1
|
Romanov KA, O'Connor TJ. Legionella pneumophila, a Rosetta stone to understanding bacterial pathogenesis. J Bacteriol 2024; 206:e0032424. [PMID: 39636264 PMCID: PMC11656745 DOI: 10.1128/jb.00324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Legionella pneumophila is an environmentally acquired pathogen that causes respiratory disease in humans. While the discovery of L. pneumophila is relatively recent compared to other bacterial pathogens, over the past 50 years, L. pneumophila has emerged as a powerhouse for studying host-pathogen interactions. In its natural habitat of fresh water, L. pneumophila interacts with a diverse array of protozoan hosts and readily evolve to expand their host range. This has led to the accumulation of the most extensive arsenal of secreted virulence factors described for a bacterial pathogen and their ability to infect humans. Within amoebae and human alveolar macrophages, the bacteria replicate within specialized membrane-bound compartments, establishing L. pneumophila as a model for studying intracellular vacuolar pathogens. In contrast, the virulence factors required for intracellular replication are specifically tailored to individual host cells types, allowing the pathogen to adapt to variation between disparate niches. The broad host range of this pathogen, combined with the extensive diversity and genome plasticity across the Legionella genus, has thus established this bacterium as an archetype to interrogate pathogen evolution, functional genomics, and ecology. In this review, we highlight the features of Legionella that establish them as a versatile model organism, new paradigms in bacteriology and bacterial pathogenesis resulting from the study of Legionella, as well as current and future questions that will undoubtedly expand our understanding of the complex and intricate biology of the microbial world.
Collapse
Affiliation(s)
- Katerina A. Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Balasubramanian D, López-Pérez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 2022; 30:898-911. [DOI: 10.1016/j.tim.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
|
3
|
Koskimäki JJ, Pohjanen J, Kvist J, Fester T, Härtig C, Podolich O, Fluch S, Edesi J, Häggman H, Pirttilä AM. The meristem-associated endosymbiont Methylorubrum extorquens DSM13060 reprograms development and stress responses of pine seedlings. TREE PHYSIOLOGY 2022; 42:391-410. [PMID: 34328183 PMCID: PMC8842435 DOI: 10.1093/treephys/tpab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Microbes living in plant tissues-endophytes-are mainly studied in crop plants where they typically colonize the root apoplast. Trees-a large carbon source with a high capacity for photosynthesis-provide a variety of niches for endophytic colonization. We have earlier identified a new type of plant-endophyte interaction in buds of adult Scots pine, where Methylorubrum species live inside the meristematic cells. The endosymbiont Methylorubrum extorquens DSM13060 significantly increases needle and root growth of pine seedlings without producing plant hormones, but by aggregating around host nuclei. Here, we studied gene expression and metabolites of the pine host induced by M. extorquens DSM13060 infection. Malic acid was produced by pine to potentially boost M. extorquens colonization and interaction. Based on gene expression, the endosymbiont activated the auxin- and ethylene (ET)-associated hormonal pathways through induction of CUL1 and HYL1, and suppressed salicylic and abscisic acid signaling of pine. Infection by the endosymbiont had an effect on pine meristem and leaf development through activation of GLP1-7 and ALE2, and suppressed flowering, root hair and lateral root formation by downregulation of AGL8, plantacyanin, GASA7, COW1 and RALFL34. Despite of systemic infection of pine seedlings by the endosymbiont, the pine genes CUL1, ETR2, ERF3, HYL, GLP1-7 and CYP71 were highly expressed in the shoot apical meristem, rarely in needles and not in stem or root tissues. Low expression of MERI5, CLH2, EULS3 and high quantities of ononitol suggest that endosymbiont promotes viability and protects pine seedlings against abiotic stress. Our results indicate that the endosymbiont positively affects host development and stress tolerance through mechanisms previously unknown for endophytic bacteria, manipulation of plant hormone signaling pathways, downregulation of senescence and cell death-associated genes and induction of ononitol biosynthesis.
Collapse
Affiliation(s)
- Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
| | - Johanna Pohjanen
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00014 Helsinki, Finland
| | - Thomas Fester
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Claus Härtig
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150 03680 Kyiv, Ukraine
| | | | - Jaanika Edesi
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
- Production Systems, Tree Breeding, Natural Resources Institute Finland LUKE, FI-57200 Savonlinna, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
| | | |
Collapse
|
4
|
Kunze M, Steiner T, Chen F, Huber C, Rydzewski K, Stämmler M, Heuner K, Eisenreich W. Metabolic adaption of Legionella pneumophila during intracellular growth in Acanthamoeba castellanii. Int J Med Microbiol 2021; 311:151504. [PMID: 33906075 DOI: 10.1016/j.ijmm.2021.151504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/19/2021] [Accepted: 04/15/2021] [Indexed: 11/15/2022] Open
Abstract
The metabolism of Legionella pneumophila strain Paris was elucidated during different time intervals of growth within its natural host Acanthamoeba castellanii. For this purpose, the amoebae were supplied after bacterial infection (t =0 h) with 11 mM [U-13C6]glucose or 3 mM [U-13C3]serine, respectively, during 0-17 h, 17-25 h, or 25-27 h of incubation. At the end of these time intervals, bacterial and amoebal fractions were separated. Each of these fractions was hydrolyzed under acidic conditions. 13C-Enrichments and isotopologue distributions of resulting amino acids and 3-hydroxybutyrate were determined by gas chromatography - mass spectrometry. Comparative analysis of the labelling patterns revealed the substrate preferences, metabolic pathways, and relative carbon fluxes of the intracellular bacteria and their amoebal host during the time course of the infection cycle. Generally, the bacterial infection increased the usage of exogenous glucose via glycolysis by A. castellanii. In contrast, carbon fluxes via the amoebal citrate cycle were not affected. During the whole infection cycle, intracellular L. pneumophila incorporated amino acids from their host into the bacterial proteins. However, partial bacterial de novo biosynthesis from exogenous 13C-Ser and, at minor rates, from 13C-glucose could be shown for bacterial Ala, Asp, Glu, and Gly. More specifically, the catabolic usage of Ser increased during the post-exponential phase of intracellular growth, whereas glucose was utilized by the bacteria throughout the infection cycle and not only late during infection as assumed on the basis of earlier in vitro experiments. The early usage of 13C-glucose by the intracellular bacteria suggests that glucose availability could serve as a trigger for replication of L. pneumophila inside the vacuoles of host cells.
Collapse
Affiliation(s)
- Mareike Kunze
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| | - Thomas Steiner
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Fan Chen
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Claudia Huber
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Kerstin Rydzewski
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| | - Maren Stämmler
- Proteomics and Spectroscopy, ZBS 6, Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany.
| | - Wolfgang Eisenreich
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany.
| |
Collapse
|
5
|
Autophagy-A Story of Bacteria Interfering with the Host Cell Degradation Machinery. Pathogens 2021; 10:pathogens10020110. [PMID: 33499114 PMCID: PMC7911818 DOI: 10.3390/pathogens10020110] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a highly conserved and fundamental cellular process to maintain cellular homeostasis through recycling of defective organelles or proteins. In a response to intracellular pathogens, autophagy further acts as an innate immune response mechanism to eliminate pathogens. This review will discuss recent findings on autophagy as a reaction to intracellular pathogens, such as Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Staphylococcus aureus, and pathogenic Escherichia coli. Interestingly, while some of these bacteria have developed methods to use autophagy for their own benefit within the cell, others have developed fascinating mechanisms to evade recognition, to subvert the autophagic pathway, or to escape from autophagy.
