1
|
Sun J, Huang Y, Li X, Xu X, Cui X, Hao F, Ji Q, Chen C, Bao G, Liu Y. Characterization and immunological effect of outer membrane vesicles from Pasteurella multocida on macrophages. Appl Microbiol Biotechnol 2024; 108:238. [PMID: 38407600 PMCID: PMC10896778 DOI: 10.1007/s00253-024-13060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Pasteurella multocida is an important bacterial pathogen that can cause diseases in both animals and humans. Its elevated morbidity and mortality rates in animals result in substantial economic repercussions within the livestock industry. The prevention of diseases caused by P. multocida through immunization is impeded by the absence of a safe and effective vaccine. Outer membrane vesicles (OMVs) secreted from the outer membrane of Gram-negative bacteria are spherical vesicular structures that encompass an array of periplasmic components in conjunction with a diverse assortment of lipids and proteins. These vesicles can induce antibacterial immune responses within the host. P. multocida has been shown to produce OMVs. Nonetheless, the precise characteristics and immunomodulatory functions of P. multocida OMVs have not been fully elucidated. In this study, OMVs were isolated from P. multocida using an ultrafiltration concentration technique, and their morphology, protein constitution, and immunomodulatory properties in RAW264.7 cells were studied. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) revealed that the OMVs exhibited typical spherical and bilayered lipid vesicular architecture, exhibiting an average diameter of approximately 147.5 nm. The yield of OMVs was 2.6 × 1011 particles/mL. Proteomic analysis revealed a high abundance of membrane-associated proteins within P. multocida OMVs, with the capability to instigate the host's immune response. Furthermore, OMVs stimulated the proliferation and cellular uptake of macrophages and triggered the secretion of cytokines, such as TNF-ɑ, IL-1β, IL-6, IL-10, and TGF-β1. Consequently, our results indicated that OMVs from P. multocida could directly interact with macrophages and regulate their immune function in vitro. These results supported the prospective applicability of P. multocida OMVs as a platform in the context of vaccine development. KEY POINTS: • Preparation and characterization of P. multocida OMVs. • P. multocida OMVs possess a range of antigens and lipoproteins associated with the activation of the immune system. • P. multocida OMVs can activate the proliferation, internalization, and cytokine secretion of macrophages in vitro.
Collapse
Affiliation(s)
- Jiaying Sun
- College of Life Sciences, China Jiliang University, Zhejiang, 310018, Hangzhou, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Xuefeng Li
- College of Life Sciences, China Jiliang University, Zhejiang, 310018, Hangzhou, China
| | - Xiangfei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Fangjiao Hao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Chun Chen
- College of Life Sciences, China Jiliang University, Zhejiang, 310018, Hangzhou, China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.
| |
Collapse
|
2
|
Qiu R, Wei H, Hu B, Chen M, Song Y, Xu W, Fan Z, Wang F. Experimental pathogenicity and comparative genome analysis of high- and low-virulence strains of rabbit-origin Pasteurella multocida. Comp Immunol Microbiol Infect Dis 2022; 90-91:101889. [PMID: 36306714 DOI: 10.1016/j.cimid.2022.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
Abstract
Pasteurella multocida, the causative pathogen of rabbit pasteurellosis, causes significant economic losses in the commercial rabbit industry. However, the associated pathogenic mechanism of P. multocida remains unclear. The aim of this study is to compare the genomes and pathogenicity of high- and low-virulence strains of P. multocida to advance the current understanding of rabbit pasteurellosis. The high-virulence strain rapidly proliferates in the lung and spleen of infected mice within approximately 9 h, maintaining a high bacterial load until host death. Meanwhile, the low-virulence strain only proliferates in mouse organs for a short time, with the bacterial load beginning to decrease 13 h post-infection. Moreover, the expressions of inflammatory cytokines MCP-1, TNF-α, and IL-1β are upregulated in all infected mouse lung and spleen tissue, however, the high-virulence strain induced significantly higher expression than the low-virulence strain. Histopathological analysis revealed greater inflammation and tissue lesions in the lung and spleen of mice infected with the high-virulence strain. Two pathogenicity-associated regions unique to the genome of the high-virulence strain harbor approximately 199 genes, including functional genes related to virulence factors, such as lipopolysaccharide biosynthesis, iron acquisition, biosynthesis of outer membrane proteins, and adhesion. These two genomic regions are shared by three previously sequenced, highly virulent P. multocida strains in rabbits. In conclusion, the increased pathogenicity of high-virulence P. multocida may be due to the presence of virulence-associated genes in two unique genomic regions, resulting in strong proliferative activity, significant inflammation, and pathological lesions in the mouse model. These findings provide important insights regarding the pathogenic mechanism underlying rabbit pasteurellosis.
Collapse
Affiliation(s)
- Rulong Qiu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Mengmeng Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Weizhong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China.
