1
|
Chen CH, Chen WH, Hsu CP, Lee TS. Atypical antipsychotics impair the lipid-lowering and pleiotropic effects of simvastatin via activation of the ADMA-NOX-ROS pathway. Biomed Pharmacother 2025; 185:117958. [PMID: 40058152 DOI: 10.1016/j.biopha.2025.117958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/23/2025] Open
Abstract
Patients with schizophrenia receiving atypical antipsychotics have an increased risk of metabolic syndrome; however, the efficacy of statins in mitigating cardiovascular risks in these patients remains unclear. This study examined the effects of typical and atypical antipsychotics on the lipid-lowering efficacy of statins in schizophrenia patients and investigated the underlying mechanisms of simvastatin action in hepatocytes and endothelial cells (ECs). A retrospective analysis revealed that statins were less effective in lowering LDL levels in patients on atypical antipsychotics. In vitro, olanzapine attenuated the beneficial effects of simvastatin in hepatocytes and ECs. Mechanistically, olanzapine downregulated dimethylarginine dimethylaminohydrolase 1 (DDAH1) and/or DDAH2, leading to elevated asymmetric dimethylarginine (ADMA) levels in both cell types. In hepatocytes, olanzapine suppressed low-density lipoprotein receptor (LDLR) expression and reduced LDL binding by activating the NOX-ROS pathway via PPARγ-PCSK9- and LXRα-IDOL-dependent signaling. Inhibition of the NOX-ROS pathway restored LDLR expression, LDL binding, and the lipid-lowering effects of simvastatin. In ECs, olanzapine impaired simvastatin-induced nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) phosphorylation through NOX-ROS pathway activation. Blocking this pathway reversed eNOS inhibition, restoring the endothelial benefits of simvastatin. Collectively, atypical antipsychotics impair statin efficacy in schizophrenia patients by activating the ADMA-NOX-ROS pathway, which downregulates LDLR in hepatocytes and inhibits eNOS activity in ECs. These findings underscore the need for tailored cardiovascular risk management strategies and identify potential molecular targets to enhance statin effectiveness in patients on atypical antipsychotics.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hua Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Po Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Zheng Y, Shao M, Zheng Y, Sun W, Qin S, Sun Z, Zhu L, Guan Y, Wang Q, Wang Y, Li L. PPARs in atherosclerosis: The spatial and temporal features from mechanism to druggable targets. J Adv Res 2025; 69:225-244. [PMID: 38555000 PMCID: PMC11954843 DOI: 10.1016/j.jare.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic and complex disease caused by lipid disorder, inflammation, and other factors. It is closely related to cardiovascular diseases, the chief cause of death globally. Peroxisome proliferator-activated receptors (PPARs) are valuable anti-atherosclerosis targets that showcase multiple roles at different pathological stages of atherosclerosis and for cell types at different tissue sites. AIM OF REVIEW Considering the spatial and temporal characteristics of the pathological evolution of atherosclerosis, the roles and pharmacological and clinical studies of PPARs were summarized systematically and updated under different pathological stages and in different vascular cells of atherosclerosis. Moreover, selective PPAR modulators and PPAR-pan agonists can exert their synergistic effects meanwhile reducing the side effects, thereby providing novel insight into future drug development for precise spatial-temporal therapeutic strategy of anti-atherosclerosis targeting PPARs. KEY SCIENTIFIC Concepts of Review: Based on the spatial and temporal characteristics of atherosclerosis, we have proposed the importance of stage- and cell type-dependent precision therapy. Initially, PPARs improve endothelial cells' dysfunction by inhibiting inflammation and oxidative stress and then regulate macrophages' lipid metabolism and polarization to improve fatty streak. Finally, PPARs reduce fibrous cap formation by suppressing the proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, research on the cell type-specific mechanisms of PPARs can provide the foundation for space-time drug treatment. Moreover, pharmacological studies have demonstrated that several drugs or compounds can exert their effects by the activation of PPARs. Selective PPAR modulators (that specifically activate gene subsets of PPARs) can exert tissue and cell-specific effects. Furthermore, the dual- or pan-PPAR agonist could perform a better role in balancing efficacy and side effects. Therefore, research on cells/tissue-specific activation of PPARs and PPAR-pan agonists can provide the basis for precision therapy and drug development of PPARs.
