1
|
Liu Y, Zhou Z, Su H, Wu S, Ni G, Zhang A, Tsimring LS, Hasty J, Hao N. Enhanced cellular longevity arising from environmental fluctuations. Cell Syst 2024; 15:738-752.e5. [PMID: 39173586 PMCID: PMC11380573 DOI: 10.1016/j.cels.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity-the creation of a stable fixed point in the "healthy" state of the cell and the "dynamic stabilization" of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Hetian Su
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Songlin Wu
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gavin Ni
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alex Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Liu Y, Zhou Z, Wu S, Ni G, Zhang A, Tsimring LS, Hasty J, Hao N. Enhanced cellular longevity arising from environmental fluctuations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547867. [PMID: 37461504 PMCID: PMC10350066 DOI: 10.1101/2023.07.05.547867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions, but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity - the creation of a stable fixed point in the "healthy" state of the cell and the dynamic stabilization of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Songlin Wu
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gavin Ni
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lev S. Tsimring
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Evstratova ES, Korolev VG, Petin VG, Tolkaeva MS. Survival and Genetic Instability of Yeast Cells of Various Genotypes after UV Irradiation. BIOL BULL+ 2022. [DOI: 10.1134/s106235902211005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
4
|
Wang Y, Zhu Z, Liu K, Xiao Q, Geng Y, Xu F, Ouyang S, Zheng K, Fan Y, Jin N, Zhao X, Marchisio MA, Pan D, Huang QA. A high-throughput microfluidic diploid yeast long-term culturing (DYLC) chip capable of bud reorientation and concerted daughter dissection for replicative lifespan determination. J Nanobiotechnology 2022; 20:171. [PMID: 35361237 PMCID: PMC8973578 DOI: 10.1186/s12951-022-01379-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background Budding yeast, Saccharomyces cerevisiae, has been extensively favored as a model organism in aging and age-related studies, thanks to versatile microfluidic chips for cell dynamics assay and replicative lifespan (RLS) determination at single-cell resolution. However, previous microfluidic structures aiming to immobilize haploid yeast may impose excessive spatial constraint and mechanical stress on cells, especially for larger diploid cells that sprout in a bipolar pattern. Results We developed a high-throughput microfluidic chip for diploid yeast long-term culturing (DYLC), optical inspection and cell-aging analysis. The DYLC chip features 1100 “leaky bowl”-shaped traps formatted in an array to dock single cells under laminar-perfused medium and effectively remove daughter cells by hydraulic shear forces. The delicate microstructures of cell traps enable hydrodynamic rotation of newborn buds, so as to ensure bud reorientation towards downstream and concerted daughter dissection thereafter. The traps provide sufficient space for cell-volume enlargement during aging, and thus properly alleviate structural compression and external stress on budding yeast. Trapping efficiency and long-term maintenance of single cells were optimized according to computational fluid dynamics simulations and experimental characterization in terms of critical parameters of the trap and array geometries. Owing to the self-filling of daughter cells dissected from traps upstream, an initial trapping efficiency of about 70% can rapidly reach a high value of over 92% after 4-hour cell culturing. During yeast proliferation and aging, cellular processes of growth, budding and daughter dissection were continuously tracked for over 60 h by time-lapse imaging. Yeast RLS and budding time interval (BTI) were directly calculated by the sequential two-digit codes indicating the budding status in images. With the employed diploid yeast strain, we obtained an RLS of 24.29 ± 3.65 generations, and verified the extension of BTI in the first couple of generations after birth and the last several generations approaching death, as well as cell de-synchronization along diploid yeast aging. Conclusions The DYLC chip offers a promising platform for reliable capture and culturing of diploid yeast cells and for life-long tracking of cell dynamics and replicative aging processes so that grasping comprehensive insights of aging mechanism in complex eukaryotic cells. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01379-9.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, China
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, China.
| | - Ke Liu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, China
| | - Qin Xiao
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, China
| | - Yangye Geng
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, China
| | - Feng Xu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, China
| | - Shuiping Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Ke Zheng
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Nan Jin
- ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Sipailou 2, Nanjing, 210096, China
| | - Mario A Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Dejing Pan
- Cambridge-Suda Genomic Resource Center and Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Soochow University, Ren-ai Road 199, Suzhou, 215213, China
| | - Qing-An Huang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, China
| |
Collapse
|
5
|
Mishra K, Evstratova E, Petin V, Tolkaeva M. Yeast cells provide a new approach to interpretation of genetic instability mechanism. JOURNAL OF RADIATION AND CANCER RESEARCH 2022. [DOI: 10.4103/jrcr.jrcr_56_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
7
|
Young TZ, Liu P, Urbonaite G, Acar M. Quantitative Insights into Age-Associated DNA-Repair Inefficiency in Single Cells. Cell Rep 2020; 28:2220-2230.e7. [PMID: 31433994 PMCID: PMC6744837 DOI: 10.1016/j.celrep.2019.07.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/02/2019] [Accepted: 07/23/2019] [Indexed: 01/03/2023] Open
Abstract
Although double-strand break (DSB) repair is essential for a cell's survival, little is known about how DSB repair mechanisms are affected by age. Here we characterize the impact of cellular aging on the efficiency of single-strand annealing (SSA), a DSB repair mechanism. We measure SSA repair efficiency in young and old yeast cells and report a 23.4% decline in repair efficiency. This decline is not due to increased use of non-homologous end joining. Instead, we identify increased G1 phase duration in old cells as a factor responsible for the decreased SSA repair efficiency. Expression of 3xCLN2 leads to higher SSA repair efficiency in old cells compared with expression of 1xCLN2, confirming the involvement of cell-cycle regulation in age-associated repair inefficiency. Examining how SSA repair efficiency is affected by sequence heterology, we find that heteroduplex rejection remains high in old cells. Our work provides insights into the links between single-cell aging and DSB repair efficiency.
