1
|
Han P, Ma X, Ge Y, Ren H, Wu Y. Selenium corrects dysregulated mitophagy and lipophagy in obesity-related acute pancreatitis through the GPX1-Mfn2-PLIN2 axis. Biochem Biophys Res Commun 2025; 768:151916. [PMID: 40327907 DOI: 10.1016/j.bbrc.2025.151916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
The incidence of acute pancreatitis (AP) has been on the rise in recent years. Obesity, a significant contributor to AP, increases the risk of AP and promotes disease progression, leading to adverse outcomes. Mitophagy and lipophagy are two main types of selective autophagy in AP and obesity, but their contribution to comorbidity in obesity-related AP (OB-AP) remains unknown. This study demonstrated that OB-AP exhibited more severe pancreatic injury than AP in vivo and in vitro. We found that the balance between mitophagy and lipophagy was disrupted, with a significant increase in mitophagy and a corresponding significant decrease in lipophagy. Mechanistically, overexpression of selenoprotein glutathione peroxidase 1 (GPX1) stabilized mitofusin 2 (Mfn2) protein, promoting the interaction between Mfn2 and perilipin 2 (PLIN2), and thereby attenuating excessive mitophagy and increasing lipophagy. Selenium supplementation improved pancreatic autophagy homeostasis in OB-AP through increasing GPX1 expression, thereby reducing disease severity. Notably, OB-AP patients exhibited lower selenium levels than healthy individuals. In conclusion, selenium supplementation enhanced GPX1 expression, corrected the imbalance between mitophagy and lipophagy, and mitigated disease severity in OB-AP through the GPX1-Mfn2-PLIN2 axis, and therefore has therapeutic potential in OB-AP.
Collapse
Affiliation(s)
- Peiyu Han
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyu Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yuqiu Ge
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Hongbo Ren
- Department of Gastroenterology, Qilu Hospital, Jinan, 250012, China
| | - Yu Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Jung CH, Lee YJ, Cho EH, Lee GE, Kim ST, Sung KS, Kim D, Kim DH, Son YS, Ahn JH, Han D, Kwon YT. The N-degron pathway mediates the autophagic degradation of cytosolic mitochondrial DNA during sterile innate immune responses. Cell Rep 2025; 44:115094. [PMID: 39709605 DOI: 10.1016/j.celrep.2024.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
The human body reacts to tissue damage by generating damage-associated molecular patterns (DAMPs) that activate sterile immune responses. To date, little is known about how DAMPs are removed to avoid excessive immune responses. Here, we show that proteasomal dysfunction induces the release of mitochondrial DNA (mtDNA) as a DAMP that activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway and is subsequently degraded through the N-degron pathway. In the resolution phase of sterile immune responses, DNA-dependent protein kinase (DNA-PK) senses cytosolic mtDNA and activates N-terminal (Nt-) arginylation by ATE1 R-transferases. The substrates of Nt-arginylation include the molecular chaperone BiP/GRP78 retrotranslocated from the endoplasmic reticulum (ER). R-BiP, the Nt-arginylated species of BiP, is associated with cytosolic mtDNA to accelerate its targeting to autophagic membranes for lysosomal degradation. Thus, cytosolic mtDNA activates the N-degron pathway to facilitate its own degradation and form a negative feedback loop, by which the cell can turn off sterile immune responses at the right time.
Collapse
Affiliation(s)
- Chan Hoon Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yoon Jee Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Eun Hye Cho
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Gee Eun Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Sung Tae Kim
- Regeners, Inc., BVC 112, 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Ki Sa Sung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daeho Kim
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dong Hyun Kim
- Cancer Metastasis Brach, Division of Cancer Biology, National Cancer Center, Goyang-si Gyeonggi-do 10408, Republic of Korea
| | - Yeon Sung Son
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03082, Republic of Korea; Department of Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea; AUTOTAC Bio, Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul 03077, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea.