Collapse
Affiliation(s)
- Yi Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ziwei Sun
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Gaiaschi L, Priori EC, Mensi MM, Verri M, Buonocore D, Parisi S, Hernandez LNQ, Brambilla I, Ferrari B, De Luca F, Gola F, Rancati G, Capone L, Andriulo A, Visonà SD, Marseglia GL, Borgatti R, Bottone MG. New perspectives on the role of biological factors in anorexia nervosa: Brain volume reduction or oxidative stress, which came first? Neurobiol Dis 2024; 199:106580. [PMID: 38942323 DOI: 10.1016/j.nbd.2024.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Anorexia nervosa (AN) is an eating disorder (ED) that has seen an increase in its incidence in the last thirty years. Compared to other psychosomatic disorders, ED can be responsible for many major medical complications, moreover, in addition to the various systemic impairments, patients with AN undergo morphological and physiological changes affecting the cerebral cortex. Through immunohistochemical studies on portions of postmortem human brain of people affected by AN and healthy individuals, and western blot studies on leucocytes of young patients and healthy controls, this study investigated the role in the afore-mentioned processes of altered redox state. The results showed that the brain volume reduction in AN could be due to an increase in the rate of cell death, mainly by apoptosis, in which mitochondria, main cellular organelles affected by a decreased dietary intake, and a highly compromised intracellular redox balance, may play a pivotal role.
Collapse
Affiliation(s)
- Ludovica Gaiaschi
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Erica Cecilia Priori
- Laboratory of Neurophysiology and Integrated Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Martina Maria Mensi
- Department of Sciences of the Nervous System and of Behavior, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Manuela Verri
- Laboratory of Pharmacology and Toxicology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Daniela Buonocore
- Laboratory of Pharmacology and Toxicology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Sandra Parisi
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Lilian Nathalie Quintero Hernandez
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ilaria Brambilla
- Department of Clinical surgical diagnostic and pediatric sciences, Foundation IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Beatrice Ferrari
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Federica Gola
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giulia Rancati
- High-Complexity Rehabilitation Unit, "Casa di Cura Villa Esperia", Viale dei Salici 35, 27052 Godiasco PV, Italy
| | - Luca Capone
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Adele Andriulo
- High-Complexity Rehabilitation Unit, "Casa di Cura Villa Esperia", Viale dei Salici 35, 27052 Godiasco PV, Italy
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Clinical surgical diagnostic and pediatric sciences, Foundation IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Renato Borgatti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Maria Grazia Bottone
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
4
|
Hsu JCN, Tseng HW, Chen CH, Lee TS. Transient receptor potential vanilloid 1 interacts with Toll-like receptor 4 (TLR4)/cluster of differentiation 14 (CD14) signaling pathway in lipopolysaccharide-mediated inflammation in macrophages. Exp Anim 2024; 73:336-346. [PMID: 38508727 PMCID: PMC11254490 DOI: 10.1538/expanim.23-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/16/2024] [Indexed: 03/22/2024] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a ligand-gated cation channel, is a receptor for vanilloids on sensory neurons and is also activated by capsaicin, heat, protons, arachidonic acid metabolites, and inflammatory mediators on neuronal or non-neuronal cells. However, the role of the TRPV1 receptor in pro-inflammatory cytokine secretion and its potential regulatory mechanisms in lipopolysaccharide (LPS)-induced inflammation has yet to be entirely understood. To investigate the role and regulatory mechanism of the TRPV1 receptor in regulating LPS-induced inflammatory responses, bone marrow-derived macrophages (BMDMs) harvested from wild-type (WT) and TRPV1 deficient (Trpv1-/-) mice were used as the cell model. In WT BMDMs, LPS induced an increase in the levels of tumor necrosis factor-α, IL-1β, inducible nitric oxide synthase, and nitric oxide, which were attenuated in Trpv1-/- BMDMs. Additionally, the phosphorylation of inhibitor of nuclear factor kappa-Bα and mitogen-activated protein kinases, as well as the translocation of nuclear factor kappa-B and activator protein 1, were all decreased in LPS-treated Trpv1-/- BMDMs. Immunoprecipitation assay revealed that LPS treatment increased the formation of TRPV1-Toll-like receptor 4 (TLR4)-cluster of differentiation 14 (CD14) complex in WT BMDMs. Genetic deletion of TRPV1 in BMDMs impaired the LPS-triggered immune-complex formation of TLR4, myeloid differentiation protein 88, and interleukin-1 receptor-associated kinase, all of which are essential regulators in LPS-induced activation of the TLR4 signaling pathway. Moreover, genetic deletion of TRPV1 prevented the LPS-induced lethality and pro-inflammatory production in mice. In conclusion, the TRPV1 receptor may positively regulate the LPS-mediated inflammatory responses in macrophages by increasing the interaction with the TLR4-CD14 complex and activating the downstream signaling cascade.
