1
|
Jarullah HH, Saleh ES. Influence of Fatty Acid Desaturase Enzyme-1 Gene (FADS-1) Polymorphism on Serum Polyunsaturated Fatty Acids Levels, Desaturase Enzymes, Lipid Profile, and Glycemic Control Parameters in Newly Diagnosed Diabetic Mellitus Patients. Int J Mol Sci 2025; 26:4015. [PMID: 40362254 PMCID: PMC12071304 DOI: 10.3390/ijms26094015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/09/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disorder caused by impaired insulin secretion from pancreatic β-cells and insulin resistance in target tissues. Genome-wide association studies have identified over 50 genetic variants linked to T2DM, including polymorphisms associated with the disease. This study investigates the impact of the FADS1 (rs174547) polymorphism in T2DM patients compared to healthy controls and examines serum levels of omega-3 and omega-6 fatty acids, as well as D5D and D6D enzyme levels and activity. This case-control study included 120 participants: 60 newly diagnosed T2DM patients and 60 apparently healthy controls matched for age, sex, and other sociodemographic factors. Polyunsaturated fatty acid (PUFA) levels and desaturase enzyme activities in the n-3 and n-6 pathways were assessed using ELISA and gas chromatography. FADS1 gene polymorphisms were analyzed via Sanger sequencing. Genotype and allele frequencies of FADS1 (rs174547) differed significantly between groups, with higher frequencies of C-containing alleles in T2DM patients. Multivariate analysis revealed a significant association between the C-allele genotype and increased T2DM risk, independent of sociodemographic variables, lipid profile, and inflammatory markers. In conclusion; reduced serum levels of omega-3 and omega-6 fatty acids in T2DM were associated with decreased desaturase enzyme activity. The FADS1 (rs174547) polymorphism is significantly associated with T2DM risk, with the minor allele linked to lower desaturase activity.
Collapse
Affiliation(s)
- Hayder Huwais Jarullah
- Department of Clinical Laboratory Science, College of Pharmacy, University of Baghdad, Baghdad 10047, Iraq;
| | | |
Collapse
|
2
|
Li C, Cao H, Ren Y, Jia J, Yang G, Jin J, Shi X. Eicosapentaenoic acid-mediated activation of PGAM2 regulates skeletal muscle growth and development via the PI3K/AKT pathway. Int J Biol Macromol 2024; 268:131547. [PMID: 38641281 DOI: 10.1016/j.ijbiomac.2024.131547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chenchen Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yingchun Ren
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jinrui Jia
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Lair B, Lac M, Frassin L, Brunet M, Buléon M, Feuillet G, Maslo C, Marquès M, Monbrun L, Bourlier V, Montastier E, Viguerie N, Tavernier G, Laurens C, Moro C. Common mouse models of chronic kidney disease are not associated with cachexia. Commun Biol 2024; 7:346. [PMID: 38509307 PMCID: PMC10954638 DOI: 10.1038/s42003-024-06021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models. The most striking finding is that weight loss is largely driven by reduced food intake which promotes rapid loss of lean and fat mass. However, in both models, mice catch up weight and lean mass a few days after the surgery or when they are switched back to standard chow diet. Muscle force and mass are fully recovered and no sign of cachexia is observed. Our data demonstrate that the time-course of kidney failure and weight loss are unrelated in these common CKD models. These data highlight the need to reconsider the relative contribution of direct and indirect mechanisms to muscle wasting observed in CKD.
