1
|
Hirschhorn JW, Babady NE, Bateman A, Blankenship HM, Bard JD, Florek K, Larkin PMK, Rowlinson MC, Wroblewski K, Wolk DM. Considerations for Severe Acute Respiratory Syndrome Coronavirus 2 Genomic Surveillance: A Joint Consensus Recommendation of the Association for Molecular Pathology and Association of Public Health Laboratories. J Mol Diagn 2025; 27:12-24. [PMID: 39442753 PMCID: PMC11702284 DOI: 10.1016/j.jmoldx.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Next-generation sequencing (NGS) has applications in research, epidemiology, oncology, and infectious disease diagnostics. Wide variability exists in NGS wet laboratory techniques and dry laboratory analytical considerations. Thus, many questions remain unanswered when NGS methods are implemented in laboratories for infectious disease testing. Although this review is not intended to answer all questions, the most pressing questions from a public health and clinical hospital-based laboratory perspective will be addressed. The authors of this review are laboratory professionals who perform and interpret severe acute respiratory syndrome coronavirus 2 NGS results. Considerations for pre-analytical, analytical, and postanalytical NGS will be explored. This review highlights challenges for molecular laboratory professionals considering adopting or expanding NGS methods.
Collapse
Affiliation(s)
- Julie W Hirschhorn
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina; Diagnostic Medicine Institute, Geisinger, Danville, Pennsylvania; Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania.
| | - N Esther Babady
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allen Bateman
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Wisconsin State Laboratory of Hygiene, Madison, Wisconsin
| | - Heather M Blankenship
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Genomics Section, Division of Infectious Disease, Michigan Department of Health and Human Services, Lansing, Michigan
| | - Jennifer Dien Bard
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kelsey Florek
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Wisconsin State Laboratory of Hygiene, Madison, Wisconsin
| | - Paige M K Larkin
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, NorthShore University HealthSystem, Evanston, Illinois
| | - Marie-Claire Rowlinson
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Wadsworth Center Bacterial Diseases Laboratory, New York State Department of Health, Albany, New York; Bureau of Public Health Laboratories, Florida Department of Health, Jacksonville, Florida
| | - Kelly Wroblewski
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Association of Public Health Laboratories, Silver Spring, Maryland
| | - Donna M Wolk
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Diagnostic Medicine Institute, Geisinger, Danville, Pennsylvania; Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania
| |
Collapse
|
2
|
Dubey S, Verma DK, Kumar M. Real-time infectious disease endurance indicator system for scientific decisions using machine learning and rapid data processing. PeerJ Comput Sci 2024; 10:e2062. [PMID: 39145255 PMCID: PMC11323025 DOI: 10.7717/peerj-cs.2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/25/2024] [Indexed: 08/16/2024]
Abstract
The SARS-CoV-2 virus, which induces an acute respiratory illness commonly referred to as COVID-19, had been designated as a pandemic by the World Health Organization due to its highly infectious nature and the associated public health risks it poses globally. Identifying the critical factors for predicting mortality is essential for improving patient therapy. Unlike other data types, such as computed tomography scans, x-radiation, and ultrasounds, basic blood test results are widely accessible and can aid in predicting mortality. The present research advocates the utilization of machine learning (ML) methodologies for predicting the likelihood of infectious disease like COVID-19 mortality by leveraging blood test data. Age, LDH (lactate dehydrogenase), lymphocytes, neutrophils, and hs-CRP (high-sensitivity C-reactive protein) are five extremely potent characteristics that, when combined, can accurately predict mortality in 96% of cases. By combining XGBoost feature importance with neural network classification, the optimal approach can predict mortality with exceptional accuracy from infectious disease, along with achieving a precision rate of 90% up to 16 days before the event. The studies suggested model's excellent predictive performance and practicality were confirmed through testing with three instances that depended on the days to the outcome. By carefully analyzing and identifying patterns in these significant biomarkers insightful information has been obtained for simple application. This study offers potential remedies that could accelerate decision-making for targeted medical treatments within healthcare systems, utilizing a timely, accurate, and reliable method.