Collapse
Affiliation(s)
- Julia Chu-Ning Hsu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145, Xingda Road, South District, Taichung 402202, Taiwan
| | - Hsu-Wen Tseng
- Department of Physiology, School of Medicine, National Yang-Ming University, 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, 1, Sec. 1, Jen-Ai Road, Taipei 100233, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, 1, Sec. 1, Jen-Ai Road, Taipei 100233, Taiwan
| |
Collapse
|
5
|
Wen SY, Zhi X, Liu HX, Wang X, Chen YY, Wang L. Is the suppression of CD36 a promising way for atherosclerosis therapy? Biochem Pharmacol 2024; 219:115965. [PMID: 38043719 DOI: 10.1016/j.bcp.2023.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Atherosclerosis is the main underlying pathology of many cardiovascular diseases and is marked by plaque formation in the artery wall. It has posed a serious threat to the health of people all over the world. CD36 acts as a significant regulator of lipid homeostasis, which is closely associated with the onset and progression of atherosclerosis and may be a new therapeutic target. The abnormal overexpression of CD36 facilitates lipid accumulation, foam cell formation, inflammation, endothelial apoptosis, and thrombosis. Numerous natural products and lipid-lowering agents are found to target the suppression of CD36 or inhibit the upregulation of CD36 to prevent and treat atherosclerosis. Here, the structure, expression regulation and function of CD36 in atherosclerosis and its related pharmacological therapies are reviewed. This review highlights the importance of drugs targeting CD36 suppression in the treatment and prevention of atherosclerosis, in order to develop new therapeutic strategies and potential anti-atherosclerotic drugs both preclinically and clinically.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhi
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hai-Xin Liu
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
6
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
7
|
Guo X, Li B, Wen C, Zhang F, Xiang X, Nie L, Chen J, Mao L. TREM2 promotes cholesterol uptake and foam cell formation in atherosclerosis. Cell Mol Life Sci 2023; 80:137. [PMID: 37133566 PMCID: PMC11071710 DOI: 10.1007/s00018-023-04786-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
Disordered lipid accumulation in the arterial wall is a hallmark of atherosclerosis. Previous studies found that the expression of triggering receptor expressed on myeloid cells 2 (TREM2), a transmembrane receptor of the immunoglobulin family, is increased in mouse atherosclerotic aortic plaques. However, it remains unknown whether TREM2 plays a role in atherosclerosis. Here we investigated the role of TREM2 in atherosclerosis using ApoE knockout (ApoE-/-) mouse models, primary vascular smooth muscle cells (SMCs), and bone marrow-derived macrophages (BMDMs). In ApoE-/- mice, the density of TREM2-positive foam cells in aortic plaques increased in a time-dependent manner after the mice were fed a high-fat diet (HFD). Compared with ApoE-/- mice, the Trem2-/-/ApoE-/- double-knockout mice showed significantly reduced atherosclerotic lesion size, foam cell number, and lipid burden degree in plaques after HFD feeding. Overexpression of TREM2 in cultured vascular SMCs and macrophages exacerbates lipid influx and foam cell formation by upregulating the expression of the scavenger receptor CD36. Mechanistically, TREM2 inhibits the phosphorylation of p38 mitogen-activated protein kinase and peroxisome proliferator activated-receptor gamma (PPARγ), thereby increasing PPARγ nuclear transcriptional activity and subsequently promoting the transcription of CD36. Our results indicate that TREM2 exacerbates atherosclerosis development by promoting SMC- and macrophage-derived foam cell formation by regulating scavenger receptor CD36 expression. Thus, TREM2 may act as a novel therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bowei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuying Xiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaojiao Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Fan FS. Small-interfering RNA targeting proprotein convertase subtilisin/kexin type 9 might promote fatty liver disease and hepatocellular carcinoma through upregulation of CD36. Tumour Biol 2023; 45:73-80. [PMID: 37694331 DOI: 10.3233/tub-230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipoprotein (LDL) receptor and fatty acid translocase CD36, inducing lysosomal degradation of these two receptors in the liver cells. Both monoclonal antibody (mAb) and small-interfering RNA (siRNA) targeting PCSK9 have been designed for treatment of familial hypercholesterolemia recently, with elevating LDL receptors on the liver cell surface and increasing LDL uptake as the main beneficial mechanism. However, given that the binding domains of PCSK9 for LDL receptor and CD36 are different, and PCSK9 mAb only attacks the domain for LDL receptor, CD36 expression remains partially controlled under PCSK9 mAb treatment. In contrast, PCSK9 siRNA brings on complete loss of PCSK9, resulting in overexpression of CD36. Based on the fact that CD36 is a key factor in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and subsequent hepatocellular carcinoma (HCC), the risk of developing NAFLD and HCC on long-term use of PCSK9 siRNA is thus raised as a hypothesis. Additionally, because CD36 is also involved in the promotion of malignant diseases other than HCC, such as acute myeloid leukemia, gastric cancer, breast cancer, and colorectal cancer, the speculative danger of flourishing these malignancies by PCSK9 siRNA is discussed as well.