Collapse
Affiliation(s)
- Benjamin Lair
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marlène Lac
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Lucas Frassin
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Manon Brunet
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marie Buléon
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Guylène Feuillet
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Claire Maslo
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marie Marquès
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Laurent Monbrun
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Virginie Bourlier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Emilie Montastier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Nathalie Viguerie
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Geneviève Tavernier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Claire Laurens
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Cedric Moro
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France.
| |
Collapse
|
4
|
Wang L, Huang X, Sun M, Zheng T, Zheng L, Lin X, Ruan J, Lin F. New light on ω-3 polyunsaturated fatty acids and diabetes debate: a population pharmacokinetic-pharmacodynamic modelling and intake threshold study. Nutr Diabetes 2024; 14:8. [PMID: 38438344 PMCID: PMC10912742 DOI: 10.1038/s41387-024-00262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
OBJECTIVE ω-3 polyunsaturated fatty acids (PUFA) are a key modifiable factor in the intervention of type 2 diabetes, yet recommendations for dietary consumption of ω-3 PUFA in type 2 diabetes remain ambiguous and controversial. Here, we revisit the subject in the light of population pharmacokinetic-pharmacodynamic (PPK-PD) modeling and propose a threshold for intake. RESEARCH DESIGN AND METHODS Plasma levels of ω-3 PUFA and glycosylated hemoglobin (HbA1c) were measured as pharmacokinetic and pharmacodynamic indicator, respectively. The nonlinear mixed effect analysis was used to construct a PPK-PD model for ω-3 PUFA and to quantify the effects of FADS gene polymorphism, age, liver and kidney function, and other covariables. RESULTS Data from 161 patients with type 2 diabetes in the community were modeled in a two-compartment model with primary elimination, and HDL was a statistically significant covariate. The simulation results showed that HbA1c showed a dose-dependent decrease of ω-3 PUFA plasma level. A daily intake of ω-3 PUFA at 0.4 g was sufficient to achieve an HbA1c level of 7% in more than 95% of patients. CONCLUSIONS PPK/PD modeling was proposed as a multilevel analytical framework to quantitatively investigate finer aspects of the complex relationship between ω-3 PUFA and type 2 diabetes on genetic and non-genetic influence factors. The results support a beneficial role for ω-3 PUFA in type 2 diabetes and suggested the intake threshold. This new approach may provide insights into the interaction of the two and an understanding of the context in which changes occur.
Collapse
Affiliation(s)
- Ling Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | | | - Mingyao Sun
- Department of Clinical Nutrition, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Tian Zheng
- Department of Clinical Nutrition, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Luyan Zheng
- Department of Clinical Nutrition, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaolan Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Junshan Ruan
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Fan Lin
- Department of Clinical Nutrition, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
5
|
Zhang YH, Liu B, Meng Q, Zhang D, Yang H, Li G, Wang Y, Zhou H, Xu ZX, Wang Y. Targeted changes in blood lipids improves fibrosis in renal allografts. Lipids Health Dis 2023; 22:215. [PMID: 38049842 PMCID: PMC10694909 DOI: 10.1186/s12944-023-01978-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Chronic interstitial fibrosis is the primary barrier against the long-term survival of transplanted kidneys. Extending the lifespan of allografts is vital for ensuring the long-term health of patients undergoing kidney transplants. However, few targets and their clinical applications have been identified. Moreover, whether dyslipidemia facilitates fibrosis in renal allograft remains unclear. METHODS Blood samples were collected from patients who underwent kidney transplantation. Correlation analyses were conducted between the Banff score and body mass index, and serum levels of triacylglycerol, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. A rat model of renal transplantation was treated with the lipid-lowering drug, fenofibrate, and kidney fibrosis levels were determined by histochemical staining. Targeted metabolomic detection was conducted in blood samples from patients who underwent kidney transplantation and were divided into fibrotic and non-fibrotic groups. Rats undergoing renal transplantation were fed either an n-3 or n-6 polyunsaturated fatty acid (PUFA)-enriched diet. Immunohistochemical and Masson's trichrome staining were used to determine the degree of fibrosis. RESULTS Hyperlipidemia was associated with fibrosis development. Treatment with fenofibrate contributed to improve fibrosis in a rat model of renal transplantation. Moreover, n-3 PUFAs from fibrotic group showed significant downregulation compared to patients without fibrotic renal allografts, and n-3 PUFAs-enriched diet contributed to delayed fibrosis in a rat model of renal transplantation. CONCLUSIONS This study suggests that hyperlipidemia facilitates fibrosis of renal allografts. Importantly, a new therapeutic approach was provided that may delay chronic interstitial fibrosis in transplanted kidneys by augmenting the n-3 PUFA content in the diet.
