1
|
Festuccia WT. mTORC1 and 2 Adrenergic Regulation and Function in Brown Adipose Tissue. Physiology (Bethesda) 2025; 40:0. [PMID: 39470603 DOI: 10.1152/physiol.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
Brown adipose tissue (BAT) thermogenesis results from the uncoupling of mitochondrial inner membrane proton gradient mediated by uncoupling protein 1 (UCP-1), which is activated by lipolysis-derived fatty acids. Norepinephrine (NE) secreted by sympathetic innervation not only activates BAT lipolysis and UCP-1 but, uniquely in brown adipocytes, promotes "futile" metabolic cycles and enhances BAT thermogenic capacity by increasing UCP-1 content, mitochondrial biogenesis, and brown adipocyte hyperplasia. NE exerts these actions by triggering signaling in the canonical G protein-coupled β-adrenergic receptors, cAMP, and protein kinase A (PKA) pathway, which in brown adipocytes is under a complex and intricate cross talk with important growth-promoting signaling pathways such as those of mechanistic target of rapamycin (mTOR) complexes 1 (mTORC1) and 2 (mTORC2). This article reviews evidence suggesting that mTOR complexes are modulated by and participate in the thermogenic, metabolic, and growth-promoting effects elicited by NE in BAT and discusses current gaps and future directions in this field of research.
Collapse
|
2
|
Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2025; 26:e13856. [PMID: 39455059 PMCID: PMC11711082 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Melody Yuen‐man Ho
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kelvin Kwun‐wang Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kenneth King‐yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
- Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
3
|
Chen LY, Wang LW, Wen J, Cao JD, Zhou R, Yang JL, Xiao Y, Su T, Huang Y, Guo Q, Zhou HY, Luo XH, Feng X. RNA-binding protein YBX3 promotes PPARγ-SLC3A2 mediated BCAA metabolism fueling brown adipogenesis and thermogenesis. Mol Metab 2024; 90:102053. [PMID: 39481849 PMCID: PMC11570976 DOI: 10.1016/j.molmet.2024.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Activating brown adipose tissue (BAT) thermogenesis is a promising approach to combat obesity and metabolic disorders. The post-transcriptional regulation of BAT thermogenesis mediated by RNA-binding proteins (RBPs) is still not fully understood. This study explores the physiological role of novel RBPs in BAT differentiation and thermogenesis. METHODS We used multiple public datasets to screen out novel RBPs responsible for BAT differentiation and thermogenesis. In vitro loss- and gain-of-function experiments were performed in both C3H10T1/2 preadipocytes and mature brown adipocytes to determine the role of Y-box binding protein 3 (YBX3) in brown adipocyte differentiation and thermogenesis. Adeno-associated virus (AAV)-mediated BAT-specific knockdown or overexpression of Ybx3 was applied to investigate the function of YBX3 in vivo. RESULTS YBX3 is a brown adipocyte-enriched RBP induced by cold stimulation and β-adrenergic signaling. Both in vitro loss- and gain-of-function experiments demonstrate that YBX3 is essential for brown adipocyte differentiation and thermogenesis. BAT-specific loss of Ybx3 dampens thermogenesis and exacerbates diet-induced obesity in mice, while overexpression of Ybx3 promotes thermogenesis and confers protection against diet-induced metabolic dysfunction. Transcriptome analysis and mitochondrial stress test indicate that Ybx3 deficiency compromises the mitochondrial oxidative phosphorylation, leading to thermogenic failure. Mechanistically, YBX3 stabilizes the mRNA of Slc3a2 and Pparg, which facilitates branched-chain amino acid (BCAA) influx and catabolism and fuels brown adipocyte differentiation and thermogenesis. CONCLUSIONS YBX3 facilitates BAT fueling BCAA to boost thermogenesis and energy expenditure, which protects against obesity and metabolic dysfunction. Thus, YBX3 could be a promising therapeutic target for obesity.
Collapse
Affiliation(s)
- Lin-Yun Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Li-Wen Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Jing-Dong Cao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Jin-Lin Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Choi BH, Hyun S, Koo SH. The role of BCAA metabolism in metabolic health and disease. Exp Mol Med 2024; 56:1552-1559. [PMID: 38956299 PMCID: PMC11297153 DOI: 10.1038/s12276-024-01263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 07/04/2024] Open
Abstract
It has long been postulated that dietary restriction is beneficial for ensuring longevity and extending the health span of mammals, including humans. In particular, a reduction in protein consumption has been shown to be specifically linked to the beneficial effect of dietary restriction on metabolic disorders, presumably by reducing the activity of the mechanistic target of rapamycin complex (mTORC) 1 and the reciprocal activation of AMP-activated protein kinase (AMPK) and sirtuin pathways. Although it is widely used as a dietary supplement to delay the aging process in humans, recent evidence suggests that branched-chain amino acids (BCAAs) might be a major cause of the deteriorating effect of a protein diet on aging and related disorders. In this review, we delineate the regulation of metabolic pathways for BCAAs at the tissue-specific level and summarize recent findings regarding the role of BCAAs in the control of metabolic health and disease in mammals.
Collapse
Affiliation(s)
| | - Seunghoon Hyun
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea.
| |
Collapse
|
5
|
Wang Y, Zhao N, Meng Y, Chen J, Qi C, Hu X, Zhu H, Yang D, Zhang X, Ma H, Zhao J, Di T, Li P, Wang Y. Bcat2-Mediated Branched-Chain Amino Acid Catabolism Is Linked to the Aggravated Inflammation in Obese with Psoriasis Mice. Mol Nutr Food Res 2024; 68:e2300720. [PMID: 38581348 DOI: 10.1002/mnfr.202300720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Indexed: 04/08/2024]
Abstract
SCOPE The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.