Collapse
|
6
|
|
7
|
Matsumoto M, Kubota T, Fujita S, Shiozaki K, Kishida S, Yamamoto A. Elucidation of the Interleukin 12 Production Mechanism during Intracellular Bacterial Infection in Amberjack, Seriola dumerili. Infect Immun 2019; 87:e00459-19. [PMID: 31501250 PMCID: PMC6803335 DOI: 10.1128/iai.00459-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
Intracellular bacterial infections affect all vertebrates. Cultured fish are particularly vulnerable because no effective protection measures have been established since such infections emerged approximately 50 years ago. As in other vertebrates, the induction of cell-mediated immunity (CMI) plays an important role in protecting fish against infection. However, details of the mechanism of CMI induction in fish have not been clarified. In the present study, we focused on the production of interleukin 12 (IL-12), an important factor in CMI induction in fish. Using several different approaches, we investigated IL-12 regulation in amberjack (Seriola dumerili), the species most vulnerable to intracellular bacterial disease. The results of promoter assays and transcription factor gene expression analyses showed that the expression of interferon regulatory factor-1 (IRF-1) and activator protein-1 (AP-1) is necessary for IL-12 production. Phagocytosis of living cells (LCs) of Nocardia seriolae bacteria induced IL-12 production in neutrophils, accompanied by IRF-1 and AP-1 gene expression. Bacteria in which the exported repetitive protein (Erp)-like gene was deleted (Δerp-L) could not establish intracellular parasitism or induce IRF-1 and AP-1 expression or IL-12 production, despite being phagocytosed by neutrophils. These data suggest that IL-12 production is regulated by (i) two transcription factors, IRF-1 and AP-1, (ii) phagocytosis of LCs by neutrophils, and (iii) one or more cell components of LCs. Our results enhance the understanding of the immune response to intracellular bacterial infections in vertebrates and could facilitate the discovery of new agents to prevent intracellular bacterial disease.
Collapse
Affiliation(s)
- Megumi Matsumoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Taisei Kubota
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Sinsuke Fujita
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Shosei Kishida
- Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
8
|
Battu L, Ulaganathan K. Whole genome sequencing and identification of host-interactive genes in the rice endophytic Leifsonia sp. ku-ls. Funct Integr Genomics 2019; 20:237-243. [PMID: 31482368 DOI: 10.1007/s10142-019-00713-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/11/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
Abstract
Leifsonia sp. ku-ls is an endophytic bacterial strain colonizing in high numbers the stem and leaf of the high-yielding and widely grown indica rice cultivar RP Bio-226. Whole genome sequencing of this strain using Illumina Hiseq-2500 system resulted in generation of 10,103,994 paired-end reads of 150 nucleotides length. De novo assembly of the reads with A5MySeq resulted in 51 scaffolds. Kmer analysis with KAT estimated the genome size as 3.83 Mbp with 70% GC content. Annotation of the genome resulted in identification of 3930 protein-coding genes, 45 tRNA genes, and 3 rRNA genes. Detailed analysis of the genes predicted resulted in identification of host beneficial genes which include genes associated with hormone production, nitrogen metabolism, and stress response. There is an elaborate defense against oxidative stress present in this bacterium which also can mitigate plant oxidative stress resulting from disease/abiotic stress. Comparison of this endophytic bacterial genome with non-endophytic Leifsonia sp. showed presence of additional genes, increase in copy number of some of the genes and regulators. Many genes with eukaryotic-like domains have also been identified in this bacterium.
Collapse
Affiliation(s)
- Latha Battu
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, Telangana, 500007, India
| | - Kandasamy Ulaganathan
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
9
|
Lee PC, Machner MP. The Legionella Effector Kinase LegK7 Hijacks the Host Hippo Pathway to Promote Infection. Cell Host Microbe 2019; 24:429-438.e6. [PMID: 30212651 DOI: 10.1016/j.chom.2018.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/26/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
The intracellular pathogen Legionella pneumophila encodes translocated effector proteins that modify host cell processes to support bacterial survival and growth. Here, we show that the L. pneumophila effector protein LegK7 hijacks the conserved Hippo signaling pathway by molecularly mimicking host Hippo kinase (MST1 in mammals), which is the key regulator of pathway activation. LegK7, like Hippo/MST1, phosphorylates the scaffolding protein MOB1, which triggers a signaling cascade resulting in the degradation of the transcriptional regulators TAZ and YAP1. Transcriptome analysis revealed that LegK7-mediated targeting of TAZ and YAP1 alters the transcriptional profile of mammalian macrophages, a key cellular target of L. pneumophila infection. Specifically, genes targeted by the transcription factor PPARγ, which is regulated by TAZ, displayed altered expression, and continuous interference with PPARγ activity rendered macrophages less permissive to L. pneumophila intracellular growth. Thus, a conserved L. pneumophila effector kinase exploits the Hippo pathway to promote bacterial growth and infection.
Collapse
Affiliation(s)
- Pei-Chung Lee
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Using an optimal set of features with a machine learning-based approach to predict effector proteins for Legionella pneumophila. PLoS One 2019; 14:e0202312. [PMID: 30682021 PMCID: PMC6347213 DOI: 10.1371/journal.pone.0202312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/12/2019] [Indexed: 12/26/2022] Open
Abstract
Type IV secretion systems exist in a number of bacterial pathogens and are used to secrete effector proteins directly into host cells in order to change their environment making the environment hospitable for the bacteria. In recent years, several machine learning algorithms have been developed to predict effector proteins, potentially facilitating experimental verification. However, inconsistencies exist between their results. Previously we analysed the disparate sets of predictive features used in these algorithms to determine an optimal set of 370 features for effector prediction. This study focuses on the best way to use these optimal features by designing three machine learning classifiers, comparing our results with those of others, and obtaining de novo results. We chose the pathogen Legionella pneumophila strain Philadelphia-1, a cause of Legionnaires’ disease, because it has many validated effector proteins and others have developed machine learning prediction tools for it. While all of our models give good results indicating that our optimal features are quite robust, Model 1, which uses all 370 features with a support vector machine, has slightly better accuracy. Moreover, Model 1 predicted 472 effector proteins that are deemed highly probable to be effectors and include 94% of known effectors. Although the results of our three models agree well with those of other researchers, their models only predicted 126 and 311 candidate effectors.
Collapse
|
11
|
More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc Natl Acad Sci U S A 2019; 116:2265-2273. [PMID: 30659146 DOI: 10.1073/pnas.1808016116] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 Legionella genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Legionella Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to L. pneumophila and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.