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China.
| |
Collapse
|
3
|
Spatial, Temporal, and Demographic Patterns in the Prevalence of Hemorrhagic Septicemia in 41 Countries in 2005–2019: A Systematic Analysis with Special Focus on the Potential Development of a New-Generation Vaccine. Vaccines (Basel) 2022; 10:vaccines10020315. [PMID: 35214771 PMCID: PMC8880277 DOI: 10.3390/vaccines10020315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 01/10/2023] Open
Abstract
Hemorrhagic septicemia (HS) caused by Pasteurella multocida B:2 and E:2 is among the fatal bacterial diseases in cattle and buffaloes that are economically valuable in Asian and African countries. The current work aims to study the prevalence of HS among buffaloes, cattle, sheep, and goats in 41 countries in 2005–2019. The data analysis revealed that 74.4% of the total infection rate in the world was distributed among cattle, followed by buffaloes (13.1%). The mortality of HS among cattle and buffaloes increased in 2017–2019 compared to the period between 2014 and 2016. The best measure to control the disease is through vaccination programs. Current commercial vaccines, including live-attenuated vaccines and inactivated vaccines, have some shortcomings and undesirable effects. Virus-like particles (VLPs) have more potential as a vaccine platform due to their unique properties to enhance immune response and the ability to use them as a platform for foreign antigens against infectious diseases. VLPs-based vaccines are among the new-generation subunit vaccine approaches that have been licensed for the human and veterinary fields. However, most studies are still in the late stages of vaccine evaluation.
Collapse
|
4
|
Gallego C, Patiño P, Martínez N, Iregui C. The effect of carbohydrates on the adherence of Pasteurella multocida to the nasal respiratory epithelium. AN ACAD BRAS CIENC 2021; 93:e20190989. [PMID: 34259794 DOI: 10.1590/0001-3765202120190989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
Pasteurella multocida subsp. multocida is responsible for different diseases that generate great economic losses in farm animal. The effectiveness of immunization against those bacteria are variable and the use of antibiotics is questioned; for that reason, we investigated the potential inhibitory effect of different carbohydrates on the adherence in vivo of P. multocida to the rabbit respiratory epithelium as an alternative for the prevention of respiratory infections. Rabbits were intranasally and intratracheally inoculated with a solution containing 200 µl of 1x107 CFU of P. multocida that was previously mixed with 250 µg /200 µl of N-acetylglucosamine, alphamethylglucoside, alphamethylmannoside, N-acetylgalactosamine or sialic acid. The animals that received N-acetylglucosamine, alphamethylglucoside or alphamethylmannoside individually or a mixture of these three carbohydrates plus the bacterium, showed a significant decrease (P <0.05) of the clinical symptoms, microscopic and macroscopic lesions in the nasal septa and in the lungs; also, the number of adhered bacteria to the nasal epithelium were also significantly reduced. This research demonstrates for the first time that such an approach could convert into a method for prevention of P. multocida infection in rabbits that is ecologically and economically safe and effective.
Collapse
Affiliation(s)
- Carolina Gallego
- Laboratory of Veterinary Pathology, Universidad de Ciencias Aplicadas y Ambientales, Calle 222, n 55-37, 111 Bogotá, Colombia
| | - Pilar Patiño
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, National University of Colombia, Carrera 30 n 45-03, 111321 Bogotá, Colombia
| | - Nhora Martínez
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, National University of Colombia, Carrera 30 n 45-03, 111321 Bogotá, Colombia
| | - Carlos Iregui
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, National University of Colombia, Carrera 30 n 45-03, 111321 Bogotá, Colombia
| |
Collapse
|
5
|
Hu J, Li W, Huang B, Zhao Q, Fan X. The Profiles of Long Non-coding RNA and mRNA Transcriptome Reveals the Genes and Pathway Potentially Involved in Pasteurella multocida Infection of New Zealand Rabbits. Front Vet Sci 2021; 8:591273. [PMID: 34026883 PMCID: PMC8131872 DOI: 10.3389/fvets.2021.591273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Infection with Pasteurella multocida (P. multocida) causes severe epidemic diseases in rabbits and is responsible for the pronounced economic losses in the livestock industry. Long non-coding RNAs (lncRNAs) have been proven to exert vital functions in regulating the host immune responses to bacterial attacks. However, little is known about how lncRNAs participate in the rabbit's immune response against P. multocida infection in the lungs. LncRNA and mRNA expression profiles were analyzed by transcriptomics and bioinformatics during P. multocida infection. A total of 336 lncRNAs and 7,014 mRNAs were differentially regulated at 1 day and 3 days post infection (dpi). Nearly 80% of the differentially expressed lncRNAs exhibited an increased expression at 3 dpi suggesting that the P. multocida genes are responsible for regulation. Moreover, GO and KEGG enriched analysis indicated that the immune-related pathways including pattern recognition receptors (PRRs), cytokines, and chemokines were significantly enriched at 3 dpi. These results indicate that the dysregulated immune-related genes may play crucial roles in defending against P. multocida attacks. Overall, these results advance our cognition of the role of lncRNAs and mRNAs in modulating the rabbit's innate immune response against P. multocida attacks, which will offer a valuable clue for further studies into exploring P. multocida-related diseases in human.