| |
Collapse
|
3
|
Jin S, Li Y, Xia T, Liu Y, Zhang S, Hu H, Chang Q, Yan M. Mechanisms and therapeutic implications of selective autophagy in nonalcoholic fatty liver disease. J Adv Res 2025; 67:317-329. [PMID: 38295876 PMCID: PMC11725165 DOI: 10.1016/j.jare.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, whereas there is no approved drug therapy due to its complexity. Studies are emerging to discuss the role of selective autophagy in the pathogenesis of NAFLD, because the specificity among the features of selective autophagy makes it a crucial process in mitigating hepatocyte damage caused by aberrant accumulation of dysfunctional organelles, for which no other pathway can compensate. AIM OF REVIEW This review aims to summarize the types, functions, and dynamics of selective autophagy that are of particular importance in the initiation and progression of NAFLD. And on this basis, the review outlines the therapeutic strategies against NAFLD, in particular the medications and potential natural products that can modulate selective autophagy in the pathogenesis of this disease. KEY SCIENTIFIC CONCEPTS OF REVIEW The critical roles of lipophagy and mitophagy in the pathogenesis of NAFLD are well established, while reticulophagy and pexophagy are still being identified in this disease due to the insufficient understanding of their molecular details. As gradual blockage of autophagic flux reveals the complexity of NAFLD, studies unraveling the underlying mechanisms have made it possible to successfully treat NAFLD with multiple pharmacological compounds that target associated pathways. Overall, it is convinced that the continued research into selective autophagy occurring in NAFLD will further enhance the understanding of the pathogenesis and uncover novel therapeutic targets.
Collapse
Affiliation(s)
- Suwei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tianji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yongguang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shanshan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, China.
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Mingzhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
4
|
Li H, Ye Z, Zheng G, Su Z. Polysaccharides targeting autophagy to alleviate metabolic syndrome. Int J Biol Macromol 2024; 283:137393. [PMID: 39521230 DOI: 10.1016/j.ijbiomac.2024.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Metabolic syndrome is a prevalent non-communicable disease characterized by central obesity, insulin resistance, hypertension, hyperglycemia, and hyperlipidemia. Epidemiological statistics indicate that one-third of the world's population is affected by metabolic syndrome. Unfortunately, owing to complicated pathogenesis and limited pharmacological options, the growing prevalence of metabolic syndrome threatens human health worldwide. Autophagy is an intracellular degradation mechanism that involves the degradation of unfolded or aggregated proteins and damaged cellular organelles, thereby maintaining metabolic homeostasis. Increasing evidence indicates that dysfunctional autophagy is closely associated with the development of metabolic syndrome, making it an attractive therapeutic target. Furthermore, a growing number of plant-derived polysaccharides have been shown to regulate autophagy, thereby alleviating metabolic syndrome, such as Astragalus polysaccharides, Laminaria japonica polysaccharides, Ganoderma lucidum polysaccharides and Lycium barbarum polysaccharides. In this review, we summarize recent advances in the discovery of autophagy modulators of plant polysaccharides for the treatment of metabolic syndrome, with the aim of providing precursor compounds for the development of new therapeutic agents. Additionally, we look forward to seeing more diseases being treated with plant polysaccharides by regulating autophagy, as well as the discovery of more intricate mechanisms that govern autophagy.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zuqing Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Arden C, Park SH, Yasasilka XR, Lee EY, Lee MS. Autophagy and lysosomal dysfunction in diabetes and its complications. Trends Endocrinol Metab 2024; 35:1078-1090. [PMID: 39054224 DOI: 10.1016/j.tem.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Autophagy is critical for energy homeostasis and the function of organelles such as endoplasmic reticulum (ER) and mitochondria. Dysregulated autophagy due to aging, environmental factors, or genetic predisposition can be an underlying cause of not only diabetes through β-cell dysfunction and metabolic inflammation, but also diabetic complications such as diabetic kidney diseases (DKDs). Dysfunction of lysosomes, effector organelles of autophagic degradation, due to metabolic stress or nutrients/metabolites accumulating in metabolic diseases is also emerging as a cause or aggravating element in diabetes and its complications. Here, we discuss the etiological role of dysregulated autophagy and lysosomal dysfunction in diabetes and a potential role of autophagy or lysosomal modulation as a new avenue for treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Catherine Arden
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Seo H Park
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Xaviera Riani Yasasilka
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Eun Y Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea; Division of Endocrinology, Department of Internal Medicine and Department of Microbiology and Immunology, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
6
|
Nie Z, Xiao C, Wang Y, Li R, Zhao F. Heat shock proteins (HSPs) in non-alcoholic fatty liver disease (NAFLD): from molecular mechanisms to therapeutic avenues. Biomark Res 2024; 12:120. [PMID: 39396024 PMCID: PMC11470698 DOI: 10.1186/s40364-024-00664-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a spectrum of liver conditions characterized by fat accumulation without excessive alcohol consumption, represents a significant global health burden. The intricate molecular landscape underlying NAFLD pathogenesis involves lipid handling, inflammation, oxidative stress, and mitochondrial dysfunction, with endoplasmic reticulum (ER) stress emerging as a key contributor. ER stress triggers the unfolded protein response (UPR), impacting hepatic steatosis in NAFLD and contributing to inflammation, fibrosis, and progression to NASH and eventually hepatocellular carcinoma (HCC). Heat shock proteins (HSPs), including small HSPs such as HSP20 and HSP27, HSP60, HSP70, GRP78, and HSP90, are integral to cellular stress responses. They aid in protein folding, prevent aggregation, and facilitate degradation, thus mitigating cellular damage under stress conditions. In NAFLD, aberrant HSP expression and function contribute to disease pathogenesis. Understanding the specific roles of HSP subtypes in NAFLD offers insights into potential therapeutic interventions. This review discusses the involvement of HSPs in NAFLD pathophysiology and highlights their therapeutic potential. By elucidating the molecular mechanisms underlying HSP-mediated protection in NAFLD, this article aims to pave the way for the development of targeted therapies for this prevalent liver disorder.