Collapse
Affiliation(s)
- Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Ning Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Yujiao Meng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Jia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Xueqing Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Haoyue Zhu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Danyang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Xiawei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| |
Collapse
|
6
|
Furber EC, Hyatt K, Collins K, Yu X, Droz BA, Holland A, Friedrich JL, Wojnicki S, Konkol DL, O’Farrell LS, Baker HE, Coskun T, Scherer PE, Kusminski CM, Christe ME, Sloop KW, Samms RJ. GIPR Agonism Enhances TZD-Induced Insulin Sensitivity in Obese IR Mice. Diabetes 2024; 73:292-305. [PMID: 37934926 PMCID: PMC10796301 DOI: 10.2337/db23-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
Recent studies have found that glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism can enhance the metabolic efficacy of glucagon-like peptide-1 receptor agonist treatment by promoting both weight-dependent and -independent improvements on systemic insulin sensitivity. These findings have prompted new investigations aimed at better understanding the broad metabolic benefit of GIPR activation. Herein, we determined whether GIPR agonism favorably influenced the pharmacologic efficacy of the insulin-sensitizing thiazolidinedione (TZD) rosiglitazone in obese insulin-resistant (IR) mice. Genetic and pharmacological approaches were used to examine the role of GIPR signaling on rosiglitazone-induced weight gain, hyperphagia, and glycemic control. RNA sequencing was conducted to uncover potential mechanisms by which GIPR activation influences energy balance and insulin sensitivity. In line with previous findings, treatment with rosiglitazone induced the mRNA expression of the GIPR in white and brown fat. However, obese GIPR-null mice dosed with rosiglitazone had equivalent weight gain to that of wild-type (WT) animals. Strikingly, chronic treatment of obese IR WT animals with a long-acting GIPR agonist prevented rosiglitazone-induced weight-gain and hyperphagia, and it enhanced the insulin-sensitivity effect of this TZD. The systemic insulin sensitization was accompanied by increased glucose disposal in brown adipose tissue, which was underlined by the recruitment of metabolic and thermogenic genes. These findings suggest that GIPR agonism can counter the negative consequences of rosiglitazone treatment on body weight and adiposity, while improving its insulin-sensitizing efficacy at the same time. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Ellen C. Furber
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Karissa Hyatt
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Kyla Collins
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Xinxin Yu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Brian A. Droz
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Adrienne Holland
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Jessica L. Friedrich
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Samantha Wojnicki
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Debra L. Konkol
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Libbey S. O’Farrell
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Hana E. Baker
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Tamer Coskun
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Christine M. Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael E. Christe
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Kyle W. Sloop
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ricardo J. Samms
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| |
Collapse
|
7
|
Zhang C, Sui Y, Liu S, Yang M. Molecular mechanisms of metabolic disease-associated hepatic inflammation in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. EXPLORATION OF DIGESTIVE DISEASES 2023:246-275. [DOI: https:/doi.org/10.37349/edd.2023.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/05/2023] [Indexed: 11/27/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide, with a progressive form of non-alcoholic steatohepatitis (NASH). It may progress to advanced liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD/NASH is a comorbidity of many metabolic disorders such as obesity, insulin resistance, type 2 diabetes, cardiovascular disease, and chronic kidney disease. These metabolic diseases are often accompanied by systemic or extrahepatic inflammation, which plays an important role in the pathogenesis and treatment of NAFLD or NASH. Metabolites, such as short-chain fatty acids, impact the function, inflammation, and death of hepatocytes, the primary parenchymal cells in the liver tissue. Cholangiocytes, the epithelial cells that line the bile ducts, can differentiate into proliferative hepatocytes in chronic liver injury. In addition, hepatic non-parenchymal cells, including liver sinusoidal endothelial cells, hepatic stellate cells, and innate and adaptive immune cells, are involved in liver inflammation. Proteins such as fibroblast growth factors, acetyl-coenzyme A carboxylases, and nuclear factor erythroid 2-related factor 2 are involved in liver metabolism and inflammation, which are potential targets for NASH treatment. This review focuses on the effects of metabolic disease-induced extrahepatic inflammation, liver inflammation, and the cellular and molecular mechanisms of liver metabolism on the development and progression of NAFLD and NASH, as well as the associated treatments.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, Shanxi Province, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Xu E, Ji B, Jin K, Chen Y. Branched-chain amino acids catabolism and cancer progression: focus on therapeutic interventions. Front Oncol 2023; 13:1220638. [PMID: 37637065 PMCID: PMC10448767 DOI: 10.3389/fonc.2023.1220638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Branched-chain amino acids (BCAAs), including valine, leucine, and isoleucine, are crucial amino acids with significant implications in tumorigenesis across various human malignancies. Studies have demonstrated that altered BCAA metabolism can influence tumor growth and progression. Increased levels of BCAAs have been associated with tumor growth inhibition, indicating their potential as anti-cancer agents. Conversely, a deficiency in BCAAs can promote tumor metastasis to different organs due to the disruptive effects of high BCAA concentrations on tumor cell migration and invasion. This disruption is associated with tumor cell adhesion, angiogenesis, metastasis, and invasion. Furthermore, BCAAs serve as nitrogen donors, contributing to synthesizing macromolecules such as proteins and nucleotides crucial for cancer cell growth. Consequently, BCAAs exhibit a dual role in cancer, and their effects on tumor growth or inhibition are contingent upon various conditions and concentrations. This review discusses these contrasting findings, providing valuable insights into BCAA-related therapeutic interventions and ultimately contributing to a better understanding of their potential role in cancer treatment.
Collapse
Affiliation(s)
- Er Xu
- Department of Hospital Infection Management, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Bangju Ji
- Department of Colorectal Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yefeng Chen
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
9
|
Han HS, Ahn E, Park ES, Huh T, Choi S, Kwon Y, Choi BH, Lee J, Choi YH, Jeong YL, Lee GB, Kim M, Seong JK, Shin HM, Kim HR, Moon MH, Kim JK, Hwang GS, Koo SH. Impaired BCAA catabolism in adipose tissues promotes age-associated metabolic derangement. NATURE AGING 2023; 3:982-1000. [PMID: 37488415 DOI: 10.1038/s43587-023-00460-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Adipose tissues are central in controlling metabolic homeostasis and failure in their preservation is associated with age-related metabolic disorders. The exact role of mature adipocytes in this phenomenon remains elusive. Here we describe the role of adipose branched-chain amino acid (BCAA) catabolism in this process. We found that adipocyte-specific Crtc2 knockout protected mice from age-associated metabolic decline. Multiomics analysis revealed that BCAA catabolism was impaired in aged visceral adipose tissues, leading to the activation of mechanistic target of rapamycin complex (mTORC1) signaling and the resultant cellular senescence, which was restored by Crtc2 knockout in adipocytes. Using single-cell RNA sequencing analysis, we found that age-associated decline in adipogenic potential of visceral adipose tissues was reinstated by Crtc2 knockout, via the reduction of BCAA-mTORC1 senescence-associated secretory phenotype axis. Collectively, we propose that perturbation of BCAA catabolism by CRTC2 is critical in instigating age-associated remodeling of adipose tissue and the resultant metabolic decline in vivo.