Collapse
Affiliation(s)
- Jiaqing Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Wenqiang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Bing Huang
- Shandong Provincial Key Laboratory of Poultry Disease Diagnose and Immune, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qiaoya Zhao
- Shandong Provincial Key Laboratory of Poultry Disease Diagnose and Immune, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinzhong Fan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
6
|
Chen Z, Cai Z, Zhu C, Song X, Qin Y, Zhu M, Zhang T, Cui W, Tang H, Zheng H. Injectable and Self-Healing Hydrogel with Anti-Bacterial and Anti-Inflammatory Properties for Acute Bacterial Rhinosinusitis with Micro Invasive Treatment. Adv Healthc Mater 2020; 9:e2001032. [PMID: 32902190 DOI: 10.1002/adhm.202001032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Systemic antibiotic therapy is the main treatment for acute bacterial rhinosinusitis (ABRS). However, this treatment often causes side effects of dizziness, diarrhea, and drug resistance. In this study, a new polyethylene glycol hydrogel (PEG-H) treatment model is developed to achieve sustained release of drugs at the locality while avoiding those adverse effects. The PEG-H is composed of 4-arm-PEG-SH and silver ions through a high affinity and dynamic reversible coordination bond between the thiol and silver ion. In the initial test, PEG-H is loaded with Clarithromycin (CAM-Lips@Hydrogel) or Clarithromycin and Budesonide liposomes (CAM+BUD-Lips@Hydrogel). The results show that PEG-H maintains the characteristics of self-healing, biodegradability, moderate swelling rate, injectibility and sustained drug release. In in vivo studies, the hydrogel is injected into the maxillary sinus of ABRS rabbit models. In both a single or combined load, the hydrogel not only plays an effective role as an anti-bacterial, but also inhibits inflammatory response of local sinus mucosa. In addition, no other side effects are observed in the ABRS rabbit model through behavioral observation and drug sensitivity tests. Therefore, the injectable self-healing hydrogel with anti-bacterial and anti-inflammatory properties provides a new micro invasive therapeutic method for the clinical treatment of ABRS.
Collapse
Affiliation(s)
- Zhengming Chen
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Chengjing Zhu
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Xianmin Song
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Yanghua Qin
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Minhui Zhu
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Tao Zhang
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Haihong Tang
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Hongliang Zheng
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| |
Collapse
|
7
|
Cheng Y, Wang K, Lin L, Zhao X, Pan Z, Zhou Z. Differences in pathogenicity and virulence-associated gene expression among Pasteurella multocida strains with high and low virulence in a lung tissue model. Microb Pathog 2019; 140:103911. [PMID: 31830580 DOI: 10.1016/j.micpath.2019.103911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/01/2022]
Abstract
Pasteurella multocida capsular type A can cause a pulmonary infection, leading to serious pecuniary losses in cattle. The heterogeneity of infection outcome of P. multocida strains showing different virulence may be related to divergent expression of virulence genes. In this study, we compared the transcriptional response of virulence-associated genes in high (PMPAN001) and low (PMPAN007) virulence P. multocida capsular type A strains in lung tissues and in vitro. These clinical isolates differ in their organ bacterial loads, mRNA abundance of the same virulence genes between lung and culture medium, and extent of lung damage. Among the eight virulence-associated genes (fimA, tbpA, exbD, fur, oma87, pmHAS, nanH, and tonB), seven genes showed higher expression in lung compared with in vitro at 16 h (P ≤ 0.05) in PMPAN001, but not in PMPAN007. FimA, exbD, fur, oma87, pmHAS, and tonB gene transcripts showed significantly higher expression in PMPAN001 than in PMPAN007 in the lung tissues at 16 h post-infection (P ≤ 0.05). Specially, the virulence gene, nanH, in both strains was associated with poor expression in vitro and lung tissue (mean relative mRNA abundance values < 0.6). Strain PMPAN001 had a higher proliferation rate in vivo than strain PMPAN007. The bacterial loads of PMPAN001 in the organs increased from 12 h post-infection, with maximum bacteria count ranging from 1 million to 20 million/mg. In addition, lungs treated with PMPAN001 produced serious and extensive lesions marked with inflammation at 20 h. Overall, our results reveal that the highly expressed virulence-associated genes, fimA, exbD, fur, oma87, pmHAS, and tonB can be used as markers for assessing the virulence of P. multocida capsular type A strains.
