towers AE, Oelschlager ML, Juda MB, Jain S, Gainey SJ, Freund GG. HFD refeeding in mice after fasting impairs learning by activating caspase-1 in the brain. Metabolism 2020; 102:153989. [PMID: 31697963 PMCID: PMC6906226 DOI: 10.1016/j.metabol.2019.153989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Diets that include some aspect of fasting have dramatically increased in popularity. In addition, fasting reduces inflammasome activity in the brain while improving learning. Here, we examine the impact of refeeding a low-fat diet (LFD) or high-fat diet (HFD) after fasting. METHODS Male wildtype (WT), caspase-1 knockout (KO) and/or IL-1 receptor 1 (IL-1R1) KO mice were fasted for 24 h or allowed ad libitum access to food (chow). Immediately after fasting, mice were allowed to refeed for 2 h in the presence of LFD, HFD or chow. Mouse learning was examined using novel object recognition (NOR) and novel location recognition (NLR). Caspase-1 activity was quantified in the brain using histochemistry (HC) and image analysis. RESULTS Refeeding with a HFD but not a LFD or chow fully impaired both NOR and NLR. Likewise, HFD when compared to LFD refeeding increased caspase-1 activity in the whole amygdala and, particularly, in the posterior basolateral nuclei (BLp) by 2.5-fold and 4.6-fold, respectively. When caspase-1 KO or IL-1R1 KO mice were examined, learning impairment secondary to HFD refeeding did not occur. Equally, administration of n-acetylcysteine to fasted WT mice prevented HFD-dependent learning impairment and caspase-1 activation in the BLp. Finally, the free-fatty acid receptor 1 (FFAR1) antagonist, DC260126, mitigated learning impairment associated with HFD refeeding while blocking caspase-1 activation in the BLp. CONCLUSIONS Consumption of a HFD after fasting impairs learning by a mechanism that is dependent on caspase-1 and the IL-1R1 receptor. These consequences of a HFD refeeding on the BLP of the amygdala appear linked to oxidative stress and FFAR1.
Collapse
Affiliation(s)
- Albert E Towers
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | | | - Michal B Juda
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Sparsh Jain
- School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, USA
| | - Stephen J Gainey
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Gregory G Freund
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
11
|
Nutritional psychoneuroimmunology: Is the inflammasome a critical convergence point for stress and nutritional dysregulation? Curr Opin Behav Sci 2019; 28:20-24. [PMID: 31667204 DOI: 10.1016/j.cobeha.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Psychoneuroimmunology (PNI) aims to elucidate mechanisms by which the immune system can influence behavior. Given the complexity of the brain, studies using inbred rodents have shed critical insight into the presumed vagaries of the human condition. This is particularly true for stress modeling where adverse stimuli, conditions and/or interactions elicit patterned behavioral reactions that can translate across species. As example, sickness behaviors are as easily recognized in mice as they are in humans, and a family pet. Recently, nutrition has gained prominence as a regulator of brain function. Once perceived as mostly a peripheral player, except when manifest at extremes like starvation or gluttony, nutritional and/or metabolic stress is now recognized as a worrisome contributor to poor mental health especially in those who suffer from food insecurity or overnutrition. In this review, we will explore emerging areas of rodent research that demonstrate the impact of nutritional status on the stressed brain. Our overall goal is to implicate inflammasome activation as a critical convergence point for stress and nutritional dysregulation. In doing so, we will present results from studies focused on macronutrient, micronutrient and dietary bioactives so as to encourage innovative investigation into the emerging field of nutritional PNI.
Collapse
|
12
|
Towers AE, Oelschlager ML, Lorenz M, Gainey SJ, McCusker RH, Krauklis SA, Freund GG. Handling stress impairs learning through a mechanism involving caspase-1 activation and adenosine signaling. Brain Behav Immun 2019; 80:763-776. [PMID: 31108171 PMCID: PMC6664453 DOI: 10.1016/j.bbi.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Acute stressors can induce fear and physiologic responses that prepare the body to protect from danger. A key component of this response is immune system readiness. In particular, inflammasome activation appears critical to linking stress to the immune system. Here, we show that a novel combination of handling procedures used regularly in mouse research impairs novel object recognition (NOR) and activates caspase-1 in the amygdala. In male mice, this handling-stress paradigm combined weighing, scruffing and sham abdominal injection once per hr. While one round of weigh/scruff/needle-stick had no impact on NOR, two rounds compromised NOR without impacting location memory or anxiety-like behaviors. Caspase-1 knockout (KO), IL-1 receptor 1 (IL-1R1) KO and IL-1 receptor antagonist (IL-RA)-administered mice were resistant to handling stress-induced loss of NOR. In addition, examination of the brain showed that handling stress increased caspase-1 activity 85% in the amygdala without impacting hippocampal caspase-1 activity. To delineate danger signals relevant to handling stress, caffeine-administered and adenosine 2A receptor (A2AR) KO mice were tested and found resistant to impaired learning and caspase-1 activation. Finally, mice treated with the β-adrenergic receptor antagonist, propranolol, were resistant to handling stress-induced loss of NOR and caspase-1 activation. Taken together, these results indicate that handling stress-induced impairment of object learning is reliant on a pathway requiring A2AR-dependent activation of caspase-1 in the amygdala that appears contingent on β-adrenergic receptor functionality.