Collapse
Affiliation(s)
- Hye-Sook Han
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | | | - Tom Huh
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Seri Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yongmin Kwon
- Division of Life Sciences, Korea University, Seoul, Korea
| | | | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yoon Ha Choi
- Department of Life Sciences, POSTECH, Pohang, Korea
| | | | - Gwang Bin Lee
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Minji Kim
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | - Hang-Rae Kim
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | | | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, Korea.
- Department of Life Sciences, POSTECH, Pohang, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea.
- College of Pharmacy, Chung-Ang University, Seoul, Korea.
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea.
| |
Collapse
|
10
|
Aboragah AA, Sherlock DN, Wichasit N, Loor JJ. Abundance of proteins and genes associated with nutrient signaling, protein turnover, and transport of amino acids and glucose in fetuses from lactating Holstein cows. Res Vet Sci 2023; 161:69-76. [PMID: 37321013 DOI: 10.1016/j.rvsc.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Availability of nutrients in maternal circulation and abundance of nutrient transporters, metabolic enzymes, and nutrient-responsive proteins in fetal tissues coordinate growth. To begin characterizing these mechanisms, we evaluated the abundance of nutrient signaling genes and proteins in bovine fetal tissues. Liver, entire intestine, and semitendinosus muscle were harvested from fetuses (4 female, 2 male) collected at slaughter from 6 clinically-healthy multiparous Holstein dairy cows (167 ± 7 days in milk, 37 ± 6 kg milk/d, 100 ± 3 d gestation). Data were analyzed using PROC MIXED in SAS 9.4. Among proteins measured, abundance of the amino acid (AA) utilization and insulin signaling proteins p-AKT and p-mTOR was greater (P < 0.01) in liver and intestine. The abundance of p-EEF2 (translation elongation) and SLC2A4 (glucose uptake) was greater (P < 0.05) in liver relative to intestine and muscle suggesting this organ has a greater capacity for anabolic processes. In contrast, among mTOR signaling genes, the abundance of IRS1 was greatest (P < 0.01) in muscle and lowest in the intestine, whereas, abundance of AKT1 and mTOR was greater (P < 0.01) in intestine and muscle than liver. Abundance of the protein degradation-related genes UBA1, UBE2G1, and TRIM63 was greater (P < 0.01) in muscle than intestine and liver. Among nutrient transporters, abundance of glucose transporters SLC5A1 and SLC2A2 was greatest (P < 0.01) in the intestine than liver and muscle. Several AA transporters had greater (P < 0.01) abundance in the intestine or liver compared with muscle. Overall, these molecular analyses highlighted important biological differences on various aspects of metabolism in fetal tissues.
Collapse
Affiliation(s)
- Ahmad A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Nithat Wichasit
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Agricultural Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA.
| |
Collapse
|
11
|
Doestzada M, Zhernakova DV, C L van den Munckhof I, Wang D, Kurilshikov A, Chen L, Bloks VW, van Faassen M, Rutten JHW, Joosten LAB, Netea MG, Wijmenga C, Riksen NP, Zhernakova A, Kuipers F, Fu J. Systematic analysis of relationships between plasma branched-chain amino acid concentrations and cardiometabolic parameters: an association and Mendelian randomization study. BMC Med 2022; 20:485. [PMID: 36522747 PMCID: PMC9753387 DOI: 10.1186/s12916-022-02688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after correcting for covariates and underlying causal relationships. METHODS To shed light on these relationships, we systematically characterized the associations between plasma BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 overweight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization. RESULTS A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common and specific associations, with the most specific associations being detected for isoleucine. Further, we found that obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related parameters. However, no causal effects of BCAAs on CMD parameters were supported. CONCLUSIONS Our cross-sectional association study reports a large number of associations between BCAAs and CMD parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to (re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Marwah Doestzada
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
| | - Inge C L van den Munckhof
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daoming Wang
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lianmin Chen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department for Genomics Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, European Institute of Healthy Ageing (ERIBA), Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. .,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Du C, Liu WJ, Yang J, Zhao SS, Liu HX. The Role of Branched-Chain Amino Acids and Branched-Chain α-Keto Acid Dehydrogenase Kinase in Metabolic Disorders. Front Nutr 2022; 9:932670. [PMID: 35923208 PMCID: PMC9339795 DOI: 10.3389/fnut.2022.932670] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 12/16/2022] Open
Abstract
Branched-chain amino acids (BCAAs), composed of leucine, isoleucine, and valine, are important essential amino acids in human physiology. Decades of studies have revealed their roles in protein synthesis, regulating neurotransmitter synthesis, and the mechanistic target of rapamycin (mTOR). BCAAs are found to be related to many metabolic disorders, such as insulin resistance, obesity, and heart failure. Also, many diseases are related to the alteration of the BCAA catabolism enzyme branched-chain α-keto acid dehydrogenase kinase (BCKDK), including maple syrup urine disease, human autism with epilepsy, and so on. In this review, diseases and the corresponding therapies are discussed after the introduction of the catabolism and detection methods of BCAAs and BCKDK. Also, the interaction between microbiota and BCAAs is highlighted.