Collapse
Affiliation(s)
- Shivendra Dubey
- Computer Science and Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India
| | - Dinesh Kumar Verma
- Computer Science and Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India
| | - Mahesh Kumar
- Computer Science and Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India
| |
Collapse
|
3
|
Shukla N, Srivastava N, Gupta R, Srivastava P, Narayan J. COVID Variants, Villain and Victory: A Bioinformatics Perspective. Microorganisms 2023; 11:2039. [PMID: 37630599 PMCID: PMC10459809 DOI: 10.3390/microorganisms11082039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
The SARS-CoV-2 virus, a novel member of the Coronaviridae family, is responsible for the viral infection known as Coronavirus Disease 2019 (COVID-19). In response to the urgent and critical need for rapid detection, diagnosis, analysis, interpretation, and treatment of COVID-19, a wide variety of bioinformatics tools have been developed. Given the virulence of SARS-CoV-2, it is crucial to explore the pathophysiology of the virus. We intend to examine how bioinformatics, in conjunction with next-generation sequencing techniques, can be leveraged to improve current diagnostic tools and streamline vaccine development for emerging SARS-CoV-2 variants. We also emphasize how bioinformatics, in general, can contribute to critical areas of biomedicine, including clinical diagnostics, SARS-CoV-2 genomic surveillance and its evolution, identification of potential drug targets, and development of therapeutic strategies. Currently, state-of-the-art bioinformatics tools have helped overcome technical obstacles with respect to genomic surveillance and have assisted in rapid detection, diagnosis, and delivering precise treatment to individuals on time.
Collapse
Affiliation(s)
- Nityendra Shukla
- CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (N.S.); (R.G.)
| | - Neha Srivastava
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow 226010, India; (N.S.); (P.S.)
| | - Rohit Gupta
- CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (N.S.); (R.G.)
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow 226010, India; (N.S.); (P.S.)
| | - Jitendra Narayan
- CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (N.S.); (R.G.)
| |
Collapse
|
4
|
Raudenska M, Vicar T, Gumulec J, Masarik M. Johann Gregor Mendel: the victory of statistics over human imagination. Eur J Hum Genet 2023; 31:744-748. [PMID: 36755104 PMCID: PMC9909140 DOI: 10.1038/s41431-023-01303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
In 2022, we celebrated 200 years since the birth of Johann Gregor Mendel. Although his contributions to science went unrecognized during his lifetime, Mendel not only described the principles of monogenic inheritance but also pioneered the modern way of doing science based on precise experimental data acquisition and evaluation. Novel statistical and algorithmic approaches are now at the center of scientific work, showing that work that is considered marginal in one era can become a mainstream research approach in the next era. The onset of data-driven science caused a shift from hypothesis-testing to hypothesis-generating approaches in science. Mendel is remembered here as a promoter of this approach, and the benefits of big data and statistical approaches are discussed.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Tomas Vicar
- Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
5
|
Ahmad MA, Kaur H, Kumari P, Singh R, Kaur R, Chopra H, Sardana O, Emran TB, Dhama K. AZD1222 (ChAdOx1 nCoV-19) Vaccine: Hurdles and Visions. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2023; 17:12-22. [DOI: 10.22207/jpam.17.1.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient chimpanzee adenovirus vectored vaccine developed by Oxford and AstraZeneca for a disease we all know as Coronavirus, or COVID-19. Ongoing clinical studies reveal that the ChAdOx1 nCoV-19 vaccine has a tolerable safety profile and is effective against symptomatic COVID-19. This vaccine may prove crucial in boosting herd immunity, averting life threatening illness, and relieving the current pandemic. In this mini review, we performed a thorough literature search through PubMed and Google Scholar and reported various case reports associated with complications of the adenovirus-vectored COVID-19 vaccine. Various adverse effects of the ChAdOx1 nCoV-19 vaccine were reported around the globe, which were often serious but rare and developed into life-threatening pathologies such as GBS, thrombocytopenia, demyelinating neuropathies, progressive dementia, cerebral infarction, IgA vasculitis, hemophagocytic lymphohistiocytosis, herpes zoster, cutaneous reactions, and vein thrombosis. These worldwide reported complications, which are usually rare and severe, will aid clinicians in understanding and managing unforeseen situations. There is a need for more research to find out more about these complications and their etiopathogenesis. However, the benefits of these vaccinations for stopping the spread of the outbreak and lowering the fatality rate outweigh the potential risk of the uncommon complications.