Collapse
Affiliation(s)
- Thomas Z Young
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Ping Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Guste Urbonaite
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT 06511, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA.
| |
Collapse
|
8
|
Evstratova ES, Petin VG. The delayed appearance of haploid and homozygous diploid Saccharomyces cerevisiae yeast cells of wild-type and radiosensitive mutants surviving after exposure to gamma rays and alpha particles. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ekaterina S. Evstratova
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Korolev St., 4, Obninsk, 249036, Russia
| | - Vladislav G. Petin
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Korolev St., 4, Obninsk, 249036, Russia
| |
Collapse
|
9
|
Inactivation of RAD52 and HDF1 DNA repair genes leads to premature chronological aging and cellular instability. J Biosci 2018; 42:219-230. [PMID: 28569246 DOI: 10.1007/s12038-017-9684-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present study aims to investigate the role of radiation sensitive 52 (RAD52) and high-affinity DNA binding factor 1 (HDF1) DNA repair genes on the life span of budding yeasts during chronological aging. Wild type (wt) and rad52, hdf1, and rad52 hdf1 mutant Saccharomyces cerevisiae strains were used. Chronological aging and survival assays were studied by clonogenic assay and drop test. DNA damage was analyzed by electrophoresis after phenol extraction. Mutant analysis, colony forming units and the index of respiratory competence were studied by growing on dextrose and glycerol plates as a carbon source. Rad52 and rad52 hdf1 mutants showed a gradual decrease in surviving fraction in relation to wt and hdf1 mutant during aging. Genomic DNA was spontaneously more degraded during aging, mainly in rad52 mutants. This strain showed an increased percentage of revertant colonies. Moreover, all mutants showed a decrease in the index of respiratory competence during aging. The inactivation of RAD52 leads to premature chronological aging with an increase in DNA degradation and mutation frequency. In addition, RAD52 and HDF1 contribute to maintain the metabolic state, in a different way, during chronological aging. The results obtained could have important implications in the chronobiology of aging.
Collapse
|
10
|
Li Y, Jin M, O'Laughlin R, Bittihn P, Tsimring LS, Pillus L, Hasty J, Hao N. Multigenerational silencing dynamics control cell aging. Proc Natl Acad Sci U S A 2017; 114:11253-11258. [PMID: 29073021 PMCID: PMC5651738 DOI: 10.1073/pnas.1703379114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular aging plays an important role in many diseases, such as cancers, metabolic syndromes, and neurodegenerative disorders. There has been steady progress in identifying aging-related factors such as reactive oxygen species and genomic instability, yet an emerging challenge is to reconcile the contributions of these factors with the fact that genetically identical cells can age at significantly different rates. Such complexity requires single-cell analyses designed to unravel the interplay of aging dynamics and cell-to-cell variability. Here we use microfluidic technologies to track the replicative aging of single yeast cells and reveal that the temporal patterns of heterochromatin silencing loss regulate cellular life span. We found that cells show sporadic waves of silencing loss in the heterochromatic ribosomal DNA during the early phases of aging, followed by sustained loss of silencing preceding cell death. Isogenic cells have different lengths of the early intermittent silencing phase that largely determine their final life spans. Combining computational modeling and experimental approaches, we found that the intermittent silencing dynamics is important for longevity and is dependent on the conserved Sir2 deacetylase, whereas either sustained silencing or sustained loss of silencing shortens life span. These findings reveal that the temporal patterns of a key molecular process can directly influence cellular aging, and thus could provide guidance for the design of temporally controlled strategies to extend life span.
Collapse
Affiliation(s)
- Yang Li
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Meng Jin
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093
- The San Diego Center for Systems Biology, La Jolla, CA 92093
| | - Richard O'Laughlin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Philip Bittihn
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093
- The San Diego Center for Systems Biology, La Jolla, CA 92093
| | - Lev S Tsimring
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093
- The San Diego Center for Systems Biology, La Jolla, CA 92093
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Jeff Hasty
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093
- The San Diego Center for Systems Biology, La Jolla, CA 92093
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Nan Hao
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093;
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093
- The San Diego Center for Systems Biology, La Jolla, CA 92093
| |
Collapse
|
11
|
Güven E, Parnell LA, Jackson ED, Parker MC, Gupta N, Rodrigues J, Qin H. Hydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in Saccharomyces cerevisiae. PeerJ 2016; 4:e2671. [PMID: 27833823 PMCID: PMC5101604 DOI: 10.7717/peerj.2671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/09/2016] [Indexed: 01/28/2023] Open
Abstract
Cellular aging in Saccharomyces cerevisiae can lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the changes of viability and the frequencies of loss of heterozygosity (LOH) in response to hydrogen peroxide doses. The mid-transition points of viability and LOH were quantified using sigmoid mathematical functions. We found that the increase of hydrogen peroxide dependent genomic instability often occurs before a drop in viability. We previously observed that elevation of genomic instability generally lags behind the drop in viability during chronological aging. Hence, onset of genomic instability induced by exogenous hydrogen peroxide treatment is opposite to that induced by endogenous oxidative stress during chronological aging, with regards to the midpoint of viability. This contrast argues that the effect of endogenous oxidative stress on genome integrity is well suppressed up to the dying-off phase during chronological aging. We found that the leadoff of exogenous hydrogen peroxide induced genomic instability to viability significantly correlated with replicative lifespan (RLS), indicating that yeast cells' ability to counter oxidative stress contributes to their replicative longevity. Surprisingly, this leadoff is positively correlated with an inverse measure of endogenous mitotic asymmetry, indicating a trade-off between mitotic asymmetry and cell's ability to fend off hydrogen peroxide induced oxidative stress. Overall, our results demonstrate strong associations of oxidative stress to genomic instability and mitotic asymmetry at the population level of budding yeast.