Collapse
Affiliation(s)
- Chuang Du
- Institute of Life Sciences, China Medical University, Shenyang, China
- Health Sciences Institute, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wen-Jie Liu
- Institute of Life Sciences, China Medical University, Shenyang, China
- Health Sciences Institute, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Jing Yang
- Institute of Life Sciences, China Medical University, Shenyang, China
- Health Sciences Institute, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Shan-Shan Zhao
- Institute of Life Sciences, China Medical University, Shenyang, China
- Health Sciences Institute, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- *Correspondence: Shan-Shan Zhao,
| | - Hui-Xin Liu
- Institute of Life Sciences, China Medical University, Shenyang, China
- Health Sciences Institute, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
- Hui-Xin Liu,
| |
Collapse
|
13
|
Gao J, Ma L, Ma J, Xia S, Gong S, Yin Y, Chen Y. Camellia ( Camellia oleifera Abel.) Seed Oil Regulating of Metabolic Phenotype and Alleviates Dyslipidemia in High Fat-Fed Mice through Serum Branch-Chain Amino Acids. Nutrients 2022; 14:nu14122424. [PMID: 35745155 PMCID: PMC9228151 DOI: 10.3390/nu14122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Camellia (Camellia oleifera Abel.) seed oil (CO) has been shown to effectively reduce the blood lipid level of its host due to its fatty acid content, but the specific molecular mechanism associated with the metabolic phenotype after digestion is not clear. Here, we further investigated the relationship between branched-chain amino acids (BCAA) and the metabolic phenotype that may exhibit the anti-dyslipidemia effect of CO on mice fed a high-fat diet for 30 day C57BL/6J male mice were allocated to three groups: the control group (Cont), the high-fat feed group (HFD), and a high-fat feed group with CO treatment (CO). A serum sample was collected to detect lipid biomarkers and BCAA concentration. Notably, Low-density lipoprotein (LDL), Total Cholesterol (TC), and Triglycerides (TG) showed a significant decrease, whereas High-density lipoprotein (HDL) increased in CO mice but not in the HFD group. The concentration of Isoleucine (Ile), leucine (Leu), and valine (Val) was similar between the Cont and CO groups compared with the HFD group, exhibiting an inhibition induced by CO in mice fed with a high-fat diet. A metabolic phenotype from serum examined by non-targeted metabolite analysis using UHPLC/MS showed most metabolites exhibited lipid and BCAA metabolism. The results indicated that CO treatment notably regulated the metabolism of arachidonic acid and steroid biosynthesis in response to HFD-induced dyslipidemia. In addition, the expression of PPARγ genes that correlated with the BCAA and serum lipid biomarkers were compared, and significant inhibition was noticed, which might lead to the potential exposure of the anti-dyslipidemia mechanism of CO in HFD-fed mice. In conclusion, the expression of PPARγ genes, serum lipid level, BCAA concentration, and the metabolic phenotype was significantly positive in correlation with a high-fat diet, whereas oral CO improved the biomarkers and metabolism of some specific serum metabolites in HFD-fed mice.
Collapse
Affiliation(s)
- Jing Gao
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Li Ma
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
| | - Siting Xia
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
- Correspondence: (Y.Y.); (Y.C.)
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Correspondence: (Y.Y.); (Y.C.)
| |
Collapse
|
14
|
Wang F, Zou J, Xu H, Huang W, Zhang X, Wei Z, Li X, Liu Y, Zou J, Liu F, Zhu H, Yi H, Guan J, Yin S. Effects of Chronic Intermittent Hypoxia and Chronic Sleep Fragmentation on Gut Microbiome, Serum Metabolome, Liver and Adipose Tissue Morphology. Front Endocrinol (Lausanne) 2022; 13:820939. [PMID: 35178032 PMCID: PMC8846366 DOI: 10.3389/fendo.2022.820939] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) and chronic sleep fragmentation (CSF) are two cardinal pathological features of obstructive sleep apnea (OSA). Dietary obesity is a crucial risk intermediator for OSA and metabolic disorders. Gut microbiota affect hepatic and adipose tissue morphology under conditions of CIH or CSF through downstream metabolites. However, the exact relationship is unclear. Herein, chow and high-fat diet (HFD)-fed mice were subjected to CIH or CSF for 10 weeks each and compared to normoxia (NM) or normal sleep (NS) controls. 16S rRNA amplicon sequencing, untargeted liquid chromatography-tandem mass spectrometry, and histological assessment of liver and adipose tissues were used to investigate the correlations between the microbiome, metabolome, and lipid metabolism under CIH or CSF condition. Our results demonstrated that CIH and CSF regulate the abundance of intestinal microbes (such as Akkermansia mucinphila, Clostridium spp., Lactococcus spp., and Bifidobacterium spp.) and functional metabolites, such as tryptophan, free fatty acids, branched amino acids, and bile acids, which influence adipose tissue and hepatic lipid metabolism, and the level of lipid deposition in tissues and peripheral blood. In conclusion, CIH and CSF adversely affect fecal microbiota composition and function, and host metabolism; these findings provide new insight into the independent and synergistic effects of CIH, CSF, and HFD on lipid disorders.