Collapse
|
12
|
Flannagan RS, Watson DW, Surewaard BGJ, Kubes P, Heinrichs DE. The surreptitious survival of the emerging pathogen Staphylococcus lugdunensis within macrophages as an immune evasion strategy. Cell Microbiol 2018; 20:e12869. [PMID: 29904997 DOI: 10.1111/cmi.12869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022]
Abstract
Staphylococcus lugdunensis is a commensal bacterium that can cause serious infection suggesting an ability to circumvent aspects of host immunity. We demonstrate here that macrophages fail to kill ingested S. lugdunensis and the bacteria persist for extended periods, without replicating, within mature LAMP-1-positive phagolysosomes. Phagocytosed S. lugdunensis also do not intoxicate host cells in contrast to Staphylococcus aureus. Optimal survival of S. lugdunensis requires O-acetylated peptidoglycan because an oatA mutant, which is more sensitive to killing by lysozyme than wild type, survived to a lesser extent in macrophages. In vitro models of macrophage infection reveal that viable intracellular S. lugdunensis bacteria can be made to grow by pharmacologic perturbation of phagosome function or by phagocyte intoxication by S. aureus toxins. Remarkably, replicating S. lugdunensis is not constrained by LAMP-1 and phosphatidylserine-positive endomembranes, which is distinct from S. aureus that replicates within phagolysosomes. In vivo, S. lugdunensis can also reside in the murine Kupffer cell where the bacteria persist without replicating and require oatA to resist killing in vivo. The intracellular environment of the macrophage represents a niche where S. lugdunensis can exist while protected from extracellular immune factors and may serve as a reservoir from which these bacteria could disseminate.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - David W Watson
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Bas G J Surewaard
- Department of Medical Microbiology, University Medical Centre, Utrecht, The Netherlands
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - David E Heinrichs
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Genomic Insight into Symbiosis-Induced Insect Color Change by a Facultative Bacterial Endosymbiont, " Candidatus Rickettsiella viridis". mBio 2018; 9:mBio.00890-18. [PMID: 29895637 PMCID: PMC6016236 DOI: 10.1128/mbio.00890-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Members of the genus Rickettsiella are bacterial pathogens of insects and other arthropods. Recently, a novel facultative endosymbiont, “Candidatus Rickettsiella viridis,” was described in the pea aphid Acyrthosiphon pisum, whose infection causes a striking host phenotype: red and green genetic color morphs exist in aphid populations, and upon infection with the symbiont, red aphids become green due to increased production of green polycyclic quinone pigments. Here we determined the complete genome sequence of the symbiont. The 1.6-Mb circular genome, harboring some 1,400 protein-coding genes, was similar to the genome of entomopathogenic Rickettsiella grylli (1.6 Mb) but was smaller than the genomes of phylogenetically allied human pathogens Coxiella burnetii (2.0 Mb) and Legionella pneumophila (3.4 Mb). The symbiont’s metabolic pathways exhibited little complementarity to those of the coexisting primary symbiont Buchnera aphidicola, reflecting the facultative nature of the symbiont. The symbiont genome harbored neither polyketide synthase genes nor the evolutionarily allied fatty acid synthase genes that are suspected to catalyze the polycyclic quinone synthesis, indicating that the green pigments are produced not by the symbiont but by the host aphid. The symbiont genome retained many type IV secretion system genes and presumable effector protein genes, whose homologues in L. pneumophila were reported to modulate a variety of the host's cellular processes for facilitating infection and virulence. These results suggest the possibility that the symbiont is involved in the green pigment production by affecting the host’s metabolism using the secretion machineries for delivering the effector molecules into the host cells. Insect body color is relevant to a variety of biological aspects such as species recognition, sexual selection, mimicry, aposematism, and crypsis. Hence, the bacterial endosymbiont “Candidatus Rickettsiella viridis,” which alters aphid body color from red to green, is of ecological interest, given that different predators preferentially exploit either red- or green-colored aphids. Here we determined the complete 1.6-Mb genome of the symbiont and uncovered that, although the red-green color transition was ascribed to upregulated production of green polycyclic quinone pigments, the symbiont genome harbored few genes involved in the polycyclic quinone biosynthesis. Meanwhile, the symbiont genome contained type IV secretion system genes and presumable effector protein genes, whose homologues modulate eukaryotic cellular processes for facilitating infection and virulence in the pathogen Legionella pneumophila. We propose the hypothesis that the symbiont may upregulate the host’s production of polycyclic quinone pigments via cooption of secretion machineries and effector molecules for pathogenicity.
Collapse
|
14
|
Younas F, Soltanmohammadi N, Knapp O, Benz R. The major outer membrane protein of Legionella pneumophila Lpg1974 shows pore-forming characteristics similar to the human mitochondrial outer membrane pore, hVDAC1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1544-1553. [PMID: 29787733 DOI: 10.1016/j.bbamem.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
Legionella pneumophila is an aerobic and nonspore-forming pathogenic Gram-negative bacterium of the genus Legionella. It is the causative agent of Legionnaires' disease, also known as Legionellosis. The hosts of this organism are diverse, ranging from simple water borne protozoans such as amoebae to more complex hosts such as macrophages in humans. Genome analyses have shown the presence of genes coding for eukaryotic like proteins in several Legionella species. The presence of these proteins may assist L. pneumophila in its adaptation to the eukaryotic host. We studied the characteristics of a protein (Lpg1974) of L. pneumophila that shows remarkable homologies in length of the primary sequence and for the identity/homology of many amino acids to the voltage dependent anion channel (human VDAC1, Porin 31HL) of human mitochondria. Two different forms of Lpg1974 were overexpressed in Escherichia coli and purified to homogeneity: the one containing a putative N-terminal signal sequence and one without it. Reconstituted protein containing the signal sequence formed ion-permeable pores in lipid bilayer membranes with a conductance of approximately 5.4 nS in 1 M KCl. When the predicted N-terminal signal peptide of Lpg1974 comprising an α-helical structure similar to that at the N-terminus of hVDAC1 was removed, the channels formed in reconstitution experiments had a conductance of 7.6 nS in 1 M KCl. Both Lpg1974 proteins formed pores that were voltage-dependent and anion-selective similar to the pores formed by hVDAC1. These results suggest that Lpg1974 of L. pneumophila is indeed a structural and functional homologue to hVDAC1.