Collapse
Affiliation(s)
- Frank S Fan
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
9
|
Chen CH, Hsia CC, Hu PA, Yeh CH, Chen CT, Peng CL, Wang CH, Lee TS. Bromelain Ameliorates Atherosclerosis by Activating the TFEB-Mediated Autophagy and Antioxidant Pathways. Antioxidants (Basel) 2022; 12:72. [PMID: 36670934 PMCID: PMC9855131 DOI: 10.3390/antiox12010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Bromelain, a cysteine protease found in pineapple, has beneficial effects in the treatment of inflammatory diseases; however, its effects in cardiovascular pathophysiology are not fully understood. We investigated the effect of bromelain on atherosclerosis and its regulatory mechanisms in hyperlipidemia and atheroprone apolipoprotein E-null (apoe-/-) mice. Bromelain was orally administered to 16-week-old male apoe-/- mice for four weeks. Daily bromelain administration decreased hyperlipidemia and aortic inflammation, leading to atherosclerosis retardation in apoe-/- mice. Moreover, hepatic lipid accumulation was decreased by the promotion of cholesteryl ester hydrolysis and autophagy through the AMP-activated protein kinase (AMPK)/transcription factor EB (TFEB)-mediated upregulation of autophagy- and antioxidant-related proteins. Moreover, bromelain decreased oxidative stress by increasing the antioxidant capacity and protein expression of antioxidant proteins while downregulating the protein expression of NADPH oxidases and decreasing the production of reactive oxygen species. Therefore, AMPK/TFEB signaling may be crucial in bromelain-mediated anti-hyperlipidemia, antioxidant, and anti-inflammatory effects, effecting the amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chien-Chung Hsia
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Po-An Hu
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chung-Hsin Yeh
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Chun-Tang Chen
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Cheng-Liang Peng
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Chih-Hsien Wang
- Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 10051, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
10
|
Li Y, Huang X, Yang G, Xu K, Yin Y, Brecchia G, Yin J. CD36 favours fat sensing and transport to govern lipid metabolism. Prog Lipid Res 2022; 88:101193. [PMID: 36055468 DOI: 10.1016/j.plipres.2022.101193] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/26/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
CD36, located on the cell membrane, transports fatty acids in response to dietary fat. It is a critical fatty acid sensor and regulator of lipid metabolism. The interaction between CD36 and lipid dysmetabolism and obesity has been identified in various models and human studies. Nevertheless, the mechanisms by which CD36 regulates lipid metabolism and the role of CD36 in metabolic diseases remain obscure. Here, we summarize the latest research on the role of membrane CD36 in fat metabolism, with emphasis on CD36-mediated fat sensing and transport. This review also critically discusses the factors affecting the regulation of CD36-mediated fat dysfunction. Finally, we review previous clinical evidence of CD36 in metabolic diseases and consider the path forward.
Collapse
Affiliation(s)
- Yunxia Li
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Kang Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 26900 Lodi, Italy
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China.