Collapse
Affiliation(s)
- Fan Wang
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Juanjuan Zou
- Department of Otorhinolaryngology and National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University Affiliated Qilu Hospital, Jinan, China
| | - Huajun Xu
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Huajun Xu, ; Jian Guan, ; Shankai Yin,
| | - Weijun Huang
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaoman Zhang
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhicheng Wei
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xinyi Li
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yupu Liu
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jianyin Zou
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Feng Liu
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Huaming Zhu
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hongliang Yi
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Huajun Xu, ; Jian Guan, ; Shankai Yin,
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Huajun Xu, ; Jian Guan, ; Shankai Yin,
| |
Collapse
|
15
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
Liang Y, Cardoso FF, Parys C, Cardoso FC, Loor JJ. Branched-Chain Amino Acid Supplementation Alters the Abundance of Mechanistic Target of Rapamycin and Insulin Signaling Proteins in Subcutaneous Adipose Explants from Lactating Holstein Cows. Animals (Basel) 2021; 11:ani11092714. [PMID: 34573680 PMCID: PMC8470689 DOI: 10.3390/ani11092714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Branched-chain amino acids (BCAAs) are import regulators of mechanistic target of rapamycin (mTOR). In humans and rodents, increased circulating BCAA levels are positively associated with changes in protein abundance of insulin and amino acid (AA) signaling pathways in organs such as skeletal muscle and adipose. Unlike aspects of fatty acid metabolism (e.g., lipolysis, lipogenesis), it is unknown if BCAA directly affect subcutaneous adipose tissue (SAT) AA metabolism and insulin signaling. We propose that BCAA availability within SAT could enhance aspects of AA and insulin function by promoting increases in the abundance of key proteins. Abstract The objective of this study was to investigate changes in protein abundance of mTOR and insulin signaling pathway components along with amino acid (AA) transporters in bovine s.c. adipose (SAT) explants in response to increased supply of Leu, Ile, or Val. Explants of SAT from four lactating Holstein cows were incubated with high-glucose serum-free DMEM, to which the 10 essential AAs were added to create the following treatments: ideal mix of essential AA (IPAA; Lys:Met 2.9:1; Lys:Thr 1.8:1; Lys:His 2.38:1; Lys:Val 1.23:1; Lys:Ile 1.45:1; Lys:Leu 0.85:1; Lys:Arg 2.08:1) or IPAA supplemented with Ile, Val, or Leu to achieve a Lys:Ile of 1.29:1 (incIle), Lys:Val 1.12:1 (incVal), or Lys:Leu (incLeu) 0.78:1 for 4 h. Compared with IPAA, incLeu or incIle led to greater activation of protein kinase B (AKT; p-AKT/total AKT) and mTOR (p-mTOR/total mTOR). Total EAA in media averaged 7.8 ± 0.06 mmol/L across treatments. Incubation with incLeu, incIle, or incVal led to greater protein abundance of solute carrier family 38 member 1 (SLC38A1), a Gln transporter, and the BCAA catabolism enzyme branched-chain α-keto acid dehydrogenase kinase (BCKDK) compared with IPAA. Activation of eukaryotic elongation factor 2 (eEF2; p-eEF2/total eEF2) was also greater in response to incLeu, incIle, or incVal. Furthermore, compared with incLeu or incIle, incVal supplementation led to greater abundance of SLC38A1 and BCKDK. BCKDK is a rate-limiting enzyme regulating BCAA catabolism via inactivation and phosphorylation of the BCKD complex. Overall, data suggested that enhanced individual supplementation of BCAA activates mTOR and insulin signaling in SAT. Increased AA transport into tissue and lower BCAA catabolism could be part of the mechanism driving these responses. The potential practical applications for enhancing post-ruminal supply of BCAA via feeding in rumen-protected form support in vivo studies to ascertain the role of these AAs on adipose tissue biology.
Collapse
Affiliation(s)
- Yusheng Liang
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; (Y.L.); (F.F.C.); (F.C.C.)
| | - Fabiana F. Cardoso
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; (Y.L.); (F.F.C.); (F.C.C.)
| | - Claudia Parys
- Evonik Operations GmbH|Nutrition & Care, 63457 Hanau, Germany;
| | - Felipe C. Cardoso
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; (Y.L.); (F.F.C.); (F.C.C.)
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; (Y.L.); (F.F.C.); (F.C.C.)
- Correspondence:
| |
Collapse
|
17
|
Andrade ML, Gilio GR, Perandini LA, Peixoto AS, Moreno MF, Castro É, Oliveira TE, Vieira TS, Ortiz-Silva M, Thomazelli CA, Chaves-Filho AB, Belchior T, Chimin P, Magdalon J, Ivison R, Pant D, Tsai L, Yoshinaga MY, Miyamoto S, Festuccia WT. PPARγ-induced upregulation of subcutaneous fat adiponectin secretion, glyceroneogenesis and BCAA oxidation requires mTORC1 activity. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158967. [PMID: 34004356 PMCID: PMC9391032 DOI: 10.1016/j.bbalip.2021.158967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
The nutrient sensors peroxisome proliferator-activated receptor γ (PPARγ) and mechanistic target of rapamycin complex 1 (mTORC1) closely interact in the regulation of adipocyte lipid storage. The precise mechanisms underlying this interaction and whether this extends to other metabolic processes and the endocrine function of adipocytes are still unknown. We investigated herein the involvement of mTORC1 as a mediator of the actions of the PPARγ ligand rosiglitazone in subcutaneous inguinal white adipose tissue (iWAT) mass, endocrine function, lipidome, transcriptome and branched-chain amino acid (BCAA) metabolism. Mice bearing regulatory associated protein of mTOR (Raptor) deletion and therefore mTORC1 deficiency exclusively in adipocytes and littermate controls were fed a high-fat diet supplemented or not with the PPARγ agonist rosiglitazone (30 mg/kg/day) for 8 weeks and evaluated for iWAT mass, lipidome, transcriptome (Rnaseq), respiration and BCAA metabolism. Adipocyte mTORC1 deficiency not only impaired iWAT adiponectin transcription, synthesis and secretion, PEPCK mRNA levels, triacylglycerol synthesis and BCAA oxidation and mRNA levels of related proteins but also completely blocked the upregulation in these processes induced by pharmacological PPARγ activation with rosiglitazone. Mechanistically, adipocyte mTORC1 deficiency impairs PPARγ transcriptional activity by reducing PPARγ protein content, as well as by downregulating C/EBPα, a co-partner and facilitator of PPARγ. In conclusion, mTORC1 and PPARγ are essential partners involved in the regulation of subcutaneous adipose tissue adiponectin production and secretion and BCAA oxidative metabolism.