Collapse
Affiliation(s)
- Farhan Younas
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany
| | - Nafiseh Soltanmohammadi
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany
| | - Oliver Knapp
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany.
| |
Collapse
|
15
|
Esna Ashari Z, Dasgupta N, Brayton KA, Broschat SL. An optimal set of features for predicting type IV secretion system effector proteins for a subset of species based on a multi-level feature selection approach. PLoS One 2018; 13:e0197041. [PMID: 29742157 PMCID: PMC5942808 DOI: 10.1371/journal.pone.0197041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/25/2018] [Indexed: 01/16/2023] Open
Abstract
Type IV secretion systems (T4SS) are multi-protein complexes in a number of bacterial pathogens that can translocate proteins and DNA to the host. Most T4SSs function in conjugation and translocate DNA; however, approximately 13% function to secrete proteins, delivering effector proteins into the cytosol of eukaryotic host cells. Upon entry, these effectors manipulate the host cell’s machinery for their own benefit, which can result in serious illness or death of the host. For this reason recognition of T4SS effectors has become an important subject. Much previous work has focused on verifying effectors experimentally, a costly endeavor in terms of money, time, and effort. Having good predictions for effectors will help to focus experimental validations and decrease testing costs. In recent years, several scoring and machine learning-based methods have been suggested for the purpose of predicting T4SS effector proteins. These methods have used different sets of features for prediction, and their predictions have been inconsistent. In this paper, an optimal set of features is presented for predicting T4SS effector proteins using a statistical approach. A thorough literature search was performed to find features that have been proposed. Feature values were calculated for datasets of known effectors and non-effectors for T4SS-containing pathogens for four genera with a sufficient number of known effectors, Legionella pneumophila, Coxiella burnetii, Brucella spp, and Bartonella spp. The features were ranked, and less important features were filtered out. Correlations between remaining features were removed, and dimensional reduction was accomplished using principal component analysis and factor analysis. Finally, the optimal features for each pathogen were chosen by building logistic regression models and evaluating each model. The results based on evaluation of our logistic regression models confirm the effectiveness of our four optimal sets of features, and based on these an optimal set of features is proposed for all T4SS effector proteins.
Collapse
Affiliation(s)
- Zhila Esna Ashari
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - Nairanjana Dasgupta
- Department of Mathematics and Statistics, Washington State University, Pullman, Washington, United States of America
| | - Kelly A. Brayton
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Shira L. Broschat
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
16
|
Shukla A, Chatterjee A, Kondabagil K. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses. Virus Evol 2018; 4:vex039. [PMID: 29308275 PMCID: PMC5753266 DOI: 10.1093/ve/vex039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption.
Collapse
Affiliation(s)
- Avi Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
17
|
Bhattacharya T, Newton ILG. Mi Casa es Su Casa: how an intracellular symbiont manipulates host biology. Environ Microbiol 2017; 21:10.1111/1462-2920.13964. [PMID: 29076641 PMCID: PMC5924462 DOI: 10.1111/1462-2920.13964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022]
Abstract
Wolbachia pipientis, the most common intracellular infection on the planet, infects 40% of insects as well as nematodes, isopods and arachnids. Wolbachia are obligately intracellular and challenging to study; there are no genetic tools for manipulating Wolbachia nor can they be cultured outside of host cells. Despite these roadblocks, the research community has defined a set of Wolbachia loci involved in host interaction: Wolbachia effectors. Through the use of Drosophila genetics, surrogate systems and biochemistry, the field has begun to define the toolkit Wolbachia use for host manipulation. Below we review recent findings identifying these Wolbachia effectors and point to potential, as yet uncharacterized, links between known phenotypes induced by Wolbachia infection and predicted effectors.
Collapse
Affiliation(s)
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
18
|
Dobrowsky PH, Khan S, Khan W. Resistance of Legionella and Acanthamoeba mauritaniensis to heat treatment as determined by relative and quantitative polymerase chain reactions. ENVIRONMENTAL RESEARCH 2017; 158:82-93. [PMID: 28609649 DOI: 10.1016/j.envres.2017.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/11/2017] [Accepted: 06/04/2017] [Indexed: 06/07/2023]
Abstract
Legionella and Acanthamoeba spp. persist in harvested rainwater pasteurized at high temperatures (> 72°C) and the interaction mechanisms exhibited between these organisms need to be elucidated. The resistance of two Legionella reference strains (Legionella pneumophila ATCC 33152 and Legionella longbeachae ATCC 33462), three environmental strains [Legionella longbeachae (env.), Legionella norrlandica (env.) and Legionella rowbothamii (env.)] and Acanthamoeba mauritaniensis ATCC 50676 to heat treatment (50-90°C) was determined by monitoring culturability and viability [ethidium monoazide quantitative polymerase chain reaction (EMA-qPCR)]. The expression of metabolic and virulence genes of L. pneumophila ATCC 33152 (lolA, sidF, csrA) and L. longbeachae (env.) (lolA) in co-culture with A. mauritaniensis ATCC 50676 during heat treatment (50-90°C) was monitored using relative qPCR. While the culturability (CFU/mL) and viability (gene copies/mL) of the Legionella strains reduced significantly (p < 0.05) following heat treatment (60-90°C), L. longbeachae (env.) and L. pneumophila ATCC 33152 were culturable following heat treatment at 50-60°C. Metabolically active trophozoites and dormant cysts of A. mauritaniensis ATCC 50676 were detected at 50°C and 60-90°C, respectively. For L. pneumophila ATCC 33152, lolA expression remained constant, sidF expression increased and the expression of csrA decreased during co-culture with A. mauritaniensis ATCC 50676. For L. longbeachae (env.), while lolA was up-regulated at 50-70°C, expression was not detected at 80-90°C and in co-culture. In conclusion, while heat treatment may reduce the number of viable Legionella spp. in monoculture, results indicate that the presence of A. mauritaniensis increases the virulence of L. pneumophila during heat treatment. The virulence of Legionella spp. in co-culture with Acanthamoeba spp. should thus be monitored in water distribution systems where temperature (heat) is utilized for treatment.
Collapse
Affiliation(s)
- Penelope H Dobrowsky
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| | - Sehaam Khan
- Faculty of Health and Applied Sciences, Namibia University of Science and Technology,13 Storch Street, Private Bag 13388, Windhoek, Namibia.