| |
Collapse
|
11
|
Miao G, Zhao X, Chan SL, Zhang L, Li Y, Zhang Y, Zhang L, Wang B. Vascular smooth muscle cell c-Fos is critical for foam cell formation and atherosclerosis. Metabolism 2022; 132:155213. [PMID: 35513168 DOI: 10.1016/j.metabol.2022.155213] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hyperlipidemia-induced vascular smooth muscle cell (VSMC)-derived foam cell formation is considered a crucial event in the development of atherosclerosis. Since c-Fos emerges as a key modulator of lipid metabolism, we investigated whether c-Fos plays a role in hyperlipidemia-induced VSMC-derived foam cell formation and atherosclerosis. APPROACH AND RESULTS c-Fos expression was observed in VSMCs in atherosclerotic plaques from patients and western diet-fed atherosclerosis-prone LDLR-/- and ApoE-/- mice by immunofluorescence staining. To ascertain c-Fos's function in atherosclerosis development, VSMC-specific c-Fos deficient mice in ApoE-/- background were established. Western diet-fed c-FosVSMCKOApoE-/- mice exhibited a significant reduction of atherosclerotic lesion formation as measured by hematoxylin and eosin staining, accompanied by decreased lipid deposition within aortic roots as determined by Oil red O staining. Primary rat VSMCs were isolated to examine the role of c-Fos in lipid uptake and foam cell formation. oxLDL stimulation resulted in VSMC-derived foam cell formation and elevated intracellular mitochondrial reactive oxygen species (mtROS), c-Fos and LOX-1 levels, whereas specific inhibition of mtROS, c-Fos or LOX-1 lessened lipid accumulation in oxLDL-stimulated VSMCs. Mechanistically, oxLDL acts through mtROS to enhance transcription activity of c-Fos to facilitate the expression of LOX-1, exerting a feedforward mechanism with oxLDL to increase lipid uptake and propel VSMC-derived foam cell formation and atherogenesis. CONCLUSION Our study demonstrates a fundamental role of mtROS/c-Fos/LOX-1 signaling pathway in promoting oxLDL uptake and VSMC-derived foam cell formation during atherosclerosis. c-Fos may represent a promising therapeutic target amenable to clinical translation in the future.
Collapse
Affiliation(s)
- Guolin Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
| | - Xi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Siu-Lung Chan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yaohua Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuke Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Beibei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
12
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|
13
|
Guillen-Aguinaga S, Brugos-Larumbe A, Guillen-Aguinaga L, Ortuño F, Guillen-Grima F, Forga L, Aguinaga-Ontoso I. Schizophrenia and Hospital Admissions for Cardiovascular Events in a Large Population: The APNA Study. J Cardiovasc Dev Dis 2022; 9:jcdd9010025. [PMID: 35050235 PMCID: PMC8778060 DOI: 10.3390/jcdd9010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Patients with schizophrenia have higher mortality, with cardiovascular diseases being the first cause of mortality. This study aims to estimate the excess risk of hospital admission for cardiovascular events in schizophrenic patients, adjusting for comorbidity and risk factors. (2) Methods: The APNA study is a dynamic prospective cohort of all residents in Navarra, Spain. A total of 505,889 people over 18 years old were followed for five years. The endpoint was hospital admissions for a cardiovascular event. Direct Acyclic Graphs (DAG) and Cox regression were used. (3) Results: Schizophrenic patients had a Hazard Ratio (HR) of 1.414 (95% CI 1.031–1.938) of hospital admission for a cardiovascular event after adjusting for age, sex, hypertension, type 2 diabetes, dyslipidemia, smoking, low income, obesity, antecedents of cardiovascular disease, and smoking. In non-adherent to antipsychotic treatment schizophrenia patients, the HR was 2.232 (95% CI 1.267–3.933). (4) Conclusions: Patients with schizophrenia have a higher risk of hospital admission for cardiovascular events than persons with the same risk factors without schizophrenia. Primary care nursing interventions should monitor these patients and reduce cardiovascular risk factors.
Collapse
Affiliation(s)
- Sara Guillen-Aguinaga
- Azpilagaña Health Center, Navarra Health Service, 31006 Pamplona, Navarra, Spain;
- Department of Health Sciences, Public University of Navarra (UPNA), 31008 Pamplona, Navarra, Spain; (A.B.-L.); (I.A.-O.)
| | - Antonio Brugos-Larumbe
- Department of Health Sciences, Public University of Navarra (UPNA), 31008 Pamplona, Navarra, Spain; (A.B.-L.); (I.A.-O.)
| | | | - Felipe Ortuño
- Department of Psychiatry, Clinica Universidad de Navarra, 31008 Pamplona, Navarra, Spain;
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain;
| | - Francisco Guillen-Grima
- Department of Health Sciences, Public University of Navarra (UPNA), 31008 Pamplona, Navarra, Spain; (A.B.-L.); (I.A.-O.)
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain;
- Department of Preventive Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Navarra, Spain
- CIBER-OBN, Instituto de Salud Carlos III, 28029 Madrid, Comunidad de Madrid, Spain
- Correspondence: ; Tel.: +34-948-296384
| | - Luis Forga
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain;
- Department of Endocrinology, University Hospital of Navarra, C/Irunlarrea s/n, 31008 Pamplona, Navarra, Spain
| | - Ines Aguinaga-Ontoso
- Department of Health Sciences, Public University of Navarra (UPNA), 31008 Pamplona, Navarra, Spain; (A.B.-L.); (I.A.-O.)
| |
Collapse
|