Collapse
|
6
|
Ebrahimi F, Dehghani M, Makkizadeh F. Analysis of Persian Bioinformatics Research with Topic Modeling. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3728131. [PMID: 37101687 PMCID: PMC10125747 DOI: 10.1155/2023/3728131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 03/18/2023] [Indexed: 04/28/2023]
Abstract
Purpose As a scientific field, bioinformatics has drawn remarkable attention from various fields, such as information technology, mathematics, and modern biological sciences, in recent years. The topic models originating from the field of natural language processing have become the focus of attention with the rapid accumulation of biological datasets. Thus, this research is aimed at modeling the topic content of the bioinformatics literature presented by Iranian researchers in the Scopus Citation Database. Methodology. This research was a descriptive-exploratory study, and the studied population included 3899 papers indexed in the Scopus database, which had been indexed in this database until March 9, 2022. The topic modeling was then performed on the abstracts and titles of the papers. A combination of LDA and TF-IDF was utilized for topic modeling. Findings. The data analysis with topic modeling resulted in identifying seven main topics "Molecular Modeling," "Gene Expression," "Biomarker," "Coronavirus," "Immunoinformatics," "Cancer Bioinformatics," and "Systems Biology." Moreover, "Systems Biology" and "Coronavirus" had the largest and smallest clusters, respectively. Conclusion The present investigation demonstrated an acceptable performance for the LDA algorithm in classifying the topics included in this field. The extracted topic clusters indicated excellent consistency and topic connection with each other.
Collapse
Affiliation(s)
- Fezzeh Ebrahimi
- Department of Scientometrics, Faculty of Social Sciences, Yazd University, Yazd, Iran
| | - Mohammad Dehghani
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
7
|
Rani I, Kalsi A, Kaur G, Sharma P, Gupta S, Gautam RK, Chopra H, Bibi S, Ahmad SU, Singh I, Dhawan M, Emran TB. Modern drug discovery applications for the identification of novel candidates for COVID-19 infections. Ann Med Surg (Lond) 2022; 80:104125. [PMID: 35845863 PMCID: PMC9273307 DOI: 10.1016/j.amsu.2022.104125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
In early December 2019, a large pneumonia epidemic occurred in Wuhan, China. The World Health Organization is concerned about the outbreak of another coronavirus with the powerful, rapid, and contagious transmission. Anyone with minor symptoms like fever and cough or travel history to contaminated places might be suspected of having COVID-19. COVID-19 therapy focuses on treating the disease's symptoms. So far, no such therapeutic molecule has been shown effective in treating this condition. So the treatment is mostly supportive and plasma. Globally, numerous studies and researchers have recently started fighting this virus. Vaccines and chemical compounds are also being investigated against infection. COVID-19 was successfully diagnosed using RNA detection and very sensitive RT-PCR (reverse transcription-polymerase chain reaction). The evolution of particular vaccinations is required to reduce illness severity and spread. Numerous computational analyses and molecular docking have predicted various target compounds that might stop this condition. This paper examines the main characteristics of coronavirus and the computational analyses necessary to avoid infection.