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| |
Collapse
|
19
|
Steiner B, Swart AL, Welin A, Weber S, Personnic N, Kaech A, Freyre C, Ziegler U, Klemm RW, Hilbi H. ER remodeling by the large GTPase atlastin promotes vacuolar growth of Legionella pneumophila. EMBO Rep 2017; 18:1817-1836. [PMID: 28835546 DOI: 10.15252/embr.201743903] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 01/31/2023] Open
Abstract
The pathogenic bacterium Legionella pneumophila replicates in host cells within a distinct ER-associated compartment termed the Legionella-containing vacuole (LCV). How the dynamic ER network contributes to pathogen proliferation within the nascent LCV remains elusive. A proteomic analysis of purified LCVs identified the ER tubule-resident large GTPase atlastin3 (Atl3, yeast Sey1p) and the reticulon protein Rtn4 as conserved LCV host components. Here, we report that Sey1/Atl3 and Rtn4 localize to early LCVs and are critical for pathogen vacuole formation. Sey1 overproduction promotes intracellular growth of L. pneumophila, whereas a catalytically inactive, dominant-negative GTPase mutant protein, or Atl3 depletion, restricts pathogen replication and impairs LCV maturation. Sey1 is not required for initial recruitment of ER to PtdIns(4)P-positive LCVs but for subsequent pathogen vacuole expansion. GTP (but not GDP) catalyzes the Sey1-dependent aggregation of purified, ER-positive LCVs in vitro Thus, Sey1/Atl3-dependent ER remodeling contributes to LCV maturation and intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Bernhard Steiner
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Anna Leoni Swart
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Amanda Welin
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Stephen Weber
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zürich, Zürich, Switzerland
| | - Christophe Freyre
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zürich, Zürich, Switzerland
| | - Robin W Klemm
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Prevalence and Virulence Factor Profiles of Legionella pneumophila Isolated from the Cases of Respiratory Tract Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Díez-Vives C, Moitinho-Silva L, Nielsen S, Reynolds D, Thomas T. Expression of eukaryotic-like protein in the microbiome of sponges. Mol Ecol 2017; 26:1432-1451. [PMID: 28036141 DOI: 10.1111/mec.14003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/04/2023]
Abstract
Eukaryotic-like proteins (ELPs) are classes of proteins that are found in prokaryotes, but have a likely evolutionary origin in eukaryotes. ELPs have been postulated to mediate host-microbiome interactions. Recent work has discovered that prokaryotic symbionts of sponges contain abundant and diverse genes for ELPs, which could modulate interactions with their filter-feeding and phagocytic host. However, the extent to which these ELP genes are actually used and expressed by the symbionts is poorly understood. Here, we use metatranscriptomics to investigate ELP expression in the microbiomes of three different sponges (Cymbastella concentrica, Scopalina sp. and Tedania anhelens). We developed a workflow with optimized rRNA removal and in silico subtraction of host sequences to obtain a reliable symbiont metatranscriptome. This showed that between 1.3% and 2.3% of all symbiont transcripts contain genes for ELPs. Two classes of ELPs (cadherin and tetratricopeptide repeats) were abundantly expressed in the C. concentrica and Scopalina sp. microbiomes, while ankyrin repeat ELPs were predominant in the T. anhelens metatranscriptome. Comparison with transcripts that do not encode ELPs indicated a constitutive expression of ELPs across a range of bacterial and archaeal symbionts. Expressed ELPs also contained domains involved in protein secretion and/or were co-expressed with proteins involved in extracellular transport. This suggests these ELPs are likely exported, which could allow for direct interaction with the sponge. Our study shows that ELP genes in sponge symbionts represent actively expressed functions that could mediate molecular interaction between symbiosis partners.
Collapse
Affiliation(s)
- C Díez-Vives
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - L Moitinho-Silva
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - S Nielsen
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - D Reynolds
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - T Thomas
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Dobrowsky PH, Khan S, Cloete TE, Khan W. Molecular detection of Acanthamoeba spp., Naegleria fowleri and Vermamoeba (Hartmannella) vermiformis as vectors for Legionella spp. in untreated and solar pasteurized harvested rainwater. Parasit Vectors 2016; 9:539. [PMID: 27724947 PMCID: PMC5057267 DOI: 10.1186/s13071-016-1829-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/02/2016] [Indexed: 01/01/2023] Open
Abstract
Background Legionella spp. employ multiple strategies to adapt to stressful environments including the proliferation in protective biofilms and the ability to form associations with free-living amoeba (FLA). The aim of the current study was to identify Legionella spp., Acanthamoeba spp., Vermamoeba (Hartmannella) vermiformis and Naegleria fowleri that persist in a harvested rainwater and solar pasteurization treatment system. Methods Pasteurized (45 °C, 65 °C, 68 °C, 74 °C, 84 °C and 93 °C) and unpasteurized tank water samples were screened for Legionella spp. and the heterotrophic plate count was enumerated. Additionally, ethidium monoazide quantitative polymerase chain reaction (EMA-qPCR) was utilized for the quantification of viable Legionella spp., Acanthamoeba spp., V. vermiformis and N. fowleri in pasteurized (68 °C, 74 °C, 84 °C and 93 °C) and unpasteurized tank water samples, respectively. Results Of the 82 Legionella spp. isolated from unpasteurized tank water samples, Legionella longbeachae (35 %) was the most frequently isolated, followed by Legionella norrlandica (27 %) and Legionella rowbothamii (4 %). Additionally, a positive correlation was recorded between the heterotrophic plate count vs. the number of Legionella spp. detected (ρ = 0.710, P = 0.048) and the heterotrophic plate count vs. the number of Legionella spp. isolated (ρ = 0.779, P = 0.0028) from the tank water samples collected. Solar pasteurization was effective in reducing the gene copies of viable V. vermiformis (3-log) and N. fowleri (5-log) to below the lower limit of detection at temperatures of 68–93 °C and 74–93 °C, respectively. Conversely, while the gene copies of viable Legionella and Acanthamoeba were significantly reduced by 2-logs (P = 0.0024) and 1-log (P = 0.0015) overall, respectively, both organisms were still detected after pasteurization at 93 °C. Conclusions Results from this study indicate that Acanthamoeba spp. primarily acts as the vector and aids in the survival of Legionella spp. in the solar pasteurized rainwater as both organisms were detected and were viable at high temperatures (68–93 °C).
Collapse
Affiliation(s)
- Penelope H Dobrowsky
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Sehaam Khan
- Faculty of Health and Applied Sciences, Namibia University of Science and Technology, 13 Storch Street, Private Bag 13388, Windhoek, Namibia
| | - Thomas E Cloete
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
23
|
Mercante JW, Morrison SS, Desai HP, Raphael BH, Winchell JM. Genomic Analysis Reveals Novel Diversity among the 1976 Philadelphia Legionnaires' Disease Outbreak Isolates and Additional ST36 Strains. PLoS One 2016; 11:e0164074. [PMID: 27684472 PMCID: PMC5042515 DOI: 10.1371/journal.pone.0164074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila was first recognized as a cause of severe and potentially fatal pneumonia during a large-scale outbreak of Legionnaires’ disease (LD) at a Pennsylvania veterans’ convention in Philadelphia, 1976. The ensuing investigation and recovery of four clinical isolates launched the fields of Legionella epidemiology and scientific research. Only one of the original isolates, “Philadelphia-1”, has been widely distributed or extensively studied. Here we describe the whole-genome sequencing (WGS), complete assembly, and comparative analysis of all Philadelphia LD strains recovered from that investigation, along with L. pneumophila isolates sharing the Philadelphia sequence type (ST36). Analyses revealed that the 1976 outbreak was due to multiple serogroup 1 strains within the same genetic lineage, differentiated by an actively mobilized, self-replicating episome that is shared with L. pneumophila str. Paris, and two large, horizontally-transferred genomic loci, among other polymorphisms. We also found a completely unassociated ST36 strain that displayed remarkable genetic similarity to the historical Philadelphia isolates. This similar strain implies the presence of a potential clonal population, and suggests important implications may exist for considering epidemiological context when interpreting phylogenetic relationships among outbreak-associated isolates. Additional extensive archival research identified the Philadelphia isolate associated with a non-Legionnaire case of “Broad Street pneumonia”, and provided new historical and genetic insights into the 1976 epidemic. This retrospective analysis has underscored the utility of fully-assembled WGS data for Legionella outbreak investigations, highlighting the increased resolution that comes from long-read sequencing and a sequence type-matched genomic data set.