Collapse
Affiliation(s)
- Zhenwang Nie
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Congshu Xiao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yingzi Wang
- International Medical Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Rongkuan Li
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fangcheng Zhao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Lin X, Liu H, Qiao L, Deng H, Bao M, Yang Z, He Y, Xiang R, He H, Han J. Chondrocyte autophagy mediated by T-2 toxin via AKT/TSC/Rheb/mTOR signaling pathway and protective effect of CSA-SeNP. Osteoarthritis Cartilage 2024; 32:1283-1294. [PMID: 38815737 DOI: 10.1016/j.joca.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Kashin-Beck disease (KBD) is an endemic, degenerative, and cartilage-damaging disease for which low selenium and T-2 toxins are considered environmental pathogenic factors. This study aimed to investigate the molecular mechanisms of autophagy in cartilage damage caused by T-2 toxin and the protective effect of chondroitin sulfate A nano-elemental selenium (CSA-SeNP) on the cartilage. METHODS KBD chondrocytes and C28/I2 human chondrocyte cell lines were used. T-2 toxin, AKT inhibitor, and CSA-SeNP treatment experiments were conducted separately, with a treatment time of 24 h. Autophagy was monitored using MDC staining, and mRFP-GFP-LC3 adenovirus, respectively. RT-qPCR and western blotting were used to detect the expression of the relevant genes and proteins. RESULTS The suppression of autophagy observed in KBD chondrocytes was replicated by applying 10 ng/mL T-2 toxin to C28/I2 chondrocytes for 24 h. The AKT/TSCR/Rheb/mTOR signaling pathway was activated by T-2 toxin, which inhibits autophagy. The supplementation with CSA-SeNP alleviated the inhibition of autophagy by T-2 toxin through the AKT/TSCR/Rheb/mTOR signaling pathway. CONCLUSIONS Loss of autophagy regulated by the AKT/TSCR/Rheb/mTOR signaling pathway plays an important role in cartilage damage caused by T-2 toxin. CSA-SeNP supplementation attenuated inhibition of autophagy in chondrocytes by T-2 toxin by modulating this signaling pathway. These findings provide promising new targets for the prevention and treatment of cartilage disease.
Collapse
Affiliation(s)
- Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| | - Zhihao Yang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| | - Yujie He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| | - Huifang He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
8
|
Shilovsky GA. p62: Intersection of Antioxidant Defense and Autophagy Pathways. Mol Biol 2024; 58:822-835. [DOI: 10.1134/s0026893324700390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 01/05/2025]
|
9
|
Li G, Fang X, Liu Y, Lu X, Liu Y, Li Y, Zhao Z, Liu B, Yang R. Lipid Regulatory Element Interact with CD44 on Mitochondrial Bioenergetics in Bovine Adipocyte Differentiation and Lipometabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17481-17498. [PMID: 39072486 DOI: 10.1021/acs.jafc.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The CD44 gene is a critical factor in animal physiological processes and has been shown to affect insulin resistance and fat accumulation in mammals. Nevertheless, little research has been conducted on its precise functions in lipid metabolism and adipogenic differentiation in beef cattle. This study analyzed the expression of CD44 and miR-199a-3p during bovine preadipocyte differentiation. The luciferase reporter assay demonstrated that CD44 was a direct target of miR-199a-3p. Increased accumulation of lipid droplets and triglyceride levels, altered fatty acid metabolism, and accelerated preadipocyte differentiation were all caused by the upregulation of miR-199a-3p or a reduction in CD44 expression. CD44 knockdown upregulated the expression of adipocyte-specific genes (LPL and FABP4) and altered the levels of lipid metabolites (SOPC, l-arginine, and heptadecanoic acid). Multiomics highlights enriched pathways involved in energy metabolism (MAPK, cAMP, and calcium signaling) and shifts in mitochondrial respiration and glycolysis, indicating that CD44 plays a regulatory role in lipid metabolism. The findings show that intracellular lipolysis, glycolysis, mitochondrial respiration, fat deposition, and lipid droplet composition are all impacted by miR-199a-3p, which modulates CD44 in bovine adipocytes.