Collapse
Affiliation(s)
- Yan Cheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - Lishan Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingkai Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Liu Q, Hu Y, Li P, Kong Q. Identification of Fur in Pasteurella multocida and the Potential of Its Mutant as an Attenuated Live Vaccine. Front Vet Sci 2019; 6:5. [PMID: 30778390 PMCID: PMC6369157 DOI: 10.3389/fvets.2019.00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
Pasteurella multocida is a pathogenic microorganism that causes a variety of serious diseases in humans and animals worldwide. The global regulator gene, fur, plays an important role in pathogenesis and regulates the virulence of many bacteria. Here, we identified a fur gene in P. multocida by complementing a Salmonella Choleraesuis Δfur mutant, and characterized a fur mutant strain of P. multocida. The P. multocida Δfur mutant strain exhibited no significant differences in growth and outer membrane protein (OMP) profiles when the complemented strain was compared to the parent. Ducks were used as the model organism to determine the virulence and protection efficacy induced by Δfur mutant strain. Animal experiments showed that colonization by the mutant was decreased by oral infection of live Δfur mutant strain. The LD50 of the ducks infected with the Δfur mutant was 146-fold higher than that of the ducks infected with the wild-type strain when administered through the oral route. Evaluation of the immunogenicity and protective efficacy of the Δfur mutant of P. multocida revealed strong serum IgY and bile IgA immune responses following oral inoculation with the Δfur strain. Ducks that were orally inoculated with the Δfur mutant strain demonstrated 62% protection efficacy against severe lethal challenge with the wild-type P. multocida. This study provides new insights into P. multocida virulence and the potential use of an attenuated vaccine against P. multocida.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunlong Hu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Pei Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Almeida C, Furian T, Borges K, Perdoncini G, Mauel M, Rocha S, Nascimento V, Salle C, Moraes H. Assessment of FTA card employment for Pasteurella multocida DNA transport and detection of virulence-associated genes in strains isolated from fowl cholera in the United States. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Fowl Cholera (FC) is a disease caused by Pasteurella multocida. The severity of this disease is partly caused by virulence factors. Genes encoding fimbriae, capsule, sialidases and proteins for iron metabolism may be related to P. multocida’s ability to infect the host. Besides to examining DNA for the presence of virulence genes, DNA is essential for the diagnostic and FTA cards are an alternative for genetic material transport. The study aims to evaluate the viability of P. multocida DNA transport using the cards and to detect 14 virulence genes in 27 strains isolated from FC cases in the United States by multiplex-PCR. No growth was observed in any of the FTA cards, which was essential to assess the security. Furthermore, DNA detection was possible in 100% of the samples, independent of the storage period (7 to 35 days) and temperature (4°C and 37°C). ptfA, exbd-tonB, hgbA, nanB, oma87, hyaD-hyaC, sodC, hgbB, sodA, nanH and pfhA genes were detected in more than 80% of the samples. FTA cards have proven to be a viable and safe tool for DNA transport of P. multocida. A majority of genes showed a high frequency, which was similar to strains isolated from FC cases.
Collapse
Affiliation(s)
- C.N. Almeida
- Universidade Federal do Rio Grande do Sul, Brazil
| | - T.Q. Furian
- Universidade Federal do Rio Grande do Sul, Brazil
| | - K.A. Borges
- Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | - S.L.S. Rocha
- Universidade Federal do Rio Grande do Sul, Brazil
| | | | - C.T.P. Salle
- Universidade Federal do Rio Grande do Sul, Brazil
| | | |
Collapse
|
10
|
Yap SK, Zakaria Z, Othman SS, Omar AR. In vitro treatment of lipopolysaccharide increases invasion of Pasteurella multocida serotype B:2 into bovine aortic endothelial cells. J Vet Sci 2018; 19:207-215. [PMID: 28693312 PMCID: PMC5879069 DOI: 10.4142/jvs.2018.19.2.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/04/2017] [Accepted: 06/08/2017] [Indexed: 11/22/2022] Open
Abstract
Pasteurella multocida serotype B:2 causes hemorrhagic septicemia in cattle and buffalo. The invasion mechanism of the bacterium when invading the bloodstream is unclear. This study aimed to characterize the effects of immunomodulatory molecules, namely dexamethasone and lipopolysaccharide, on the invasion efficiency of P. multocida serotype B:2 toward bovine aortic endothelial cells (BAECs) and the involvement of actin microfilaments in the invasion mechanism. The results imply that treatment of BAECs with lipopolysaccharide at 100 ng/mL for 24 h significantly increases the intracellular bacteria number per cell (p < 0.01) compared with those in untreated and dexamethasone-treated cells. The lipopolysaccharide-treated cells showed a significant decrease in F-actin expression and an increase in G-actin expression (p < 0.001), indicating actin depolymerization of BAECs. However, no significant differences were detected in the invasion efficiency and actin filament reorganization between the dexamethasone-treated and untreated cells. Transmission electron microscopy showed that P. multocida B:2 resided in a vacuolar compartment of dexamethasone-treated and untreated cells, whereas the bacteria resided in cellular membrane of lipopolysaccharide-treated cells. The results suggest that lipopolysaccharide destabilizes the actin filaments of BAECs, which could facilitate the invasion of P. multocida B:2 into BAECs.