Collapse
Affiliation(s)
- Jeffrey W. Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shatavia S. Morrison
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Heta P. Desai
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Brian H. Raphael
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jonas M. Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ozanic M, Gobin I, Brezovec M, Marecic V, Trobonjaca Z, Abu Kwaik Y, Santic M. F. novicida-Infected A. castellanii Does Not Enhance Bacterial Virulence in Mice. Front Cell Infect Microbiol 2016; 6:56. [PMID: 27242974 PMCID: PMC4870235 DOI: 10.3389/fcimb.2016.00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/03/2016] [Indexed: 01/02/2023] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium that causes tularemia in humans and animals. Epidemiology of tularemia worldwide is often associated with water-borne transmission, which includes mosquitoes and amoebae as the potential host reservoirs of the bacteria in water environment. In vitro studies showed intracellular replication of F. tularensis within Acanthamoeba castellanii and Hartmanella vermiformis cells. While infection of amoeba by Legionella pneumophila has been shown to enhance infectivity of L. pneumophila the role of F. tularensis-infected protozoa in the pathogenesis of tularemia is not known. We used 6 h coculture of A. castellanii and F. novicida for investigation of the effect of inhaled amoeba on the pathogenesis of tularemia on in vivo model. Balb/c mice were infected intratracheally with F. novicida or with F. novicida-infected A. castellanii. Surprisingly, infection with F. novicida-infected A. castellanii did not lead to bronchopneumonia in Balb/c mice, and Francisella did not disseminate into the liver and spleen. Upon inhalation, F. novicida infects a variety of host cells, though neutrophils are the predominant cells early during infection in the lung infiltrates of pulmonary tularemia. The numbers of neutrophils in the lungs of Balb/c mice were significantly lower in the infection of mice with F. novicida-infected A. castellanii in comparison to group of mice infected only with F. novicida. These results demonstrate that following inoculation of mice with F. novicida-infected A. castellanii, mice did not develop tularemia.
Collapse
Affiliation(s)
- Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Martin Brezovec
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Valentina Marecic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Zlatko Trobonjaca
- Department of Physiology and Immunology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology and Center for Predictive Medicine, College of Medicine, University of LouisvilleLouisville, KY, USA
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| |
Collapse
|
25
|
Beyrakhova KA, van Straaten K, Li L, Boniecki MT, Anderson DH, Cygler M. Structural and Functional Investigations of the Effector Protein LpiR1 from Legionella pneumophila. J Biol Chem 2016; 291:15767-77. [PMID: 27226543 DOI: 10.1074/jbc.m115.708701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 01/14/2023] Open
Abstract
Legionella pneumophila is a causative agent of a severe pneumonia, known as Legionnaires' disease. Legionella pathogenicity is mediated by specific virulence factors, called bacterial effectors, which are injected into the invaded host cell by the bacterial type IV secretion system. Bacterial effectors are involved in complex interactions with the components of the host cell immune and signaling pathways, which eventually lead to bacterial survival and replication inside the mammalian cell. Structural and functional studies of bacterial effectors are, therefore, crucial for elucidating the mechanisms of Legionella virulence. Here we describe the crystal structure of the LpiR1 (Lpg0634) effector protein and investigate the effects of its overexpression in mammalian cells. LpiR1 is an α-helical protein that consists of two similar domains aligned in an antiparallel fashion. The hydrophilic cleft between the domains might serve as a binding site for a potential host cell interaction partner. LpiR1 binds the phosphate group at a conserved site and is stabilized by Mn(2+), Ca(2+), or Mg(2+) ions. When overexpressed in mammalian cells, a GFP-LpiR1 fusion protein is localized in the cytoplasm. Intracellular signaling antibody array analysis revealed small changes in the phosphorylation state of several components of the Akt signaling pathway in HEK293T cells overexpressing LpiR1.
Collapse
Affiliation(s)
| | | | - Lei Li
- From the Department of Biochemistry and
| | | | - Deborah H Anderson
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | |
Collapse
|
26
|
Metabolic Adaptations of Intracellullar Bacterial Pathogens and their Mammalian Host Cells during Infection ("Pathometabolism"). Microbiol Spectr 2016; 3. [PMID: 26185075 DOI: 10.1128/microbiolspec.mbp-0002-2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several bacterial pathogens that cause severe infections in warm-blooded animals, including humans, have the potential to actively invade host cells and to efficiently replicate either in the cytosol or in specialized vacuoles of the mammalian cells. The interaction between these intracellular bacterial pathogens and the host cells always leads to multiple physiological changes in both interacting partners, including complex metabolic adaptation reactions aimed to promote proliferation of the pathogen within different compartments of the host cells. In this chapter, we discuss the necessary nutrients and metabolic pathways used by some selected cytosolic and vacuolar intracellular pathogens and--when available--the links between the intracellular bacterial metabolism and the expression of the virulence genes required for the intracellular bacterial replication cycle. Furthermore, we address the growing evidence that pathogen-specific factors may also trigger metabolic responses of the infected mammalian cells affecting the carbon and nitrogen metabolism as well as defense reactions. We also point out that many studies on the metabolic host cell responses induced by the pathogens have to be scrutinized due to the use of established cell lines as model host cells, as these cells are (in the majority) cancer cells that exhibit a dysregulated primary carbon metabolism. As the exact knowledge of the metabolic host cell responses may also provide new concepts for antibacterial therapies, there is undoubtedly an urgent need for host cell models that more closely reflect the in vivo infection conditions.
Collapse
|
27
|
Personnic N, Bärlocher K, Finsel I, Hilbi H. Subversion of Retrograde Trafficking by Translocated Pathogen Effectors. Trends Microbiol 2016; 24:450-462. [PMID: 26924068 DOI: 10.1016/j.tim.2016.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Intracellular bacterial pathogens subvert the endocytic bactericidal pathway to form specific replication-permissive compartments termed pathogen vacuoles or inclusions. To this end, the pathogens employ type III or type IV secretion systems, which translocate dozens, if not hundreds, of different effector proteins into their host cells, where they manipulate vesicle trafficking and signaling pathways in favor of the intruders. While the distinct cocktail of effectors defines the specific processes by which a pathogen vacuole is formed, the different pathogens commonly target certain vesicle trafficking routes, including the endocytic or secretory pathway. Recently, the retrograde transport pathway from endosomal compartments to the trans-Golgi network emerged as an important route affecting pathogen vacuole formation. Here, we review current insight into the host cell's retrograde trafficking pathway and how vacuolar pathogens of the genera Legionella, Coxiella, Salmonella, Chlamydia, and Simkania employ mechanistically distinct strategies to subvert this pathway, thus promoting intracellular survival and replication.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Kevin Bärlocher
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Ivo Finsel
- Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland; Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany.