Collapse
Affiliation(s)
- Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gustavo R Gilio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiz A Perandini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thayna S Vieira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caroline A Thomazelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia Chimin
- Department of Physical Education, Physical Education and Sports Center, Londrina State University, Londrina, Brazil
| | | | | | - Deepti Pant
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - Marcos Y Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Kubota Y, Nagano H, Kosaka K, Ogata H, Nakayama A, Yokoyama M, Murata K, Akita S, Kuriyama M, Furuyama N, Kuroda M, Tanaka T, Mitsukawa N. Epigenetic modifications underlie the differential adipogenic potential of preadipocytes derived from human subcutaneous fat tissue. Am J Physiol Cell Physiol 2021; 321:C596-C606. [PMID: 34319829 DOI: 10.1152/ajpcell.00387.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AIM Ceiling culture-derived preadipocytes (ccdPAs) and adipose-derived stem cells (ASCs) can be harvested from human subcutaneous fat tissue using the specific gravity method. Both cell types possess a similar spindle shape without lipid droplets. We previously reported that ccdPAs have a higher adipogenic potential than ASCs, even after a 7-week culture. We performed a genome-wide epigenetic analysis to examine the mechanisms contributing to the adipogenic potential differences between ccdPAs and ASCs. MATERIALS AND METHODS Methylation analysis of cytosines followed by guanine (CpG) using a 450K BeadChip was performed on human ccdPAs and ASCs isolated from three metabolically healthy females. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to evaluate trimethylation at lysine 4 of histone 3 (H3K4me3). RESULTS Unsupervised machine learning using t-distributed stochastic neighbor embedding (tSNE) to interpret 450,000-dimensional methylation assay data showed that the cells were divided into ASC and ccdPA groups. In KEGG pathway analysis of 1,543 genes with differential promoter CpG methylation, the peroxisome proliferator-activated receptor (PPAR) and adipocytokine signaling pathways ranked in the top 10 pathways. In the PPAR gamma gene, H3K4me3 peak levels were higher in ccdPAs than in ASCs, whereas promoter CpG methylation levels were significantly lower in ccdPAs than in ASCs. Similar differences in promoter CpG methylation were also seen in the fatty acid-binding protein 4 (FABP4) and leptin genes. CONCLUSION We analyzed the epigenetic status of adipogenesis-related genes as a potential mechanism underlying the differences in adipogenic differentiation capability between ASCs and ccdPAs.
Collapse
Affiliation(s)
- Yoshitaka Kubota
- Department of Plastic Surgery, Chiba University, Chiba-city, Chiba, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Chiba University, Chiba-city, Chiba, Japan
| | - Kentaro Kosaka
- Department of Plastic Surgery, Chiba University, Chiba-city, Chiba, Japan
| | - Hideyuki Ogata
- Department of Plastic Surgery, Chiba University, Chiba-city, Chiba, Japan
| | - Akitoshi Nakayama
- Department of Molecular Diagnosis, Chiba University, Chiba-city, Chiba, Japan
| | - Masataka Yokoyama
- Department of Molecular Diagnosis, Chiba University, Chiba-city, Chiba, Japan
| | - Kazutaka Murata
- Department of Molecular Diagnosis, Chiba University, Chiba-city, Chiba, Japan
| | - Shinsuke Akita
- Department of Plastic Surgery, Chiba University, Chiba-city, Chiba, Japan
| | - Motone Kuriyama
- Department of Plastic Surgery, Chiba University, Chiba-city, Chiba, Japan
| | | | - Masayuki Kuroda
- Center for Advanced Medicine, Chiba University, Chiba-city, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University, Chiba-city, Chiba, Japan
| | - Nobuyuki Mitsukawa
- Department of Plastic Surgery, Chiba University, Chiba-city, Chiba, Japan
| |
Collapse
|
19
|
Zaganjor E, Yoon H, Spinelli JB, Nunn ER, Laurent G, Keskinidis P, Sivaloganathan S, Joshi S, Notarangelo G, Mulei S, Chvasta MT, Tucker SA, Kalafut K, van de Ven RAH, Clish CB, Haigis MC. SIRT4 is an early regulator of branched-chain amino acid catabolism that promotes adipogenesis. Cell Rep 2021; 36:109345. [PMID: 34260923 DOI: 10.1016/j.celrep.2021.109345] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/23/2020] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Upon nutrient stimulation, pre-adipocytes undergo differentiation to transform into mature adipocytes capable of storing nutrients as fat. We profiled cellular metabolite consumption to identify early metabolic drivers of adipocyte differentiation. We find that adipocyte differentiation raises the uptake and consumption of numerous amino acids. In particular, branched-chain amino acid (BCAA) catabolism precedes and promotes peroxisome proliferator-activated receptor gamma (PPARγ), a key regulator of adipogenesis. In early adipogenesis, the mitochondrial sirtuin SIRT4 elevates BCAA catabolism through the activation of methylcrotonyl-coenzyme A (CoA) carboxylase (MCCC). MCCC supports leucine oxidation by catalyzing the carboxylation of 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA. Sirtuin 4 (SIRT4) expression is decreased in adipose tissue of numerous diabetic mouse models, and its expression is most correlated with BCAA enzymes, suggesting a potential role for SIRT4 in adipose pathology through the alteration of BCAA metabolism. In summary, this work provides a temporal analysis of adipocyte differentiation and uncovers early metabolic events that stimulate transcriptional reprogramming.
Collapse
Affiliation(s)
- Elma Zaganjor
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| | - Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica B Spinelli
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth R Nunn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Gaëlle Laurent
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Paulina Keskinidis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Suganja Sivaloganathan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Giulia Notarangelo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stacy Mulei
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mathew T Chvasta
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah A Tucker
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Krystle Kalafut
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robert A H van de Ven
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Douglas TD, Newby LK, Eckstrand J, Wixted D, Singh RH. Lipid changes in the metabolome of a single case study with maple syrup urine disease (MSUD) after five days of improved diet adherence of controlled branched-chain amino acids (BCAA). Mol Genet Metab Rep 2020; 25:100651. [PMID: 33088714 PMCID: PMC7567947 DOI: 10.1016/j.ymgmr.2020.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 11/19/2022] Open
Abstract
Background Distinguishing systemic metabolic disruptions in maple syrup urine disease (MSUD) beyond amino acid pathways is under-investigated, yet important to understanding disease pathology and treatment options. Methods An adolescent female (15 years) with MSUD without liver transplant, attended 2 study visits, 5 days apart. Medical diet adherence was determined based on her 3-day diet records and plasma branched-chain amino acid (BCAA) concentrations at both study visits. Plasma from a single age- and sex-matched control (MURDOCK Study, Duke University) and the case patient were analyzed with UPLC/MS/MS for intensity (m/z), annotated, and normalized against a median of 1 (Metabolon, Morrisville NC). Differences between case/control and 5-day comparisons were defined as ≥ ǀ 0.5 ǀ. Results 434 lipid metabolites were identified across samples; 90 (20.7%) were higher and 120 (27.6%) lower in the MSUD case at baseline compared with control. By study visit 2, plasma BCAA had declined, while 48 (53%) of elevated lipids and 14 (11.7%) of lower lipid values had moved to within ǀ 0.5 ǀ of control. Most shifts towards control by day 5 were seen in long-chain fatty acid intermediates (42%) and acylcarnitines (32%). Although androgenic (28%) and bile acid (23%) metabolites increased towards control, neither reached control level by day 5. Discussion This comparative metabolomics study in a single MSUD case and healthy control suggests intrinsic differences in MSUD lipid metabolism potentially influenced by therapeutic diet. Findings suggest influences on hormone regulation, fatty acid oxidation, and bile acid synthesis, but further studies are needed to confirm an association between MSUD and lipid dysregulation. Synopsis Within 5 days of improved dietary adherence, a single MSUD case experienced substantial changes in lipid markers potentially related to changes in plasma branched-chain amino acids.