Collapse
Affiliation(s)
- Seng Kar Yap
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Zunita Zakaria
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Siti Sarah Othman
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
11
|
Gulliver EL, Wright A, Lucas DD, Mégroz M, Kleifeld O, Schittenhelm RB, Powell DR, Seemann T, Bulitta JB, Harper M, Boyce JD. Determination of the small RNA GcvB regulon in the Gram-negative bacterial pathogen Pasteurella multocida and identification of the GcvB seed binding region. RNA (NEW YORK, N.Y.) 2018; 24:704-720. [PMID: 29440476 PMCID: PMC5900567 DOI: 10.1261/rna.063248.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/01/2018] [Indexed: 05/12/2023]
Abstract
Pasteurella multocida is a Gram-negative bacterium responsible for many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. Small RNA (sRNA) molecules are critical regulators that act by binding to specific mRNA targets, often in association with the RNA chaperone protein Hfq. In this study, transcriptomic analysis of the P. multocida strain VP161 revealed a putative sRNA with high identity to GcvB from Escherichia coli and Salmonella enterica serovar Typhimurium. High-throughput quantitative liquid proteomics was used to compare the proteomes of the P. multocida VP161 wild-type strain, a gcvB mutant, and a GcvB overexpression strain. These analyses identified 46 proteins that displayed significant differential production after inactivation of gcvB, 36 of which showed increased production. Of the 36 proteins that were repressed by GcvB, 27 were predicted to be involved in amino acid biosynthesis or transport. Bioinformatic analyses of putative P. multocida GcvB target mRNAs identified a strongly conserved 10 nucleotide consensus sequence, 5'-AACACAACAT-3', with the central eight nucleotides identical to the seed binding region present within GcvB mRNA targets in E. coli and S. Typhimurium. Using a defined set of seed region mutants, together with a two-plasmid reporter system that allowed for quantification of sRNA-mRNA interactions, this sequence was confirmed to be critical for the binding of the P. multocida GcvB to the target mRNA, gltA.
Collapse
Affiliation(s)
- Emily L Gulliver
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Amy Wright
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Marianne Mégroz
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Oded Kleifeld
- Monash Biomedical Proteomics Facility, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, Victoria 3800, Australia
| | - Torsten Seemann
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Victorian Life Sciences Computation Initiative, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jürgen B Bulitta
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827, USA
| | - Marina Harper
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - John D Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
KRISHNAMOORTHY P, DAS SANGITA, SHOME BR, ROY PARIMAL. Cytokine gene expression and pathology in experimental Pasteurella multocida infection in mice. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i11.75823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The study was conducted to know the pathology and cytokine gene expression studies in experimental infection with Pasteurella multocida in mice. Swiss albino mice (20) were inoculated with P. multocida (200 μl of 1 × 108 cfu/ml) and control mice with sterile PBS intraperitoneally and sacrificed 4 mice at 6, 12, 18 and 24 h. Mice showed dullness, lethargy and unable to move at 18 and 24 h after inoculation. Histopathology revealed changes in liver, kidney, spleen, lung and no observable changes in heart and abdominal muscles. Liver showed septicemia condition and acute bronchopneumonia of lung at 24 h. TNF-α gene showed 20-fold increase in liver and spleen and 5-folds in kidney. There was upregulation of pro-inflammatory cytokines in liver, kidney, spleen and IL–10 gene at later periods of infection which is a new finding, needs further study. Thus, the present study indicated that increase in tissue cytokine gene expression concurred with histopathological changes were attributed to the pathogenesis of Pasteurellosis in mice.
Collapse
|
13
|
Priya GB, Nagaleekar VK, Milton AAP, Saminathan M, Kumar A, Sahoo AR, Wani SA, Kumar A, Gupta SK, Sahoo AP, Tiwari AK, Agarwal RK, Gandham RK. Genome wide host gene expression analysis in mice experimentally infected with Pasteurella multocida. PLoS One 2017; 12:e0179420. [PMID: 28704394 PMCID: PMC5509158 DOI: 10.1371/journal.pone.0179420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 05/30/2017] [Indexed: 12/25/2022] Open
Abstract
Pasteurella multocida causes acute septicemic and respiratory diseases, including haemorrhagic septicaemia, in cattle and buffalo with case fatality of 100%. In the present study, mice were infected with P. multocida (1.6 × 103 cfu, intraperitoneal) to evaluate host gene expression profile at early and late stages of infection using high throughput microarray transcriptome analyses. Several differentially expressed genes (DEGs) at both the time points were identified in P.multocida infected spleen, liver and lungs. Functional annotation of these DEGs showed enrichment of key pathways such as TLR, NF-κB, MAPK, TNF, JAK-STAT and NOD like receptor signaling pathways. Several DEGs overlapped across different KEGG pathways indicating a crosstalk between them. The predicted protein—protein interaction among these DEGs suggested, that the recognition of P. multocida LPS or outer membrane components by TLR4 and CD14, results in intracellular signaling via MyD88, IRAKs and/or TRAF6 leading to activation of NFκB and MAPK pathways and associated cytokines.