| |
Collapse
|
28
|
Labra Á, Arredondo-Zelada O, Flores-Herrera P, Marshall SH, Gómez FA. In sílico identification and characterization of putative Dot/Icm secreted virulence effectors in the fish pathogen Piscirickettsia salmonis. Microb Pathog 2015; 92:11-18. [PMID: 26706346 DOI: 10.1016/j.micpath.2015.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
Abstract
Piscirickettsia salmonis seriously affects the Chilean salmon industry. The bacterium is phylogenetically related to Legionella pneumophila and Coxiella burnetii, sharing a Dot/Icm secretion system with them. Although it is well documented that L. pneumophila and C. burnetii secrete different virulence effectors via this Dot/Icm system in order to attenuate host cell responses, to date there have been no reported virulence effectors secreted by the Dot/Icm system of P. salmonis. Using several annotations of P. salmonis genome, here we report an in silico analyses of 4 putative Dot/Icm effectors. Three of them contain ankyrin repeat domains and the typical conserved 3D structures of this protein family. The fourth one is highly similar to one of the Dot/Icm-dependent effectors of L. pneumophila. Additionally, all the potential P. salmonis effectors contain a classical Dot/Icm secretion signal in their C-terminus, consisting of: an E-Block, a hydrophobic residue in -3 or -4 and an electronegative charge. Finally, qPCR analysis demonstrated that these proteins are overexpressed early in infection, perhaps contributing to the generation of a replicative vacuole, a key step in the neutralizing strategy proposed for the Dot/Icm system. In summary, this report identifies four Dot/Icm-dependent effectors in P. salmonis.
Collapse
Affiliation(s)
- Álvaro Labra
- Laboratorio de Patógenos Acuícolas, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Oscar Arredondo-Zelada
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Patricio Flores-Herrera
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Sergio H Marshall
- Laboratorio de Patógenos Acuícolas, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile; Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile.
| | - Fernando A Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| |
Collapse
|
29
|
McAdam PR, Vander Broek CW, Lindsay DSJ, Ward MJ, Hanson MF, Gillies M, Watson M, Stevens JM, Edwards GF, Fitzgerald JR. Gene flow in environmental Legionella pneumophila leads to genetic and pathogenic heterogeneity within a Legionnaires' disease outbreak. Genome Biol 2015. [PMID: 25370747 PMCID: PMC4256819 DOI: 10.1186/s13059-014-0504-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Legionnaires’ disease is a severe form of pneumonia caused by the environmental bacterium Legionella pneumophila. Outbreaks commonly affect people with known risk factors, but the genetic and pathogenic complexity of L. pneumophila within an outbreak is not well understood. Here, we investigate the etiology of the major Legionnaires’ disease outbreak that occurred in Edinburgh, UK, in 2012, by examining the evolutionary history, genome content, and virulence of L. pneumophila clinical isolates. Results Our high resolution genomic approach reveals that the outbreak was caused by multiple genetic subtypes of L. pneumophila, the majority of which had diversified from a single progenitor through mutation, recombination, and horizontal gene transfer within an environmental reservoir prior to release. In addition, we discover that some patients were infected with multiple L. pneumophila subtypes, a finding which can affect the certainty of source attribution. Importantly, variation in the complement of type IV secretion systems encoded by different genetic subtypes correlates with virulence in a Galleria mellonella model of infection, revealing variation in pathogenic potential among the outbreak source population of L. pneumophila. Conclusions Taken together, our study indicates previously cryptic levels of pathogen heterogeneity within a Legionnaires’ disease outbreak, a discovery that impacts on source attribution for future outbreak investigations. Furthermore, our data suggest that in addition to host immune status, pathogen diversity may be an important influence on the clinical outcome of individual outbreak infections. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0504-1) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
McAdam PR, Vander Broek CW, Lindsay DSJ, Ward MJ, Hanson MF, Gillies M, Watson M, Stevens JM, Edwards GF, Fitzgerald JR. Gene flow in environmental Legionella pneumophila leads to genetic and pathogenic heterogeneity within a Legionnaires' disease outbreak. Genome Biol 2015; 15:504. [PMID: 25370747 DOI: 10.1186/preaccept-1675723368141690] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Legionnaires' disease is a severe form of pneumonia caused by the environmental bacterium Legionella pneumophila. Outbreaks commonly affect people with known risk factors, but the genetic and pathogenic complexity of L. pneumophila within an outbreak is not well understood. Here, we investigate the etiology of the major Legionnaires' disease outbreak that occurred in Edinburgh, UK, in 2012, by examining the evolutionary history, genome content, and virulence of L. pneumophila clinical isolates. RESULTS Our high resolution genomic approach reveals that the outbreak was caused by multiple genetic subtypes of L. pneumophila, the majority of which had diversified from a single progenitor through mutation, recombination, and horizontal gene transfer within an environmental reservoir prior to release. In addition, we discover that some patients were infected with multiple L. pneumophila subtypes, a finding which can affect the certainty of source attribution. Importantly, variation in the complement of type IV secretion systems encoded by different genetic subtypes correlates with virulence in a Galleria mellonella model of infection, revealing variation in pathogenic potential among the outbreak source population of L. pneumophila. CONCLUSIONS Taken together, our study indicates previously cryptic levels of pathogen heterogeneity within a Legionnaires' disease outbreak, a discovery that impacts on source attribution for future outbreak investigations. Furthermore, our data suggest that in addition to host immune status, pathogen diversity may be an important influence on the clinical outcome of individual outbreak infections.
Collapse
|
31
|
Schunder E, Gillmaier N, Kutzner E, Eisenreich W, Herrmann V, Lautner M, Heuner K. Amino Acid Uptake and Metabolism of Legionella pneumophila Hosted by Acanthamoeba castellanii. J Biol Chem 2015; 289:21040-54. [PMID: 24904060 DOI: 10.1074/jbc.m114.570085] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Legionella pneumophila survives and replicates within a Legionella-containing vacuole (LCV) of amoebae and macrophages. Less is known about the carbon metabolism of the bacteria within the LCV. We have now analyzed the transfer and usage of amino acids from the natural host organism Acanthamoeba castellanii to Legionella pneumophila under in vivo (LCV) conditions. For this purpose, A. castellanii was 13C-labeled by incubation in buffer containing [U-(13)C(6)]glucose. Subsequently, these 13C-prelabeled amoebae were infected with L. pneumophila wild type or some mutants defective in putative key enzymes or regulators of carbon metabolism. 13C-Isotopologue compositions of amino acids from bacterial and amoebal proteins were then determined by mass spectrometry. In a comparative approach, the profiles documented the efficient uptake of Acanthamoeba amino acids into the LCV and further into L. pneumophila where they served as precursors for bacterial protein biosynthesis. More specifically, A. castellanii synthesized from exogenous [U-13C6]glucose unique isotopologue mixtures of several amino acids including Phe and Tyr, which were also observed in the same amino acids from LCV-grown L. pneumophila. Minor but significant differences were only detected in the isotopologue profiles of Ala, Asp, and Glu from the amoebal or bacterial protein fractions, respectively, indicating partial de novo synthesis of these amino acids by L. pneumophila. The similar isotopologue patterns in amino acids from L. pneumophila wild type and the mutants under study reflected the robustness of amino acid usage in the LCV of A. castellannii.