Collapse
Affiliation(s)
- Emine Güven
- Department of Biology, Spelman College, Atlanta, Georgia, United States
- Current affiliation: Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee, United States
| | - Lindsay A. Parnell
- Department of Biology, Spelman College, Atlanta, Georgia, United States
- Current affiliation: Program of Molecular Genetics and Genomics, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Erin D. Jackson
- Department of Biology, Spelman College, Atlanta, Georgia, United States
| | - Meighan C. Parker
- Department of Biology, Spelman College, Atlanta, Georgia, United States
| | - Nilin Gupta
- Department of Biology, Spelman College, Atlanta, Georgia, United States
| | - Jenny Rodrigues
- Department of Biology, Spelman College, Atlanta, Georgia, United States
| | - Hong Qin
- Department of Biology, Spelman College, Atlanta, Georgia, United States
- Current affiliation: Department of Computer Science and Engineering, Department of Biology, Geology, and Environmental Science, SimCenter, University of Tennessee at Chattanooga, Chattanooga, Tennessee, United States
| |
Collapse
|
12
|
Inhibition of telomere recombination by inactivation of KEOPS subunit Cgi121 promotes cell longevity. PLoS Genet 2015; 11:e1005071. [PMID: 25822194 PMCID: PMC4378880 DOI: 10.1371/journal.pgen.1005071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
DNA double strand break (DSB) is one of the major damages that cause genome instability and cellular aging. The homologous recombination (HR)-mediated repair of DSBs plays an essential role in assurance of genome stability and cell longevity. Telomeres resemble DSBs and are competent for HR. Here we show that in budding yeast Saccharomyces cerevisiae telomere recombination elicits genome instability and accelerates cellular aging. Inactivation of KEOPS subunit Cgi121 specifically inhibits telomere recombination, and significantly extends cell longevity in both telomerase-positive and pre-senescing telomerase-negative cells. Deletion of CGI121 in the short-lived yku80tel mutant restores lifespan to cgi121Δ level, supporting the function of Cgi121 in telomeric single-stranded DNA generation and thus in promotion of telomere recombination. Strikingly, inhibition of telomere recombination is able to further slow down the aging process in long-lived fob1Δ cells, in which rDNA recombination is restrained. Our study indicates that HR activity at telomeres interferes with telomerase to pose a negative impact on cellular longevity. Aging is a general biological process among the living organisms which is affected by environmental stimuli but also genetically controlled. Genome instability is one of the aging hallmarks and has long been implicated as one of the main causal factors in aging. DNA double strand breaks (DSBs) are the most deleterious DNA damages that cause genome instability. To counteract DNA damage of DSBs and maintain high level of genome integrity, cells have evolved powerful repair systems such as homologous recombination (HR). HR is crucial for DNA repair and genome integrity maintenance, and is generally believed to be essential for assurance of cell longevity. Telomeres, the physical ends of eukaryotic linear chromosomes, are preferentially elongated by telomerase, a specialized reverse transcriptase, in most cases. However, due to the resemblance of telomeres to DSBs, HR can not be eliminated but rather readily takes place on telomeres, even in the presence of telomerase. Here we show that HR at yeast telomeres elicits genome instability and accelerates cellular aging. Inactivation of the evolutionarily conserved KEOPS complex subunit Cgi121 specifically inhibits telomere HR and results in extremely long lifespan, indicating a dark side of HR in longevity regulation.
Collapse
|
13
|
Spivey EC, Xhemalce B, Shear JB, Finkelstein IJ. 3D-printed microfluidic microdissector for high-throughput studies of cellular aging. Anal Chem 2014; 86:7406-12. [PMID: 24992972 PMCID: PMC4636036 DOI: 10.1021/ac500893a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to their short lifespan, rapid division, and ease of genetic manipulation, yeasts are popular model organisms for studying aging in actively dividing cells. To study replicative aging over many cell divisions, individual cells must be continuously separated from their progeny via a laborious manual microdissection procedure. Microfluidics-based soft-lithography devices have recently been used to automate microdissection of the budding yeast Saccharomyces cerevisiae. However, little is known about replicative aging in Schizosaccharomyces pombe, a rod-shaped yeast that divides by binary fission and shares many conserved biological functions with higher eukaryotes. In this report, we develop a versatile multiphoton lithography method that enables rapid fabrication of three-dimensional master structures for polydimethylsiloxane (PDMS)-based microfluidics. We exploit the rapid prototyping capabilities of multiphoton lithography to create and characterize a cell-capture device that is capable of high-resolution microscopic observation of hundreds of individual S. pombe cells. By continuously removing the progeny cells, we demonstrate that cell growth and protein aggregation can be tracked in individual cells for over ~100 h. Thus, the fission yeast lifespan microdissector (FYLM) provides a powerful on-chip microdissection platform that will enable high-throughput studies of aging in rod-shaped cells.
Collapse
Affiliation(s)
- Eric C. Spivey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Jason B. Shear
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
14
|
Ayyadevara S, Tazearslan C, Alla R, Jiang JC, Jazwinski SM, Shmookler Reis RJ. Rec-8 dimorphism affects longevity, stress resistance and X-chromosome nondisjunction in C. elegans, and replicative lifespan in S. cerevisiae. Front Genet 2014; 5:211. [PMID: 25136348 PMCID: PMC4120681 DOI: 10.3389/fgene.2014.00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 12/18/2022] Open
Abstract
A quantitative trait locus (QTL) in the nematode C. elegans, “lsq4,” was recently implicated by mapping longevity genes. QTLs for lifespan and three stress-resistance traits coincided within a span of <300 kbp, later narrowed to <200 kbp. A single gene in this interval is now shown to modulate all lsq4-associated traits. Full-genome analysis of transcript levels indicates that lsq4 contains a dimorphic gene governing the expression of many sperm-specific genes, suggesting an effect on spermatogenesis. Quantitative analysis of allele-specific transcripts encoded within the lsq4 interval revealed significant, 2- to 15-fold expression differences for 10 of 33 genes. Fourteen “dual-candidate” genes, implicated by both position and expression, were tested for RNA-interference effects on QTL-linked traits. In a strain carrying the shorter-lived allele, knockdown of rec-8 (encoding a meiotic cohesin) reduced its transcripts 4-fold, to a level similar to the longer-lived strain, while extending lifespan 25–26%, whether begun before fertilization or at maturity. The short-lived lsq4 allele also conferred sensitivity to oxidative and thermal stresses, and lower male frequency (reflecting X-chromosome non-disjunction), traits reversed uniquely by rec-8 knockdown. A strain bearing the longer-lived lsq4 allele, differing from the short-lived strain at <0.3% of its genome, derived no lifespan or stress-survival benefit from rec-8 knockdown. We consider two possible explanations: high rec-8 expression may include increased “leaky” expression in mitotic cells, leading to deleterious destabilization of somatic genomes; or REC-8 may act entirely in germ-line meiotic cells to reduce aberrations such as non-disjunction, thereby blunting a stress-resistance response mediated by innate immunity. Replicative lifespan was extended 20% in haploid S. cerevisiae (BY4741) by deletion of REC8, orthologous to nematode rec-8, implying that REC8 disruption of mitotic-cell survival is widespread, exemplifying antagonistic pleiotropy (opposing effects on lifespan vs. reproduction), and/or balancing selection wherein genomic disruption increases genetic variation under harsh conditions.