Collapse
Affiliation(s)
- G. Bhuvana Priya
- Division of Bacteriology & Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Viswas Konasagara Nagaleekar
- Division of Bacteriology & Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
- * E-mail: (RKG); (VKN); (RKA)
| | - A. Arun Prince Milton
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - M. Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amod Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amit Ranjan Sahoo
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amit Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - S. K. Gupta
- Division of Livestock and Fishery Management, ICAR Research Complex for Eastern Region (ICAR-RCER), Patna, Bihar, India
| | - Aditya P. Sahoo
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A. K. Tiwari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - R. K. Agarwal
- Division of Bacteriology & Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
- * E-mail: (RKG); (VKN); (RKA)
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
- * E-mail: (RKG); (VKN); (RKA)
| |
Collapse
|
14
|
Pilatti RM, Furian TQ, Lima DA, Finkler F, Brito BG, Salle CTP, Moraes HLS. Establishment of a Pathogenicity Index for One-day-old Broilers to Pasteurella multocida Strains Isolated from Clinical Cases in Poultry and Swine. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2015-0089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- RM Pilatti
- Universidade Federal do Rio Grande do Sul, Brazil
| | - TQ Furian
- Universidade Federal do Rio Grande do Sul, Brazil
| | - DA Lima
- Universidade Federal do Rio Grande do Sul, Brazil
| | - F Finkler
- Instituto de Pesquisas Veterinárias Desidério Finamor, Brazil
| | - BG Brito
- Instituto de Pesquisas Veterinárias Desidério Finamor, Brazil
| | - CTP Salle
- Universidade Federal do Rio Grande do Sul, Brazil
| | - HLS Moraes
- Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Okay S, Kurt Kızıldoğan A. Comparative genome analysis of five Pasteurella multocida strains to decipher the diversification in pathogenicity and host specialization. Gene 2015; 567:58-72. [DOI: 10.1016/j.gene.2015.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/08/2015] [Accepted: 04/23/2015] [Indexed: 01/15/2023]
|
16
|
Complete Genome Sequence of Type Strain Pasteurella multocida subsp. multocida ATCC 43137. GENOME ANNOUNCEMENTS 2014; 2:2/5/e01070-14. [PMID: 25342682 PMCID: PMC4208326 DOI: 10.1128/genomea.01070-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Soft-tissue infection by Pasteurella multocida in humans is usually associated with a dog- or cat-related injury, and these infections can become aggressive. We sequenced the type strain P. multocida subsp. multocida ATCC 43137 into a single closed chromosome consisting of 2,271,840 bp (40.4% G+C content), which is currently available in the NCBI GenBank under the accession number CP008918.
Collapse
|
17
|
Abstract
In a world where most emerging and reemerging infectious diseases are zoonotic in nature and our contacts with both domestic and wild animals abound, there is growing awareness of the potential for human acquisition of animal diseases. Like other Pasteurellaceae, Pasteurella species are highly prevalent among animal populations, where they are often found as part of the normal microbiota of the oral, nasopharyngeal, and upper respiratory tracts. Many Pasteurella species are opportunistic pathogens that can cause endemic disease and are associated increasingly with epizootic outbreaks. Zoonotic transmission to humans usually occurs through animal bites or contact with nasal secretions, with P. multocida being the most prevalent isolate observed in human infections. Here we review recent comparative genomics and molecular pathogenesis studies that have advanced our understanding of the multiple virulence mechanisms employed by Pasteurella species to establish acute and chronic infections. We also summarize efforts being explored to enhance our ability to rapidly and accurately identify and distinguish among clinical isolates and to control pasteurellosis by improved development of new vaccines and treatment regimens.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Host-Microbe Systems Theme of the Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | |
Collapse
|
18
|
Roier S, Fenninger JC, Leitner DR, Rechberger GN, Reidl J, Schild S. Immunogenicity of Pasteurella multocida and Mannheimia haemolytica outer membrane vesicles. Int J Med Microbiol 2013; 303:247-56. [PMID: 23731905 PMCID: PMC3717205 DOI: 10.1016/j.ijmm.2013.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/29/2013] [Accepted: 05/05/2013] [Indexed: 01/29/2023] Open
Abstract
Pasteurella multocida is able to cause disease in humans and in a wide range of animal hosts, including fowl cholera in birds, atrophic rhinitis in pigs, and snuffles in rabbits. Together with Mannheimia haemolytica, P. multocida also represents a major bacterial causative agent of bovine respiratory disease (BRD), which is one of the most important causes for economic losses for the cattle backgrounding and feedlot industry. Commercially available vaccines only partially prevent infections caused by P. multocida and M. haemolytica. Thus, this study characterized the immunogenicity of P. multocida and M. haemolytica outer membrane vesicles (OMVs) upon intranasal immunization of BALB/c mice. Enzyme-linked immunosorbent assays (ELISA) revealed that OMVs derived from P. multocida or M. haemolytica are able to induce robust humoral and mucosal immune responses against the respective donor strain. In addition, also significant cross-immunogenic potential was observed for both OMV types. Colonization studies showed that a potential protective immune response against P. multocida is not only achieved by immunization with P. multocida OMVs, but also by immunization with OMVs derived from M. haemolytica. Immunoblot and immunoprecipitation analyses demonstrated that M. haemolytica OMVs induce a more complex immune response compared to P. multocida OMVs. The outer membrane proteins OmpA, OmpH, and P6 were identified as the three major immunogenic proteins of P. multocida OMVs. Amongst others, the serotype 1-specific antigen, an uncharacterized outer membrane protein, as well as the outer membrane proteins P2 and OmpA were found to be the most important antigens of M. haemolytica OMVs. These findings are useful for the future development of broad-spectrum OMV based vaccines against BRD and other infections caused by P. multocida or M. haemolytica.