Collapse
Affiliation(s)
- Yang-He Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Zhou T, Wang S, Pan Y, Dong X, Wu L, Meng J, Zhang J, Pang Q, Zhang A. Irisin Ameliorated Skeletal Muscle Atrophy by Inhibiting Fatty Acid Oxidation and Pyroptosis Induced by Palmitic Acid in Chronic Kidney Disease. Kidney Blood Press Res 2023; 48:628-641. [PMID: 37717561 PMCID: PMC10614467 DOI: 10.1159/000533926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Protein-energy waste (PEW) is a common complication in patients with chronic kidney disease (CKD), among which skeletal muscle atrophy is one of the most important clinical features of PEW. Pyroptosis is a type of proinflammatory, programmed cell death associated with skeletal muscle disease. Irisin, as a novel myokine, has attracted extensive attention for its protective role in the complications associated with CKD, but its role in muscle atrophy in CKD is unclear. METHODS Palmitic acid (PA)-induced muscular atrophy was evaluated by a reduction in C2C12 myotube diameter. Muscle atrophy model was established in male C57BL/6J mice treated with 0.2% adenine for 4 weeks and then fed a 45% high-fat diet. Blood urea nitrogen and creatinine levels, body and muscle weight, and muscle histology were assessed. The expression of carnitine palmitoyltransferase 1A (CPT1A) and pyroptosis-related protein was analysed by Western blots or immunohistochemistry. The release of IL-1β was detected by enzyme-linked immunosorbent assay. RESULTS In this study, we showed that PA-induced muscular atrophy manifested as a reduction in C2C12 myotube diameter. During this process, PA can also induce pyroptosis, as shown by the upregulation of NLRP3, cleaved caspase-1 and GSDMD-N expression and the increased IL-1β release and PI-positive cell rate. Inhibition of caspase-1 or NLRP3 attenuated PA-induced pyroptosis and myotube atrophy in C2C12 cells. Importantly, irisin treatment significantly ameliorated PA-induced skeletal muscle pyroptosis and atrophy. In terms of mechanism, PA upregulated CPT1A, a key enzyme of fatty acid oxidation (FAO), and irisin attenuated this effect, which was consistent with etomoxir (CPT1A inhibitor) treatment. Moreover, irisin improved skeletal muscle atrophy and pyroptosis in adenine-induced mice by regulating FAO. CONCLUSION Our study firstly verifies that pyroptosis is a novel mechanism of skeletal muscle atrophy in CKD. Irisin ameliorates skeletal muscle atrophy by inhibiting FAO and pyroptosis in CKD, and irisin may be developed as a potential therapeutic agent for the treatment of muscle wasting in CKD patients.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shiyuan Wang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yajing Pan
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Leiyun Wu
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiali Meng
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
8
|
Gortan Cappellari G, Aleksova A, Dal Ferro M, Cannatà A, Semolic A, Guarnaccia A, Zanetti M, Giacca M, Sinagra G, Barazzoni R. n-3 PUFA-Enriched Diet Preserves Skeletal Muscle Mitochondrial Function and Redox State and Prevents Muscle Mass Loss in Mice with Chronic Heart Failure. Nutrients 2023; 15:3108. [PMID: 37513526 PMCID: PMC10383889 DOI: 10.3390/nu15143108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Rationale and Methods: Skeletal muscle derangements, potentially including mitochondrial dysfunction with altered mitochondrial dynamics and high reactive oxygen species (ROS) generation, may lead to protein catabolism and muscle wasting, resulting in low exercise capacity and reduced survival in chronic heart failure (CHF). We hypothesized that 8-week n-3-PUFA isocaloric partial dietary replacement (Fat = 5.5% total cal; EPA + DHA = 27% total fat) normalizes gastrocnemius muscle (GM) mitochondrial dynamics regulators, mitochondrial and tissue pro-oxidative changes, and catabolic derangements, resulting in preserved GM mass in rodent CHF [Myocardial infarction (MI)-induced CHF by coronary artery ligation, left-ventricular ejection fraction <50%]. Results: Compared to control animals (Sham), CHF had a higher GM mitochondrial fission-fusion protein ratio, with low ATP and high ROS production, pro-inflammatory changes, and low insulin signalling. n-3-PUFA normalized all mitochondrial derangements and the pro-oxidative state (oxidized to total glutathione ratio), associated with normalized GM cytokine profile, and enhanced muscle-anabolic insulin signalling and prevention of CHF-induced GM weight loss (all p < 0.05 vs. CHF and p = NS vs. S). Conclusions:n-3-PUFA isocaloric partial dietary replacement for 8 weeks normalizes CHF-induced derangements of muscle mitochondrial dynamics regulators, ROS production and function. n-3-PUFA mitochondrial effects result in preserved skeletal muscle mass, with potential to improve major patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Gianluca Gortan Cappellari