Collapse
Affiliation(s)
- Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System, VA Medical Center Little Rock, AR, USA ; Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Cagdas Tazearslan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Ramani Alla
- Central Arkansas Veterans Healthcare System, VA Medical Center Little Rock, AR, USA ; Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - James C Jiang
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center New Orleans, LA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center New Orleans, LA, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System, VA Medical Center Little Rock, AR, USA ; Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA ; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| |
Collapse
|
15
|
Hu J, Wei M, Mirzaei H, Madia F, Mirisola M, Amparo C, Chagoury S, Kennedy B, Longo VD. Tor-Sch9 deficiency activates catabolism of the ketone body-like acetic acid to promote trehalose accumulation and longevity. Aging Cell 2014; 13:457-67. [PMID: 24649827 PMCID: PMC4032597 DOI: 10.1111/acel.12202] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/27/2022] Open
Abstract
In mammals, extended periods of fasting leads to the accumulation of blood ketone bodies including acetoacetate. Here we show that similar to the conversion of leucine to acetoacetate in fasting mammals, starvation conditions induced ketone body-like acetic acid generation from leucine in S. cerevisiae. Whereas wild-type and ras2Δ cells accumulated acetic acid, long-lived tor1Δ and sch9Δ mutants rapidly depleted it through a mitochondrial acetate CoA transferase-dependent mechanism, which was essential for lifespan extension. The sch9Δ-dependent utilization of acetic acid also required coenzyme Q biosynthetic genes and promoted the accumulation of intracellular trehalose. These results indicate that Tor-Sch9 deficiency extends longevity by switching cells to an alternative metabolic mode, in which acetic acid can be utilized for the storage of stress resistance carbon sources. These effects are reminiscent of those described for ketone bodies in fasting mammals and raise the possibility that the lifespan extension caused by Tor-S6K inhibition may also involve analogous metabolic changes in higher eukaryotes.
Collapse
Affiliation(s)
- Jia Hu
- Longevity Institute; Davis School of Gerontology; University of Southern California; Los Angeles CA 90089 USA
- Department of Biological Sciences; School of Dornsife College of Letters, Arts and Sciences; University of Southern California; Los Angeles CA 90089 USA
| | - Min Wei
- Longevity Institute; Davis School of Gerontology; University of Southern California; Los Angeles CA 90089 USA
| | - Hamed Mirzaei
- Longevity Institute; Davis School of Gerontology; University of Southern California; Los Angeles CA 90089 USA
| | - Federica Madia
- Longevity Institute; Davis School of Gerontology; University of Southern California; Los Angeles CA 90089 USA
| | - Mario Mirisola
- Longevity Institute; Davis School of Gerontology; University of Southern California; Los Angeles CA 90089 USA
- DiBiMeF; Universita’ di Palermo; 90133 Palermo Italy
| | - Camille Amparo
- Department of Biological Sciences; School of Dornsife College of Letters, Arts and Sciences; University of Southern California; Los Angeles CA 90089 USA
| | - Shawna Chagoury
- Department of Biological Sciences; School of Dornsife College of Letters, Arts and Sciences; University of Southern California; Los Angeles CA 90089 USA
| | - Brian Kennedy
- Buck Institute for Research on Aging; Novato CA 94945 USA
| | - Valter D. Longo
- Longevity Institute; Davis School of Gerontology; University of Southern California; Los Angeles CA 90089 USA
- Department of Biological Sciences; School of Dornsife College of Letters, Arts and Sciences; University of Southern California; Los Angeles CA 90089 USA
| |
Collapse
|
16
|
The anaphase promoting complex regulates yeast lifespan and rDNA stability by targeting Fob1 for degradation. Genetics 2013; 196:693-709. [PMID: 24361936 DOI: 10.1534/genetics.113.158949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genomic stability, stress response, and nutrient signaling all play critical, evolutionarily conserved roles in lifespan determination. However, the molecular mechanisms coordinating these processes with longevity remain unresolved. Here we investigate the involvement of the yeast anaphase promoting complex (APC) in longevity. The APC governs passage through M and G1 via ubiquitin-dependent targeting of substrate proteins and is associated with cancer and premature aging when defective. Our two-hybrid screen utilizing Apc5 as bait recovered the lifespan determinant Fob1 as prey. Fob1 is unstable specifically in G1, cycles throughout the cell cycle in a manner similar to Clb2 (an APC target), and is stabilized in APC (apc5(CA)) and proteasome (rpn10) mutants. Deletion of FOB1 increased replicative lifespan (RLS) in wild type (WT), apc5(CA), and apc10 cells, and suppressed apc5(CA) cell cycle progression and rDNA recombination defects. Alternatively, increased FOB1 expression decreased RLS in WT cells, but did not reduce the already short apc5(CA) RLS, suggesting an epistatic interaction between apc5(CA) and fob1. Mutation to a putative L-Box (Fob1(E420V)), a Destruction Box-like motif, abolished Fob1 modifications, stabilized the protein, and increased rDNA recombination. Our work provides a mechanistic role played by the APC to promote replicative longevity and genomic stability in yeast.