Collapse
Affiliation(s)
- Teresa D. Douglas
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Corresponding author.
| | - L. Kristin Newby
- Duke Clinical and Translational Science Institute (CTSI), Duke University School of Medicine, Durham, NC, USA
| | - Julie Eckstrand
- Duke Clinical and Translational Science Institute (CTSI), Duke University School of Medicine, Durham, NC, USA
| | - Douglas Wixted
- Duke Clinical and Translational Science Institute (CTSI), Duke University School of Medicine, Durham, NC, USA
| | - Rani H. Singh
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Gebreab KY, Eeza MNH, Bai T, Zuberi Z, Matysik J, O'Shea KE, Alia A, Berry JP. Comparative toxicometabolomics of perfluorooctanoic acid (PFOA) and next-generation perfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114928. [PMID: 32540561 DOI: 10.1016/j.envpol.2020.114928] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/08/2020] [Accepted: 05/31/2020] [Indexed: 05/09/2023]
Abstract
Owing to environmental health concerns, a number of per- and polyfluoroalkyl substances (PFAS) have been phased-out, and increasingly replaced by various chemical analogs. Most prominent among these replacements are numerous perfluoroether carboxylic acids (PFECA). Toxicity, and environmental health concerns associated with these next-generation PFAS, however, remains largely unstudied. The zebrafish embryo was employed, in the present study, as a toxicological model system to investigate toxicity of a representative sample of PFECA, alongside perfluorooctanoic acid (PFOA) as one of the most widely used, and best studied, of the "legacy" PFAS. In addition, high-resolution magic angle spin (HRMAS) NMR was utilized for metabolic profiling of intact zebrafish embryos in order to characterize metabolic pathways associated with toxicity of PFAS. Acute embryotoxicity (i.e., lethality), along with impaired development, and variable effects on locomotory behavior, were observed for all PFAS in the zebrafish model. Median lethal concentration (LC50) was significantly correlated with alkyl chain-length, and toxic concentrations were quantitatively similar to those reported previously for PFAS. Metabolic profiling of zebrafish embryos exposed to selected PFAS, specifically including PFOA and two representative PFECA (i.e., GenX and PFO3TDA), enabled elaboration of an integrated model of the metabolic pathways associated with toxicity of these representative PFAS. Alterations of metabolic profiles suggested targeting of hepatocytes (i.e., hepatotoxicity), as well as apparent modulation of neural metabolites, and moreover, were consistent with a previously proposed role of mitochondrial disruption and peroxisome proliferator-activated receptor (PPAR) activation as reflected by dysfunctions of carbohydrate, lipid and amino acid metabolism, and consistent with a previously proposed contribution of PFAS to metabolic syndrome. Taken together, it was generally concluded that toxicity of PFECA is quantitatively and qualitatively similar to PFOA, and these analogs, likewise, represent potential concerns as environmental toxicants.
Collapse
Affiliation(s)
- Kiflom Y Gebreab
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Tianyu Bai
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Zain Zuberi
- The School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333, Leiden, the Netherlands
| | - John P Berry
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| |
Collapse
|
22
|
Nilsen MS, Jersin RÅ, Ulvik A, Madsen A, McCann A, Svensson PA, Svensson MK, Nedrebø BG, Gudbrandsen OA, Tell GS, Kahn CR, Ueland PM, Mellgren G, Dankel SN. 3-Hydroxyisobutyrate, A Strong Marker of Insulin Resistance in Type 2 Diabetes and Obesity That Modulates White and Brown Adipocyte Metabolism. Diabetes 2020; 69:1903-1916. [PMID: 32586980 PMCID: PMC7968520 DOI: 10.2337/db19-1174] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Circulating branched-chain amino acids (BCAAs) associate with insulin resistance and type 2 diabetes. 3-Hydroxyisobutyrate (3-HIB) is a catabolic intermediate of the BCAA valine. In this study, we show that in a cohort of 4,942 men and women, circulating 3-HIB is elevated according to levels of hyperglycemia and established type 2 diabetes. In complementary cohorts with measures of insulin resistance, we found positive correlates for circulating 3-HIB concentrations with HOMA2 of insulin resistance, as well as a transient increase in 3-HIB followed by a marked decrease after bariatric surgery and weight loss. During differentiation, both white and brown adipocytes upregulate BCAA utilization and release increasing amounts of 3-HIB. Knockdown of the 3-HIB-forming enzyme 3-hydroxyisobutyryl-CoA hydrolase decreases release of 3-HIB and lipid accumulation in both cell types. Conversely, addition of 3-HIB to white and brown adipocyte cultures increases fatty acid uptake and modulated insulin-stimulated glucose uptake in a time-dependent manner. Finally, 3-HIB treatment decreases mitochondrial oxygen consumption and generation of reactive oxygen species in white adipocytes, while increasing these measures in brown adipocytes. Our data establish 3-HIB as a novel adipocyte-derived regulator of adipocyte subtype-specific functions strongly linked to obesity, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Mona S Nilsen
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Regine Å Jersin
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | | | - André Madsen
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Bjørn G Nedrebø
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haugesund Hospital, Haugesund, Norway
| | | | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - C R Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
23
|
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020; 9:E1638. [PMID: 32650421 PMCID: PMC7408116 DOI: 10.3390/cells9071638] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Fougerat
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Alexandra Montagner
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Walter Wahli