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| | - Aneta Aleksova
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Matteo Dal Ferro
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Antonio Cannatà
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Annamaria Semolic
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| | - Alberto Guarnaccia
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Michela Zanetti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
- Molecular Medicine Laboratory, International Centre for Genetic, Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Gianfranco Sinagra
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| |
Collapse
|
9
|
Taheri M, Chilibeck PD, Cornish SM. A Brief Narrative Review of the Underlying Mechanisms Whereby Omega-3 Fatty Acids May Influence Skeletal Muscle: From Cell Culture to Human Interventions. Nutrients 2023; 15:2926. [PMID: 37447252 DOI: 10.3390/nu15132926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Skeletal muscle is essential for human locomotion as well as maintaining metabolic homeostasis. Age-related reduction in skeletal muscle mass, strength, and function (i.e., sarcopenia) is a result of pathophysiological processes that include inflammation, alteration of molecular signaling for muscle protein synthesis and degradation, changes in insulin sensitivity, as well as altered skeletal muscle satellite cell activity. Finding strategies to mitigate skeletal muscle loss with age is deemed paramount as the percentage of the population continues to shift towards having more older adults with sarcopenia. Recent research indicates omega-3 fatty acid supplementation can influence anabolic or catabolic pathways in skeletal muscle. Our brief review will provide a synopsis of some underlying mechanisms that may be attributed to omega-3 fatty acid supplementation's effects on skeletal muscle. We will approach this review by focusing on cell culture, animal (pre-clinical models), and human studies evaluating omega-3 fatty acid supplementation, with suggestions for future research. In older adults, omega-3 fatty acids may possess some potential to modify pathophysiological pathways associated with sarcopenia; however, it is highly likely that omega-3 fatty acids need to be combined with other anabolic interventions to effectively ameliorate sarcopenia.
Collapse
Affiliation(s)
- Maryam Taheri
- Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran 19839 69411, Iran
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
10
|
Liu S, Xu S, Liu S, Chen H. Importance of DJ-1 in autophagy regulation and disease. Arch Biochem Biophys 2023:109672. [PMID: 37336341 DOI: 10.1016/j.abb.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Autophagy is a highly conserved biological process that has evolved across evolution. It can be activated by various external stimuli including oxidative stress, amino acid starvation, infection, and hypoxia. Autophagy is the primary mechanism for preserving cellular homeostasis and is implicated in the regulation of metabolism, cell differentiation, tolerance to starvation conditions, and resistance to aging. As a multifunctional protein, DJ-1 is commonly expressed in vivo and is associated with a variety of biological processes. Its most widely studied role is its function as an oxidative stress sensor that inhibits the production of excessive reactive oxygen species (ROS) in the mitochondria and subsequently the cellular damage caused by oxidative stress. In recent years, many studies have identified DJ-1 as another important factor regulating autophagy; it regulates autophagy in various ways, most commonly by regulating the oxidative stress response. In particular, DJ-1-regulated autophagy is involved in cancer progression and plays a key role in alleviating neurodegenerative diseases(NDS) and defective reperfusion diseases. It could serve as a potential target for the regulation of autophagy and participate in disease treatment as a meaningful modality. Therefore, exploring DJ-1-regulated autophagy could provide new avenues for future disease treatment.