Collapse
Affiliation(s)
- Sandro Roier
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
19
|
Kharb S, Charan S. Mouse model of haemorrhagic septicaemia: dissemination and multiplication of Pasteurella multocida B:2 in vital organs after intranasal and subcutaneous challenge in mice. Vet Res Commun 2013; 37:59-63. [PMID: 23239257 DOI: 10.1007/s11259-012-9547-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Haemorrhagic septicaemia (HS) is an endemic disease of bovines, occurring in most tropical regions of Asia and Africa. In the present study, the suitability of using mice to study pathogenesis of HS was assessed using mortality, mean death time and bacterial multiplication in vital organs after infection with live P multocida. Mice were infected with 10(5), 10(3) and 10(1)cfu of P. multocida B:2 via intranasal and subcutaneous routes along with control groups. Bacterial multiplication in lung, liver and spleen of mice were determined at 24 h interval after intranasal and subcutaneous challenge. More than 80 % of challenged mice died within 48 h of inoculation, irrespective of the dose and route of inoculation. A heavy bacterial load (up to 10(8)cfu) was observed in lung, liver and spleen of mice titrated at 24 h and following death of mice. Results of the present study indicate that even ten bacteria are enough to cause mortality in mice and the organism multiplies rapidly in respiratory epithelium and disseminated to other vital organs viz liver and spleen suggesting the important role of mouse model in investigating the pathogenesis and challenge studies during vaccine development.
Collapse
Affiliation(s)
- Subhash Kharb
- Department of Veterinary Microbiology, LLR University of Veterinary and Animal Sciences (erstwhile CCSHAU, Hisar), Hisar, 125004, India.
| | | |
Collapse
|
20
|
Mbuthia PG, Njagi LW, Nyaga PN, Bebora LC, Minga U, Christensen JP, Olsen JE. Time-course investigation of infection with a low virulent Pasteurella multocida strain in normal and immune-suppressed 12-week-old free-range chickens. Avian Pathol 2012; 40:629-37. [PMID: 22107097 DOI: 10.1080/03079457.2011.623298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Twelve-week-old indigenous chickens, either immune-suppressed using dexamethasone (IS) or non-immune-suppressed (NIS), were challenged with a low virulent strain, Pasteurella multocida strain NCTC 10322(T), and developed clinical signs and pathological lesions typical of chronic fowl cholera. NIS birds demonstrated much more severe signs of fowl cholera than IS birds. With few exceptions, signs recorded in IS and NIS birds were of the same types, but significantly milder in the IS birds, indicating that immune suppression does not change the course of infection but rather the severity of signs in fowl cholera. P. multocida signals by fluorescent in situ hybridization (FISH) were observed between 1 h and 14 days in the lungs, trachea, air sacs, liver, spleen, bursa of Fabricius and caecal tonsils, while signals from other organs mostly were observed after 24 h. More organs had FISH signals in NIS birds than in IS birds and at higher frequency per organ. Many organs were positive by FISH even 14 days post infection, and it is suggested that these organs may be likely places for long-term carriage of P. multocida following infection. The present study has demonstrated the spread of P. multocida in different tissues in chickens and distribution of lesions associated with chronic fowl cholera, and pointed to a decrease of pathology in IS birds. Since dexamethasone mostly affects heterophils, the study suggests that these cells play a role in the development of lesions associated with chronic fowl cholera in chickens.
Collapse
Affiliation(s)
- P G Mbuthia
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Kenya
| | | | | | | | | | | | | |
Collapse
|
21
|
Wilkie IW, Harper M, Boyce JD, Adler B. Pasteurella multocida: diseases and pathogenesis. Curr Top Microbiol Immunol 2012; 361:1-22. [PMID: 22643916 DOI: 10.1007/82_2012_216] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pasteurella multocida is an enigmatic pathogen. It is remarkable both for the number and range of specific disease syndromes with which it is associated, and the wide range of host species affected. The pathogenic mechanisms involved in causing the different syndromes are, for the most part, poorly understood or completely unknown. The biochemical and serological properties of some organisms responsible for quite different syndromes appear to be similar. Thus, the molecular basis for host predilection remains unknown. The recent development of genetic manipulation systems together with the availability of multiple genome sequences should help to explain the association of particular pathological conditions with particular hosts as well as helping to elucidate pathogenic mechanisms.