Collapse
Affiliation(s)
- Isha Rani
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, India
| | - Avjit Kalsi
- MM School of Pharmacy, MM University, Sadopur, Ambala, Haryana, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University-Baddi, Himachal Pradesh, India
| | - Pankaj Sharma
- Apotex Research Pvt. Ltd, Bangalore, Karnataka, India
| | - Sumeet Gupta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, India
| | - Rupesh K. Gautam
- MM School of Pharmacy, MM University, Sadopur, Ambala, Haryana, India
| | - Hitesh Chopra
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091, Yunnan, China
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Inderbir Singh
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
- Trafford College, Altrincham, Manchester, WA14 5PQ, UK
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
8
|
Hossain MS, Tonmoy MIQ, Fariha A, Islam MS, Roy AS, Islam MN, Kar K, Alam MR, Rahaman MM. Prediction of the Effects of Variants and Differential Expression of Key Host Genes ACE2, TMPRSS2, and FURIN in SARS-CoV-2 Pathogenesis: An In Silico Approach. Bioinform Biol Insights 2021; 15:11779322211054684. [PMID: 34720581 PMCID: PMC8554545 DOI: 10.1177/11779322211054684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/02/2021] [Indexed: 12/15/2022] Open
Abstract
A new strain of the beta coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is solely responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic. Although several studies suggest that the spike protein of this virus interacts with the cell surface receptor, angiotensin-converting enzyme 2 (ACE2), and is subsequently cleaved by TMPRSS2 and FURIN to enter into the host cell, conclusive insight about the interaction pattern of the variants of these proteins is still lacking. Thus, in this study, we analyzed the functional conjugation among the spike protein, ACE2, TMPRSS2, and FURIN in viral pathogenesis as well as the effects of the mutations of the proteins through the implementation of several bioinformatics approaches. Analysis of the intermolecular interactions revealed that T27A (ACE2), G476S (receptor-binding domain [RBD] of the spike protein), C297T (TMPRSS2), and P812S (cleavage site for TMPRSS2) coding variants may render resistance in viral infection, whereas Q493L (RBD), S477I (RBD), P681R (cleavage site for FURIN), and P683W (cleavage site for FURIN) may lead to increase viral infection. Genotype-specific expression analysis predicted several genetic variants of ACE2 (rs2158082, rs2106806, rs4830971, and rs4830972), TMPRSS2 (rs458213, rs468444, rs4290734, and rs6517666), and FURIN (rs78164913 and rs79742014) that significantly alter their normal expression which might affect the viral spread. Furthermore, we also found that ACE2, TMPRSS2, and FURIN proteins are functionally co-related with each other, and several genes are highly co-expressed with them, which might be involved in viral pathogenesis. This study will thus help in future genomics and proteomics studies of SARS-CoV-2 and will provide an opportunity to understand the underlying molecular mechanism during SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Sajedul Islam
- Department of Biochemistry & Biotechnology, University of Barishal, Barishal, Bangladesh
| | - Arpita Singha Roy
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Nur Islam
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Kumkum Kar
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology & Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | |
Collapse
|
9
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Babes EE, Brisc C, Stoicescu M, Toma MM, Sava C, Bungau SG. Bioinformatics Accelerates the Major Tetrad: A Real Boost for the Pharmaceutical Industry. Int J Mol Sci 2021; 22:6184. [PMID: 34201152 PMCID: PMC8227524 DOI: 10.3390/ijms22126184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/01/2023] Open
Abstract
With advanced technology and its development, bioinformatics is one of the avant-garde fields that has managed to make amazing progress in the pharmaceutical-medical field by modeling the infrastructural dimensions of healthcare and integrating computing tools in drug innovation, facilitating prevention, detection/more accurate diagnosis, and treatment of disorders, while saving time and money. By association, bioinformatics and pharmacovigilance promoted both sample analyzes and interpretation of drug side effects, also focusing on drug discovery and development (DDD), in which systems biology, a personalized approach, and drug repositioning were considered together with translational medicine. The role of bioinformatics has been highlighted in DDD, proteomics, genetics, modeling, miRNA discovery and assessment, and clinical genome sequencing. The authors have collated significant data from the most known online databases and publishers, also narrowing the diversified applications, in order to target four major areas (tetrad): DDD, anti-microbial research, genomic sequencing, and miRNA research and its significance in the management of current pandemic context. Our analysis aims to provide optimal data in the field by stratification of the information related to the published data in key sectors and to capture the attention of researchers interested in bioinformatics, a field that has succeeded in advancing the healthcare paradigm by introducing developing techniques and multiple database platforms, addressed in the manuscript.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram 122413, India;
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
10
|
Cannataro M, Harrison A. Bioinformatics helping to mitigate the impact of COVID-19 - Editorial. Brief Bioinform 2021; 22:613-615. [PMID: 33693516 PMCID: PMC7989617 DOI: 10.1093/bib/bbab063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mario Cannataro
- Data Analytics Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Italy
| | - Andrew Harrison
- Department of Mathematical Sciences, University of Essex, United Kingdom
| |
Collapse
|