Collapse
|
17
|
Nyström T, Yang J, Molin M. Peroxiredoxins, gerontogenes linking aging to genome instability and cancer. Genes Dev 2012; 26:2001-8. [PMID: 22987634 DOI: 10.1101/gad.200006.112] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Age is the highest risk factor known for a large number of maladies, including cancers. However, it is unclear how aging mechanistically predisposes the organism to such diseases and which gene products are the primary targets of the aging process. Recent studies suggest that peroxiredoxins, antioxidant enzymes preventing tumor development, are targets of age-related deterioration and that bolstering their activity (e.g., by caloric restriction) extends cellular life span. This review focuses on how the peroxiredoxin functions (i.e., as peroxidases, signal transducers, and molecular chaperones) fit with contemporary theories of aging and whether peroxiredoxins could be targeted therapeutically in the treatment of age-associated cancers.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| | | | | |
Collapse
|
18
|
Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJA, Pierik AJ, Wohlschlegel JA, Lill R. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 2012; 337:195-9. [PMID: 22678362 DOI: 10.1126/science.1219723] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Instability of the nuclear genome is a hallmark of cancer and aging. MMS19 protein has been linked to maintenance of genomic integrity, but the molecular basis of this connection is unknown. Here, we identify MMS19 as a member of the cytosolic iron-sulfur protein assembly (CIA) machinery. MMS19 functions as part of the CIA targeting complex that specifically interacts with and facilitates iron-sulfur cluster insertion into apoproteins involved in methionine biosynthesis, DNA replication, DNA repair, and telomere maintenance. MMS19 thus serves as an adapter between early-acting CIA components and a subset of cellular iron-sulfur proteins. The function of MMS19 in the maturation of crucial components of DNA metabolism may explain the sensitivity of MMS19 mutants to DNA damage and the presence of extended telomeres.
Collapse
Affiliation(s)
- Oliver Stehling
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35033 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ralser M, Michel S, Breitenbach M. Sirtuins as regulators of the yeast metabolic network. Front Pharmacol 2012; 3:32. [PMID: 22408620 PMCID: PMC3296958 DOI: 10.3389/fphar.2012.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/17/2012] [Indexed: 11/29/2022] Open
Abstract
There is growing evidence that the metabolic network is an integral regulator of cellular physiology. Dynamic changes in metabolite concentrations, metabolic flux, or network topology act as reporters of biological or environmental signals, and are required for the cell to trigger an appropriate biological reaction. Changes in the metabolic network are recognized by specific sensory macromolecules and translated into a transcriptional or translational response. The protein family of sirtuins, discovered more than 30 years ago as regulators of silent chromatin, seems to fulfill the role of a metabolic sensor during aging and conditions of caloric restriction. The archetypal sirtuin, yeast silentinformationregulator2 (SIR2), is an NAD+ dependent protein deacetylase that interacts with metabolic enzymes glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase, as well as enzymes involved in NAD(H) synthesis, that provide or deprive NAD+ in its close proximity. This influences sirtuin activity, and facilitates a dynamic response of the metabolic network to changes in metabolism with effects on physiology and aging. The molecular network downstream Sir2, however, is complex. In just two orders, Sir2’s metabolism related interactions span half of the yeast proteome, and are connected with virtually every physiological process. Thus, although it is fundamental to analyze single molecular mechanisms, it is at the same time crucial to consider this genome-scale complexity when correlating single molecular events with complex phenotypes such as aging, cell growth, or stress resistance.
Collapse
Affiliation(s)
- Markus Ralser
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| | | | | |
Collapse
|
20
|
Molin M, Yang J, Hanzén S, Toledano M, Labarre J, Nyström T. Life Span Extension and H2O2 Resistance Elicited by Caloric Restriction Require the Peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Mol Cell 2011; 43:823-33. [DOI: 10.1016/j.molcel.2011.07.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/03/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
|
21
|
Mittal N, Babu MM, Roy N. The efficiency of mitochondrial electron transport chain is increased in the long-lived mrg19 Saccharomyces cerevisiae. Aging Cell 2009; 8:643-53. [PMID: 19732042 DOI: 10.1111/j.1474-9726.2009.00518.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Integrity of mitochondrial functionality is a key determinant of longevity in several organisms. In particular, reduced mitochondrial ROS (mtROS) production leading to decreased mtDNA damage is believed to be a crucial aspect of longevity. The generation of low mtROS was thought to be due to low mitochondrial oxygen consumption. However, recent studies have shown that higher mitochondrial oxygen consumption could still result in low mtROS and contribute to longevity. This increased mitochondrial efficiency (i.e. low mtROS generated despite high oxygen consumption) was explained as a result of mitochondrial biogenesis, which provides more entry points for the electrons to the electron transport chain (ETC), thereby resulting in low mtROS production. In this study, we provide evidence for the existence of an alternative pathway to explain the observed higher mitochondrial efficiency in the long-lived mrg19 mutant of Saccharomyces cerevisiae. Although we observe similar amounts of mitochondria in mrg19 and wild-type (wt) yeast, we find that mrg19 mitochondria have higher expression of ETC components per mitochondria in comparison with the wt. These findings demonstrate that more efficient mitochondria because of increased ETC per mitochondria can also produce less mtROS. Taken together, our findings provide evidence for an alternative explanation for the involvement of higher mitochondrial activity in prolonging lifespan. We anticipate that similar mechanisms might also exist in eukaryotes including human.
Collapse
Affiliation(s)
- Nitish Mittal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab, India
| | | | | |
Collapse
|
22
|
Effects of age on segregation of the X and Y chromosomes in cultured lymphocytes from Chinese men. J Genet Genomics 2009; 36:467-74. [DOI: 10.1016/s1673-8527(08)60136-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 11/24/2022]
|
23
|
Jain N, Cook E, Xess I, Hasan F, Fries D, Fries BC. Isolation and characterization of senescent Cryptococcus neoformans and implications for phenotypic switching and pathogenesis in chronic cryptococcosis. EUKARYOTIC CELL 2009; 8:858-66. [PMID: 19411622 PMCID: PMC2698302 DOI: 10.1128/ec.00017-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/17/2009] [Indexed: 12/13/2022]
Abstract
Although several virulence factors and associated genes have been identified, the mechanisms that allow Cryptococcus neoformans to adapt during chronic infection and to persist in immunocompromised hosts remain poorly understood. Characterization of senescent cells of C. neoformans demonstrated that these cells exhibit a significantly enlarged cell body and capsule but still cross the blood-brain barrier. C. neoformans cells with advanced generational age are also more resistant to phagocytosis and killing by antifungals, which could promote their selection during chronic disease in humans. Senescent cells of RC-2, a C. neoformans strain that undergoes phenotypic switching, manifest switching rates up to 11-fold higher than those of younger cells. Infection experiments with labeled cells suggest that senescent yeast cells can potentially accumulate in vivo. Mathematical modeling incorporating different switching rates demonstrates how increased switching rates promote the emergence of hypervirulent mucoid variants during chronic infection. Our findings introduce the intriguing concept that senescence in eukaryotic pathogens could be a mechanism of microevolution that may promote pathoadaptation and facilitate evasion of an evolving immune response.