Collapse
Affiliation(s)
- Shiyi Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China; Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Sheng Xu
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Song Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This review provides an update on the actions of omega-3 polyunsaturated fatty acids (PUFAs) and presents the most recent findings from trials in patients in the intensive care unit (ICU) setting including relevant meta-analyses. Many specialized pro-resolving mediators (SPMs) are produced from bioactive omega-3 PUFAs and may explain many of the beneficial effects of omega-3 PUFAs, although other mechanisms of action of omega-3 PUFAs are being uncovered. RECENT FINDINGS SPMs resolve inflammation, promote healing and support antiinfection activities of the immune system. Since publication of the ESPEN guidelines, numerous studies further support the use of omega-3 PUFAs. Recent meta-analyses favor the inclusion of omega-3 PUFAs in nutrition support of patients with acute respiratory distress syndrome or sepsis. Recent trials indicate that omega-3 PUFAs may protect against delirium and liver dysfunction in patients in the ICU, although effects on muscle loss are unclear and require further investigation. Critical illness may alter omega-3 PUFA turnover. There has been significant discussion about the potential for omega-3 PUFAs and SPMs in treatment of coronavirus disease 2019. SUMMARY Evidence for benefits of omega-3 PUFAs in the ICU setting has strengthened through new trials and meta-analyses. Nevertheless, better quality trials are still needed. SPMs may explain many of the benefits of omega-3 PUFAs.
Collapse
Affiliation(s)
- Pierre Singer
- Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine
- NIHR Southampton Biomedical Research Centre and University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, UK
| |
Collapse
|
12
|
Shi H, Qi H, Xie D, Zhuang J, Qi H, Dai Y, Wu J. Inhibition of ACSF2 protects against renal ischemia/reperfusion injury via mediating mitophagy in proximal tubular cells. Free Radic Biol Med 2023; 198:68-82. [PMID: 36764625 DOI: 10.1016/j.freeradbiomed.2023.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Acute kidney injury (AKI) is a prevalent clinical condition caused by sepsis and ischemia reperfusion (IR) injury. The principal driver of IR-induced AKI involves renal tubular structural changes triggered by the impairment of function in renal tubular cells. The target gene, Acyl-CoA Synthetase Family Member 2 (ACSF2), was retrieved from the GEO database based on high specific expression in renal tubular cells and location in mitochondria. Here, we substantiate that ACSF2 is specifically localized in the mitochondria of the renal tubular epithelium. Functionally silencing ACSF2 in HK2 cells enhanced hypoxia-reoxygenation (HR)-induced mitophagy, restored mitochondrial function and decreased the production of mitochondrial superoxide. Our study demonstrated that these effects were reversed by silencing Bcl-2 19-kDa interacting protein 3 (BNIP3), a receptor regulating mitophagy. In vivo, ACSF2 knockdown significantly enhanced IR-induced mitophagy and improved renal function in mice with IR injury. Conversely, BNIP3 knockdown inhibited mitophagy and exacerbated renal damage in ACSF2-knockdown mice with IR injury. In conclusion, our study demonstrated that inhibition of ACSF2 enhances mitophagy, restoring mitochondrial function and protects against IR-induced AKI, providing a new target and potential strategy for therapy.
Collapse
Affiliation(s)
- Haoyu Shi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Hao Qi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Dongdong Xie
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Jiayi Zhuang
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Huiyue Qi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yingbo Dai
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| | - Jiaqing Wu
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|