Collapse
Affiliation(s)
- Guanghui Li
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Xibi Fang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yinuo Liu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou, Zhejiang 313000, People's Republic of China
| | - Xin Lu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yue Liu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yue Li
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 1 Haida Road, Zhanjiang, Guangdoong 524000, People's Republic of China
| | - Boqun Liu
- College of Food Science and Engineering, Jilin University, 5333 Xian Road, Changchun, Jilin 130062, People's Republic of China
| | - Runjun Yang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
10
|
Raza S, Rajak S, Yen PM, Sinha RA. Autophagy and hepatic lipid metabolism: mechanistic insight and therapeutic potential for MASLD. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:19. [PMID: 39100919 PMCID: PMC11296953 DOI: 10.1038/s44324-024-00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) originates from a homeostatic imbalance in hepatic lipid metabolism. Increased fat deposition in the liver of people suffering from MASLD predisposes them to develop further metabolic derangements, including diabetes mellitus, metabolic dysfunction-associated steatohepatitis (MASH), and other end-stage liver diseases. Unfortunately, only limited pharmacological therapies exist for MASLD to date. Autophagy, a cellular catabolic process, has emerged as a primary mechanism of lipid metabolism in mammalian hepatocytes. Furthermore, preclinical studies with autophagy modulators have shown promising results in resolving MASLD and mitigating its progress into deleterious liver pathologies. In this review, we discuss our current understanding of autophagy-mediated hepatic lipid metabolism, its therapeutic modulation for MASLD treatment, and current limitations and scope for clinical translation.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| |
Collapse
|
11
|
Du J, Ji X, Xu B, Du Q, Li Y, Zhou B, Liu X, Xu Z, Jiang Y, Kou B, Li Z, Cui C, Lin J. Ubiquitination of cytoplasmic HMGB1 by RNF186 regulates hepatic lipophagy in non-alcoholic fatty liver disease. Metabolism 2024; 152:155769. [PMID: 38158076 DOI: 10.1016/j.metabol.2023.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Lipophagy is a vital biological process that maintains the balance of intracellular lipid metabolism in nonalcoholic fatty liver disease (NAFLD). However, the precise regulatory mechanism of RNF186 in hepatic lipophagy is still unclear. This study investigates the roles and mechanisms of RNF186 in the regulation of lipophagy during the development of NAFLD. METHODS In this study, we employed RNF186 knockout mice as well as human liver cells and mouse primary hepatocytes (MPHs) to investigate the role and mechanisms of RNF186 in lipophagy during the progression of NAFLD. Additionally, liver specimens from individuals with NAFLD were examined to assess the expression of RNF186 and its associated factors. RESULTS Here, we provide evidence that depletion of RNF186 enhances lipophagy in hepatocytes of a NAFLD model. Mechanistically, RNF186 acts as an E3 ubiquitin ligase that targets cytoplasmic HMGB1 for lysine 48 (K48)- and K63-linked ubiquitination, leading to its subsequent proteasomal degradation. Importantly, the translocation of HMGB1 from the nucleus to the cytoplasm is responsible for inducing lipophagy in NAFLD samples. Knockdown of HMGB1 significantly reduces the activation of lipophagy and mediates the decrease in lipid accumulation caused by RNF186 depletion in hepatocytes. Furthermore, we find that maintaining the nuclear HMGB1 level and inhibiting its nuclear-cytoplasmic shuttling are critical for the proper function of RNF186 in NAFLD. Additionally, the expression of RNF186 and HMGB1 in human NAFLD samples, along with factors related to lipophagy, suggest that RNF186 may play a similar role in the pathogenesis of human fatty liver. CONCLUSION RNF186 deficiency accelerates hepatic lipophagy in NAFLD through the inhibition of ubiquitination and degradation of cytoplasmic HMGB1. Consequently, targeting the RNF186-HMGB1 axis may offer a promising strategy for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Jiang Du
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Xiang Ji
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Bo Xu
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qizhang Du
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yujie Li
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xinlei Liu
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, 400044, China
| | - Zhihao Xu
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yan Jiang
- School of Nursing, Xinxiang Medical University, Xinxiang 453003, China
| | - Beilin Kou
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Zexin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Chaochu Cui
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|