Collapse
Affiliation(s)
- Neena Jain
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Asymmetric cell division is of fundamental importance in biology as it allows for the establishment of separate cell lineages during the development of multicellular organisms. Although microbial systems, including the yeast Saccharomyces cerevisiae, are excellent models of asymmetric cell division, this phenotype occurs in all cell divisions; consequently, models of lineage-specific segregation patterns in these systems do not exist. Here, we report the first example of lineage-specific asymmetric division in yeast. We used fluorescent tags to show that components of the yeast kinetochore, the protein complex that anchors chromosomes to the mitotic spindle, divide asymmetrically in a single postmeiotic lineage. This phenotype is not seen in vegetatively dividing haploid or diploid cells. This kinetochore asymmetry suggests a mechanism for the selective segregation of sister centromeres to daughter cells to establish different cell lineages or fates. These results provide a mechanistic link between lineage-defining asymmetry of metazoa with unicellular eukaryotes.
Collapse
|
25
|
Singh A, Billingsley K, Ward O. Composting: A Potentially Safe Process for Disposal of Genetically Modified Organisms. Crit Rev Biotechnol 2008; 26:1-16. [PMID: 16594522 DOI: 10.1080/07388550500508644] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The widespread use of genetically modified organisms (GMOs) may result in the release of GMOs into the environment. The potential risks regarding their use and implementation of disposal methods, especially the possibility of novel genes from GMOs being transferred to natural organisms, need to be evaluated and better understood. There is an increasingly accepted public view that GMO products introduced into the environment should be degradable and should disappear after a limited period of time. Due to the risk of possible horizontal gene transfer, disposal methods for GMOs need to address destruction of both the organism and the genetic material. During the last two decades, we have developed a greater understanding of the biochemical, microbiological and molecular concepts of the composting process, such that maximum decomposition may be achieved in the shortest time with minimal negative impacts to the environment. The conditions created in a properly managed composting process environment may help in destroying GMOs and their genes, thereby reducing the risk of the spread of genetic material. When considering composting as a potential method for the disposal of GMOs, the establishment of controlled conditions providing an essentially homogenous environment appears to be an important requirement. An evaluation of composting as a safe option for disposal of GMOs is provided in this review.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
26
|
Qin H, Lu M, Goldfarb DS. Genomic instability is associated with natural life span variation in Saccharomyces cerevisiae. PLoS One 2008; 3:e2670. [PMID: 18628831 PMCID: PMC2441830 DOI: 10.1371/journal.pone.0002670] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 06/13/2008] [Indexed: 12/13/2022] Open
Abstract
Increasing genomic instability is associated with aging in eukaryotes, but the connection between genomic instability and natural variation in life span is unknown. We have quantified chronological life span and loss-of-heterozygosity (LOH) in 11 natural isolates of Saccharomyces cerevisiae. We show that genomic instability increases and mitotic asymmetry breaks down during chronological aging. The age-dependent increase of genomic instability generally lags behind the drop of viability and this delay accounts for approximately 50% of the observed natural variation of replicative life span in these yeast isolates. We conclude that the abilities of yeast strains to tolerate genomic instability co-vary with their replicative life spans. To the best of our knowledge, this is the first quantitative evidence that demonstrates a link between genomic instability and natural variation in life span.
Collapse
Affiliation(s)
- Hong Qin
- Center for Aging and Development Biology, Department of Biology, University of Rochester, Rochester, New York, United States of America.
| | | | | |
Collapse
|
27
|
Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae. Mol Cell Biol 2008; 28:5432-45. [PMID: 18591251 DOI: 10.1128/mcb.00307-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative DNA damage is likely to be involved in the etiology of cancer and is thought to accelerate tumorigenesis via increased mutation rates. However, the majority of malignant cells acquire a specific type of genomic instability characterized by large-scale genomic rearrangements, referred to as chromosomal instability (CIN). The molecular mechanisms underlying CIN are not entirely understood. We utilized Saccharomyces cerevisiae as a model system to delineate the relationship between genotoxic stress and CIN. It was found that elevated levels of chronic, unrepaired oxidative DNA damage caused chromosomal aberrations at remarkably high frequencies under both selective and nonselective growth conditions. In this system, exceeding the cellular capacity to appropriately manage oxidative DNA damage resulted in a "gain-of-CIN" phenotype and led to profound karyotypic instability. These results illustrate a novel mechanism for genome destabilization that is likely to be relevant to human carcinogenesis.
Collapse
|
28
|
Abstract
Loss of heterozygosity (LOH) can be a driving force in the evolution of mitotic/somatic diploid cells, and cellular changes that increase the rate of LOH have been proposed to facilitate this process. In the yeast Saccharomyces cerevisiae, spontaneous LOH occurs by a number of mechanisms including chromosome loss and reciprocal and nonreciprocal recombination. We performed a screen in diploid yeast to identify mutants with increased rates of LOH using the collection of homozygous deletion alleles of nonessential genes. Increased LOH was quantified at three loci (MET15, SAM2, and MAT) on three different chromosomes, and the LOH events were analyzed as to whether they were reciprocal or nonreciprocal in nature. Nonreciprocal LOH was further characterized as chromosome loss or truncation, a local mutational event (gene conversion or point mutation), or break-induced replication (BIR). The 61 mutants identified could be divided into several groups, including ones that had locus-specific effects. Mutations in genes involved in DNA replication and chromatin assembly led to LOH predominantly via reciprocal recombination. In contrast, nonreciprocal LOH events with increased chromosome loss largely resulted from mutations in genes implicated in kinetochore function, sister chromatid cohesion, or relatively late steps of DNA recombination. Mutants of genes normally involved in early steps of DNA damage repair and signaling produced nonreciprocal LOH without an increased proportion of chromosome loss. Altogether, this study defines a genetic landscape for the basis of increased LOH and the processes by which it occurs.