Collapse
Affiliation(s)
- I W Wilkie
- Department of Microbiology, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
22
|
Cytokine profiles, apoptosis and pathology of experimental Pasteurella multocida serotype A1 infection in mice. Res Vet Sci 2010; 89:332-9. [PMID: 20447665 DOI: 10.1016/j.rvsc.2010.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 04/06/2010] [Accepted: 04/13/2010] [Indexed: 11/20/2022]
Abstract
Mice were experimentally infected with Pasteurella multocida serotype A1 to study the cytokine profiles, host cell apoptosis and sequential pathology at different hours of post-infection. Infected mice were dull, anorectic and depressed. A transient leukocytopenia followed by progressive leukocytosis was observed in the course of infection. Serum cytokine profiles showed significantly (P<0.01) higher amount of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and mouse KC) in the infected mice when compared to control mice. The circulating lymphocytes were apoptotic on annexin V staining. Apoptotic nuclei were detected in splenocytes, hepatocytes and infiltrating leukocytes of the lungs on TUNEL staining. The lungs were grossly congested and hemorrhagic, and showed infiltration with polymorphonuclear cells at early and mononuclear cells in the late hours of infection. Alveolar epithelia, inter-alveolar septa and capillary endothelium of the lungs showed ultrastructural changes. Liver had degenerative changes in histological and ultrathin sections.
Collapse
|
23
|
Bite-related and septic syndromes caused by cats and dogs. THE LANCET. INFECTIOUS DISEASES 2009; 9:439-47. [DOI: 10.1016/s1473-3099(09)70110-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Wheeler R. Outer membrane proteomics of Pasteurella multocida isolates to identify putative host-specificity determinants. ACTA ACUST UNITED AC 2009. [DOI: 10.1093/biohorizons/hzp002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
La MV, Raoult D, Renesto P. Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol Rev 2008; 32:440-60. [PMID: 18266740 DOI: 10.1111/j.1574-6976.2008.00103.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA microarrays are a powerful and promising approach to gain a detailed understanding of the bacterial response and the molecular cross-talk that can occur as a consequence of host-pathogen interactions. However, published studies mainly describe the host response to infection. Analysis of bacterial gene regulation in the course of infection has confronted many challenges. This review summarizes the different strategies used over the last few years to investigate, at the genomic scale, and using microarrays, the alterations in the bacterial transcriptome in response to interactions with host cells. Thirty-seven studies involving 19 different bacterial pathogens were compiled and analyzed. Our in silico comparison of the transcription profiles of bacteria grown in broth or in contact with eukaryotic cells revealed some features commonly observed when bacteria interact with host cells, including stringent response and cell surface remodeling.
Collapse
Affiliation(s)
- My-Van La
- Unité des Rickettsies, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, France
| | | | | |
Collapse
|
26
|
Abstract
AbstractPasteurella multocidais a pathogenic Gram-negative bacterium that has been classified into three subspecies, five capsular serogroups and 16 serotypes.P. multocidaserogroup A isolates are bovine nasopharyngeal commensals, bovine pathogens and common isolates from bovine respiratory disease (BRD), both enzootic calf pneumonia of young dairy calves and shipping fever of weaned, stressed beef cattle.P. multocidaA:3 is the most common serotype isolated from BRD, and these isolates have limited heterogeneity based on outer membrane protein (OMP) profiles and ribotyping. Development ofP. multocida-induced pneumonia is associated with environmental and stress factors such as shipping, co-mingling, and overcrowding as well as concurrent or predisposing viral or bacterial infections. Lung lesions consist of an acute to subacute bronchopneumonia that may or may not have an associated pleuritis. Numerous virulence or potential virulence factors have been described for bovine respiratory isolates including adherence and colonization factors, iron-regulated and acquisition proteins, extracellular enzymes such as neuraminidase, lipopolysaccharide, polysaccharide capsule and a variety of OMPs. Immunity of cattle against respiratory pasteurellosis is poorly understood; however, high serum antibodies to OMPs appear to be important for enhancing resistance to the bacterium. Currently availableP. multocidavaccines for use in cattle are predominately traditional bacterins and a live streptomycin-dependent mutant. The field efficacy of these vaccines is not well documented in the literature.
Collapse
|
27
|
Basagoudanavar SH, Singh DK, Varshney BC. Immunization with Outer Membrane Proteins of Pasteurella multocida (6:B) Provides Protection in Mice. ACTA ACUST UNITED AC 2006; 53:524-30. [PMID: 17105574 DOI: 10.1111/j.1439-0442.2006.00900.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The immunoprotective efficacy of Pasteurella multocida (6:B) outer membrane proteins (OMPs) was examined in the mouse model. Bacterial OMPs were extracted using sarkosyl method and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and immunoblotting. Prototype vaccines were prepared using OMPs with adjuvants including dioleoyl phosphatidyl choline-based liposome and Montanide ISA206 water-in oil-in water emulsion. Antibody response to the vaccine was monitored using indirect enzyme linked immunosorbent assay. The results of the study showed that immunized mice had high titre with both the formulations. The vaccinated mice were able to survive a live virulent bacterial challenge. Based on the findings of the study it can be inferred that OMPs are important determinants of immunoprotection hence can serve as vaccine candidates against haemorrhagic septicaemia.
Collapse
Affiliation(s)
- S H Basagoudanavar
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|