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Ye G, Gao H, Huang Q, Lin Y, Liao X, Zhang H, Yang BC. Metabolomic Characterization of Metabolic Disturbances in the Extracellular Microenvironment of Oleate-Treated Macrophages Using Gas Chromatography–Mass Spectrometry. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1750623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Guozhu Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Han Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Bi-cheng Yang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Festuccia WT. Regulation of Adipocyte and Macrophage Functions by mTORC1 and 2 in Metabolic Diseases. Mol Nutr Food Res 2020; 65:e1900768. [DOI: 10.1002/mnfr.201900768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- William T. Festuccia
- Department of Physiology and Biophysics Institute of Biomedical Sciences University of Sao Paulo Sao Paulo 05508000 Brazil
| |
Collapse
|
26
|
Moreira RJ, Castro É, Oliveira TE, Belchior T, Peixoto AS, Chaves-Filho AB, Moreno MF, Lima JD, Yoshinaga M, Miyamoto S, Morais MRPT, Zorn TMT, Cogliati B, Iwai LK, Palmisano G, Cabral FJ, Festuccia W. Lipoatrophy-Associated Insulin Resistance and Hepatic Steatosis are Attenuated by Intake of Diet Rich in Omega 3 Fatty Acids. Mol Nutr Food Res 2020; 64:e1900833. [PMID: 31978277 DOI: 10.1002/mnfr.201900833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Indexed: 02/06/2023]
Abstract
SCOPE Glucose homeostasis and progression of nonalcoholic fatty liver disease (NAFLD) and hepatomegaly in severe lipoatrophic mice and their modulation by intake of a diet rich in omega 3 (n-3) fatty acids (HFO) are evaluated. METHODS AND RESULTS Severe lipoatrophic mice induced by PPAR-γ deletion exclusively in adipocytes (A-PPARγ KO) and littermate controls (A-PPARγ WT) are evaluated for glucose homeostasis and liver mass, proteomics, lipidomics, inflammation, and fibrosis. Lipoatrophic mice are heavier than controls, severely glucose intolerant, and hyperinsulinemic, and develop NAFLD characterized by increased liver glycogen, triacylglycerol, and diacylglycerol contents, mitotic index, apoptosis, inflammation, steatosis score, fibrosis, and fatty acid synthase (FAS) content and activity. Lipoatrophic mice also display liver enrichment with monounsaturated in detriment of polyunsaturated fatty acids including n-3 fatty acids, and increased content of cardiolipin, a tetracyl phospholipid exclusively found at the mitochondria inner membrane. Administration of a high-fat diet rich in n-3 fatty acids (HFO) to lipoatrophic mice enriches liver with n-3 fatty acids, reduces hepatic steatosis, FAS content and activity, apoptosis, inflammation, and improves glucose homeostasis. CONCLUSION Diet enrichment with n-3 fatty acids improves glucose homeostasis and reduces liver steatosis and inflammation without affecting hepatomegaly in severe lipoatrophic mice.
Collapse
Affiliation(s)
- Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Marcos Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Mychel R P T Morais
- Department of Cell Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Telma M T Zorn
- Department of Cell Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508010, Brazil
| | - Leo K Iwai
- Special Laboratory of Applied Toxicology, Center of Toxins, Immune-response and Cell Signaling (LETA/ CeTICS), Butantan Institute, São Paulo, 05503400, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | | | - William Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| |
Collapse
|
27
|
Fang D, Shi X, Lu T, Ruan H, Gao Y. The glycoprotein follistatin-like 1 promotes brown adipose thermogenesis. Metabolism 2019; 98:16-26. [PMID: 31132382 DOI: 10.1016/j.metabol.2019.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The thermogenic brown adipose tissue (BAT) has been proposed as a potential target to prevent or treat obesity and related metabolic diseases. BAT secretes adipokines to regulate the thermogenic program in an autocrine or paracrine manner. Follistatin-like 1 (FSTL1), a glycoprotein involved in adipogenesis and obesity, however, the function of FSTL1 in BAT thermogenesis and in the regulation of systemic energy homeostasis are not fully understood. METHODS Whole-body ablation Fstl1 heterozygous mice (Fstl1+/-) and its littermates control were injected with CL316,243 to assess energy balance. A series of FSTL1 overexpression and knockdown experiments were carried out to evaluate its function in regulating thermogenic gene expression in brown adipocytes. RESULTS FSTL1 expression was induced upon BAT activation during cold challenge or β3-adrenergic activation. FSTL1 haploinsufficiency in mice led to reduced thermogenic gene expression, impaired BAT recruitment, and decreased heat production. FSTL1 cell-autonomously promoted the β3-adrenergic signaling, which was required to upregulate PPARγ and UCP1 in brown adipocytes. Furthermore, only glycosylated FSTL1 could be secreted from brown adipocytes to induce the β3-adrenergic activation. CONCLUSIONS Our results suggest FSTL1 as a novel stimulator of the β-adrenergic signaling and BAT thermogenesis.
Collapse
Affiliation(s)
- Dongliang Fang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinyi Shi
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Haibin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
28
|
Kawaguchi T, Torimura T. Branched chain amino acids: A factor for zone 3 steatosis in non-alcoholic fatty liver disease. Hepatol Res 2019; 49:841-843. [PMID: 31260576 DOI: 10.1111/hepr.13402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
29
|
Boutari C, Polyzos SA, Mantzoros CS. Of mice and men: Why progress in the pharmacological management of obesity is slower than anticipated and what could be done about it? Metabolism 2019; 96:vi-xi. [PMID: 30910448 DOI: 10.1016/j.metabol.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, Aristotle University, Hippokration Hospital, Thessaloniki, Greece; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
30
|
Biswas D, Duffley L, Pulinilkunnil T. Role of branched‐chain amino acid–catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J 2019; 33:8711-8731. [DOI: 10.1096/fj.201802842rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dipsikha Biswas
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Luke Duffley
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| |
Collapse
|