Collapse
|
29
|
Gitler AD. Beer and bread to brains and beyond: can yeast cells teach us about neurodegenerative disease? Neurosignals 2007; 16:52-62. [PMID: 18097160 DOI: 10.1159/000109759] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
For millennia, humans have harnessed the astonishing power of yeast, producing such culinary masterpieces as bread, beer and wine. Therefore, in this new millennium, is it very farfetched to ask if we can also use yeast to unlock some of the modern day mysteries of human disease? Remarkably, these seemingly simple cells possess most of the same basic cellular machinery as the neurons in the brain. We and others have been using the baker's yeast, Saccharomyces cerevisiae, as a model system to study the mechanisms of devastating neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's and amyotrophic lateral sclerosis. While very different in their pathophysiology, they are collectively referred to as protein-misfolding disorders because of the presence of misfolded and aggregated forms of various proteins in the brains of affected individuals. Using yeast genetics and the latest high-throughput screening technologies, we have identified some of the potential causes underpinning these disorders and discovered conserved genes that have proven effective in preventing neuron loss in animal models. Thus, these genes represent new potential drug targets. In this review, I highlight recent work investigating mechanisms of cellular toxicity in a yeast Parkinson's disease model and discuss how similar approaches are being applied to additional neurodegenerative diseases.
Collapse
Affiliation(s)
- Aaron D Gitler
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Laun P, Bruschi CV, Dickinson JR, Rinnerthaler M, Heeren G, Schwimbersky R, Rid R, Breitenbach M. Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing. Nucleic Acids Res 2007; 35:7514-26. [PMID: 17986449 PMCID: PMC2190697 DOI: 10.1093/nar/gkm919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 10/08/2007] [Accepted: 10/08/2007] [Indexed: 01/07/2023] Open
Abstract
Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast.
Collapse
Affiliation(s)
- Peter Laun
- Department of Cell Biology, Division of Genetics, University of Salzburg, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Genetic changes increase with the age of organisms, but the basis for this increase is unclear. A study has found that the major pathway of DNA repair is altered with age in the testes of male Drosophila, thus providing a powerful system to dissect the basis for age-related genomic changes.
Collapse
|
32
|
Freeman KM, Hoffmann GR. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae. Mutat Res 2006; 616:119-32. [PMID: 17156798 DOI: 10.1016/j.mrfmmm.2006.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/08/2006] [Indexed: 10/23/2022]
Abstract
Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, beta-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv(+) revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state.
Collapse
Affiliation(s)
- Kathryn M Freeman
- Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395, USA
| | | |
Collapse
|
33
|
Panelli S, Damiani G, Espen L, Micheli G, Sgaramella V. Towards the analysis of the genomes of single cells: Further characterisation of the multiple displacement amplification. Gene 2006; 372:1-7. [PMID: 16564650 DOI: 10.1016/j.gene.2006.01.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/25/2006] [Accepted: 01/31/2006] [Indexed: 11/17/2022]
Abstract
The development of methods for the analysis and comparison of the nucleic acids contained in single cells is an ambitious and challenging goal that may provide useful insights in many physiopathological processes. We review here some of the published protocols for the amplification of whole genomes (WGA). We focus on the reaction known as Multiple Displacement Amplification (MDA), which probably represents the most reliable and efficient WGA protocol developed to date. We discuss some recent advances and applications, as well as some modifications to the reaction, which should improve its use and enlarge its range of applicability possibly to degraded genomes, and also to RNA via complementary DNA.
Collapse
Affiliation(s)
- Simona Panelli
- CERSA/Fondazione Parco Tecnologico Padano, via Einstein 2, Lodi, Italy.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The ability to form tenable hypotheses regarding the neurobiological basis of normative functions as well as mechanisms underlying neurodegenerative and neuropsychiatric disorders is often limited by the highly complex brain circuitry and the cellular and molecular mosaics therein. The brain is an intricate structure with heterogeneous neuronal and nonneuronal cell populations dispersed throughout the central nervous system. Varied and diverse brain functions are mediated through gene expression, and ultimately protein expression, within these cell types and interconnected circuits. Large-scale high-throughput analysis of gene expression in brain regions and individual cell populations using modern functional genomics technologies has enabled the simultaneous quantitative assessment of dozens to hundreds to thousands of genes. Technical and experimental advances in the accession of tissues, RNA amplification technologies, and the refinement of downstream genetic methodologies including microarray analysis and real-time quantitative PCR have generated a wellspring of informative studies pertinent to understanding brain structure and function. In this review, we outline the advantages as well as some of the potential challenges of applying high throughput functional genomics technologies toward a better understanding of brain tissues and diseases using animal models as well as human postmortem tissues.
Collapse
|
35
|
Laun P, Ramachandran L, Jarolim S, Herker E, Liang P, Wang J, Weinberger M, Burhans DT, Suter B, Madeo F, Burhans WC, Breitenbach M. A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae. FEMS Yeast Res 2005; 5:1261-72. [PMID: 16168721 DOI: 10.1016/j.femsyr.2005.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/16/2005] [Accepted: 07/22/2005] [Indexed: 11/24/2022] Open
Abstract
In this paper, we present the results of global transcript analysis by the microarray technique of senescent and apoptotic yeast cells. We compared young daughter and old mother cells isolated by elutriation centrifugation, and non-apoptotic and apoptotic cells induced either by a temperature shift of the cdc48(S565G) temperature-sensitive mutant or of the orc2-1 temperature-sensitive mutant. The majority of all genes found to be differentially regulated in these three physiological situations was upregulated, indicating that a cellular death process was initiated rather than an unspecific shut-down of gene expression due to immediate killing. The functional classes of genes upregulated in all three conditions were largely the same, although individual genes were in many cases not identical. The largest group of genes involved were nuclear genes coding for mitochondrial components or functions, which is understandable given the fact that apoptosis can be triggered by mitochondrially generated oxygen radicals and that mitochondria play an important role in the execution of apoptosis. Other functional classes consisted of genes involved in DNA damage response, in cell cycle regulation and checkpoints, in DNA repair, and in membrane lipid and cell wall synthesis. These functional classes represent the response of the cell to the known cellular insults, which occur during aging and apoptosis. As we have shown previously, final-stage senescent yeast mother cells (of the wild-type) are apoptotic.