Collapse
Affiliation(s)
- Albert E Towers
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | | | - Madelyn Lorenz
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Stephen J Gainey
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Robert H McCusker
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Steven A Krauklis
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Gregory G Freund
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
13
|
Li C, Hou Y, Zhang J, Sui G, Du X, Licinio J, Wong ML, Yang Y. AGRP neurons modulate fasting-induced anxiolytic effects. Transl Psychiatry 2019; 9:111. [PMID: 30850579 PMCID: PMC6408535 DOI: 10.1038/s41398-019-0438-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
Recent studies indicate that activation of hypothalamic Agouti-related protein (Agrp) neurons can increase forage-related/repetitive behavior and decrease anxiety levels. However, the impact of physiological hunger states and food deprivation on anxiety-related behaviors have not been clarified. In the present study, we evaluated changes in anxiety levels induced by physiological hunger states and food deprivation, and identified the neuron population involved. Ad libitum fed and fasted mice were tested in the open field and elevated plus-maze behavioral tests. The DREADD approach was applied to selectively inhibit and stimulate neurons expressing Agrp in hypothalamic arcuate nucleus in Agrp-Cre transgenic mice. We found that anxiety levels were significantly reduced in the late light period when mice have increased need for food and increased Agrp neurons firing, in contrast to the levels in the early light period. Consistently, we also found that anxiety was potently reduced in 24-h fasted mice, relative to 12-h fasted mice or fed ad libitum. Mechanistically, we found that chemogenetic activation of Agrp neurons reduced anxiety in fed mice, and inactivation of Agrp neurons reduced fasting-induced anxiolytic effects. Our results suggest that anxiety levels may vary physiologically with the increasing need for food, and are influenced by acute fasting in a time-dependent manner. Agrp neurons contribute to fasting-induced anxiolytic effects, supporting the notion that Agrp neuron may serve as an entry point for the treatment of energy states-related anxiety disorders.
Collapse
Affiliation(s)
- Changhong Li
- grid.464200.4Department of Neurology, Beijing Haidian Hospital, Haidian Qu, Beijing PR China ,0000 0000 9159 4457grid.411023.5Department of Neuroscience, State University of New York Upstate Medical University, Syracuse, New York USA
| | - Yanjun Hou
- 0000000121791997grid.251993.5Department of Medicine, Albert Einstein College of Medicine, Bronx, New York USA
| | - Jia Zhang
- 0000000121791997grid.251993.5Department of Medicine, Albert Einstein College of Medicine, Bronx, New York USA ,0000 0001 2189 3846grid.207374.5Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, Henan China
| | - Guangzhi Sui
- 0000000121791997grid.251993.5Department of Medicine, Albert Einstein College of Medicine, Bronx, New York USA
| | - Xueliang Du
- 0000000121791997grid.251993.5Department of Medicine, Albert Einstein College of Medicine, Bronx, New York USA
| | - Julio Licinio
- 0000 0000 9159 4457grid.411023.5Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, New York USA
| | - Ma-Li Wong
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, New York, USA.
| | - Yunlei Yang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA. .,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA. .,Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA. .,The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA. .,Department of Neuroscience, State University of New York Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
14
|
Abstract
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. Immunobehavioral phenotyping is a first-line approach when examining the neuroimmune system and its reaction to immune stimulation or suppression. Behavioral response is significantly more sensitive than direct measurement of a single specific bioactive and can quickly and efficiently rule in or out relevance of a particular immune challenge or therapeutic to neuroimmunity. Classically, immunobehavioral research was focused on sickness symptoms related to bacterial infection but neuroimmune activation is now a recognized complication of diseases and disorders ranging from cancer to diabesity to Alzheimer's. Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity/surrounding environment. In addition, neuroimmune activation can diminish physical activity, precipitate feelings of depression and anxiety, and impair cognitive and executive function. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on pre-experimental conditions that can confound or prevent successful immunobehavioral experimentation.
Collapse
|