Collapse
Affiliation(s)
- Peter Laun
- Department of Cell Biology, Salzburg University, Hellbrunnerstr. 34, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cookson S, Ostroff N, Pang WL, Volfson D, Hasty J. Monitoring dynamics of single-cell gene expression over multiple cell cycles. Mol Syst Biol 2005; 1:2005.0024. [PMID: 16729059 PMCID: PMC1681470 DOI: 10.1038/msb4100032] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 10/27/2005] [Indexed: 01/20/2023] Open
Abstract
Recent progress in reconstructing gene regulatory networks has established a framework for a quantitative description of the dynamics of many important cellular processes. Such a description will require novel experimental techniques that enable the generation of time-series data for the governing regulatory proteins in a large number of individual living cells. Here, we utilize microfabrication to construct a Tesla microchemostat that permits single-cell fluorescence imaging of gene expression over many cellular generations. The device is used to capture and constrain asymmetrically dividing or motile cells within a trapping region and to deliver nutrients and regulate the cellular population within this region. We illustrate the operation of the microchemostat with Saccharomyces cerevisiae and explore the evolution of single-cell gene expression and cycle time as a function of generation. Our findings highlight the importance of novel assays for quantifying the dynamics of gene expression and cellular growth, and establish a methodology for exploring the effects of gene expression on long-term processes such as cellular aging.
Collapse
Affiliation(s)
- Scott Cookson
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Natalie Ostroff
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Wyming Lee Pang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Dmitri Volfson
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
- Institute for Nonlinear Science, University of California at San Diego, La Jolla, CA, USA
| | - Jeff Hasty
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Galvin JE, Ginsberg SD. Expression profiling in the aging brain: a perspective. Ageing Res Rev 2005; 4:529-47. [PMID: 16249125 DOI: 10.1016/j.arr.2005.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 06/17/2005] [Indexed: 12/25/2022]
Abstract
To evaluate molecular events associated with the aging process in animal models and human tissues, microarray analysis is performed at the regional and cellular levels to define transcriptional patterns or mosaics that may lead to better understanding of the mechanism(s) that drive senescence. In this review, we outline the experimental and analytical issues associated with high-throughput genomic analyses in aging brain and other tissues for a comprehensive evaluation of the current state of microarray analysis in aging paradigms. Ultimately, the goal of these studies is to apply functional genomics and proteomics approaches to aging research to develop new tools to assess age in cell- and tissue-specific manners in order to develop aging biomarkers for pharmacotherapeutic interventions and disease prevention.
Collapse
Affiliation(s)
- James E Galvin
- Department of Neurology, Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | |
Collapse
|
38
|
Waskar M, Li Y, Tower J. Stem cell aging in the Drosophila ovary. AGE (DORDRECHT, NETHERLANDS) 2005; 27:201-212. [PMID: 23598653 PMCID: PMC3458490 DOI: 10.1007/s11357-005-2914-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/26/2005] [Accepted: 05/27/2005] [Indexed: 06/02/2023]
Abstract
Accumulating evidence suggests that with time human stem cells may become defective or depleted, thereby contributing to aging and aging-related diseases. Drosophila provides a convenient model system in which to study stem cell aging. The adult Drosophila ovary contains two types of stem cells: the germ-line stem cells give rise to the oocyte and its supporting nurse cells, while the somatic stem cells give rise to the follicular epithelium-a highly differentiated tissue that surrounds each oocyte as it develops. Genetic and transgenic analyses have identified several conserved signaling pathways that function in the ovary to regulate stem cell maintenance, division and differentiation, including the wingless, hedgehog, JAK/STAT, insulin and TGF-β pathways. During Drosophila aging the division of the stem cells decreases dramatically, coincident with reduced egg production. It is unknown if this reproductive senescence is due to a defect in the stem cells themselves, or due to the lack of signals normally sent to the stem cells from elsewhere in the animal, such as from the central nervous system or the stem cell niche. Methods are being developed to genetically mark stem cells in adult Drosophila and measure their survival, division rate and function during aging.
Collapse
Affiliation(s)
- Morris Waskar
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, 835 W. 37th St., University Park, Los Angeles, CA 90089-1340 USA
| | - Yishi Li
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, 835 W. 37th St., University Park, Los Angeles, CA 90089-1340 USA
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, 835 W. 37th St., University Park, Los Angeles, CA 90089-1340 USA
| |
Collapse
|
39
|
Current awareness on yeast. Yeast 2005; 22:745-52. [PMID: 16106592 DOI: 10.1002/yea.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
40
|
Chen Q, Thorpe J, Keller JN. Alpha-synuclein alters proteasome function, protein synthesis, and stationary phase viability. J Biol Chem 2005; 280:30009-17. [PMID: 15941712 DOI: 10.1074/jbc.m501308200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alpha-synuclein appears to play a role in mediating neurotoxicity in a number of neurodegenerative disorders, collectively referred to as synucleinopathies. Most of these disorders are associated with aging and a probable impairment of the proteasome-proteolytic pathway, although the relationship between aging, proteasome inhibition, and alpha-synuclein toxicity has not been fully elucidated. Recent studies suggest that yeast may provide a useful system for studying the biology and toxicity of alpha-synuclein in mitotic cells, recapitulating many features observed in the various synucleinopathy disorders. Additional studies indicate that the stationary phase model of aging in yeast provides a useful system for understanding the biochemistry and regulation of aging in post-mitotic cells. In the present study we examined the effect of wild type and mutant alpha-synuclein (A30P) on multiple aspects of proteasome homeostasis, protein synthesis, as well as the ability of cells to survive stationary phase aging. These data demonstrate that alpha-synuclein alters proteasome composition, impairs proteasome-mediated protein degradation, impairs protein synthesis, and impairs the ability of cells to withstand stationary phase aging. Interestingly, alpha-synuclein had little effect on intracellular proteasome content or protein ubiquitination, and did not increase the vulnerability of cells to a variety of stressors. Together, these data suggest that yeast may be useful for understanding the ability of alpha-synuclein to impair proteasome-mediated protein degradation, as well as for understanding the basis for age-related alpha-synuclein cytotoxicity.
Collapse
Affiliation(s)
- Qinghua Chen
- Sanders-Brown Center on Aging, The Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|