Collapse
|
32
|
Scaturro M, Barello C, Giusti MD, Fontana S, Pinci F, Giuffrida MG, Ricci ML. Identification and characterization of genes, encoding the 3-hydroxybutyrate dehydrogenase and a putative lipase, in an avirulent spontaneousLegionella pneumophilaserogroup 6 mutant. APMIS 2014; 123:330-41. [DOI: 10.1111/apm.12349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/22/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Maria Scaturro
- Department of Infectious Parasitic Immune-mediated Diseases; Istituto Superiore di Sanità; Rome Italy
| | - Cristina Barello
- Istituto di Scienze delle Produzioni Alimentari; CNR; Sezione di Torino; Colleretto Giacosa (TO) Italy
| | - Melania De Giusti
- Department of Infectious Parasitic Immune-mediated Diseases; Istituto Superiore di Sanità; Rome Italy
| | - Stefano Fontana
- Department of Infectious Parasitic Immune-mediated Diseases; Istituto Superiore di Sanità; Rome Italy
| | - Federica Pinci
- Department of Infectious Parasitic Immune-mediated Diseases; Istituto Superiore di Sanità; Rome Italy
| | - Maria Gabriella Giuffrida
- Istituto di Scienze delle Produzioni Alimentari; CNR; Sezione di Torino; Colleretto Giacosa (TO) Italy
| | - Maria Luisa Ricci
- Department of Infectious Parasitic Immune-mediated Diseases; Istituto Superiore di Sanità; Rome Italy
| |
Collapse
|
33
|
Pearson JS, Zhang Y, Newton HJ, Hartland EL. Post-modern pathogens: surprising activities of translocated effectors from E. coli and Legionella. Curr Opin Microbiol 2014; 23:73-9. [PMID: 25461576 DOI: 10.1016/j.mib.2014.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 11/16/2022]
Abstract
Many bacterial pathogens have the ability to manipulate cellular processes and interfere with host cell function through the translocation of bacterial 'effector' proteins. Dedicated protein secretion machines from Gram-negative pathogens, including type III, type IV and type VI secretion systems, inject virulence proteins into infected cells, altering normal cell physiology, including cell structure, metabolism, trafficking and signalling. While effectors were once thought to exert an effect simply by their localization and binding to host cell proteins, increasingly effectors are being recognised as enzymes, in some cases mediating highly novel post-translational modifications on host proteins. Here we highlight some of the more unusual activities of translocated effectors from enteropathogenic Escherichia coli and Legionella pneumophila.
Collapse
Affiliation(s)
- Jaclyn S Pearson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Ying Zhang
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia.
| |
Collapse
|
34
|
D'Amato F, Rouli L, Edouard S, Tyczka J, Million M, Robert C, Nguyen TT, Raoult D. The genome of Coxiella burnetii Z3055, a clone linked to the Netherlands Q fever outbreaks, provides evidence for the role of drift in the emergence of epidemic clones. Comp Immunol Microbiol Infect Dis 2014; 37:281-8. [PMID: 25249233 DOI: 10.1016/j.cimid.2014.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Coxiella burnetii is a pathogen causing Q fever. The aim of our work was to study Z3055, a strain that is genotypically related to the strain causing the Netherlands outbreak. We compared Z3055 to 5 other completed genomes available in GenBank. We calculated the blast score ratio (BSR) to analyze genetic differences among the strains. The ratio core genome/pangenome was 98% likely other bacteria with closed pangenomes. Differences between Z3055 and the reference NMI consisted only of point mutations and insertion/deletion (INDELs). Non-synonymous mutations significantly increased in genes coding for membrane proteins (16/156 vs 103/1757, bilateral Chi(2) test, p<0.05), ankyrin repeat domains containing proteins (2/9 vs 117/1904, bilateral Chi(2) test, p<0.05), transcription factors (7/53 vs 112/1860, bilateral Chi(2) test, p<0.05) and translation proteins (15/144 vs 109/1655, bilateral Chi(2) test, p<0.05). The evolution of this strain may have been driven by mutations in critical genes.
Collapse
Affiliation(s)
- Felicetta D'Amato
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Laetitia Rouli
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Sophie Edouard
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Judith Tyczka
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weißenburger Straße 3, Abteilung 7, Karlsruhe 76187, Germany.
| | - Matthieu Million
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Catherine Robert
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Thi Tien Nguyen
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| | - Didier Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| |
Collapse
|
35
|
Horenkamp FA, Mukherjee S, Alix E, Schauder CM, Hubber AM, Roy CR, Reinisch KM. Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic 2014; 15:488-99. [PMID: 24483784 DOI: 10.1111/tra.12158] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 12/21/2022]
Abstract
Tethering proteins play a key role in vesicular transport, ensuring that cargo arrives at a specific destination. The bacterial effector protein SidC and its paralog SdcA have been described as tethering factors encoded by the intracellular pathogen Legionella pneumophila. Here, we demonstrate that SidC proteins are important for early events unique to maturation of vacuoles containing Legionella and discover monoubiquitination of Rab1 as a new SidC-dependent activity. The crystal structure of the SidC N-terminus revealed a novel fold that is important for function and could be involved in Legionella adaptations to evolutionarily divergent host cells it encounters in natural environments.
Collapse
Affiliation(s)
- Florian A Horenkamp
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Price CTD, Richards AM, Von Dwingelo JE, Samara HA, Abu Kwaik Y. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution. Environ Microbiol 2013; 16:350-8. [PMID: 24112119 DOI: 10.1111/1462-2920.12290] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 09/13/2013] [Indexed: 12/28/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy.
Collapse
Affiliation(s)
- Christopher T D Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | | | | | | | | |
Collapse
|
38
|
Lambrecht E, Baré J, Van Damme I, Bert W, Sabbe K, Houf K. Behavior of Yersinia enterocolitica in the presence of the bacterivorous Acanthamoeba castellanii. Appl Environ Microbiol 2013; 79:6407-13. [PMID: 23934496 PMCID: PMC3811209 DOI: 10.1128/aem.01915-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 12/20/2022] Open
Abstract
Free-living protozoa play an important role in the ecology and epidemiology of human-pathogenic bacteria. In the present study, the interaction between Yersinia enterocolitica, an important food-borne pathogen, and the free-living amoeba Acanthamoeba castellanii was studied. Several cocultivation assays were set up to assess the resistance of Y. enterocolitica to A. castellanii predation and the impact of environmental factors and bacterial strain-specific characteristics. Results showed that all Y. enterocolitica strains persist in association with A. castellanii for at least 14 days, and associations with A. castellanii enhanced survival of Yersinia under nutrient-rich conditions at 25°C and under nutrient-poor conditions at 37°C. Amoebae cultivated in the supernatant of one Yersinia strain showed temperature- and time-dependent permeabilization. Intraprotozoan survival of Y. enterocolitica depended on nutrient availability and temperature, with up to 2.8 log CFU/ml bacteria displaying intracellular survival at 7°C for at least 4 days in nutrient-rich medium. Transmission electron microscopy was performed to locate the Yersinia cells inside the amoebae. As Yersinia and Acanthamoeba share similar ecological niches, this interaction identifies a role of free-living protozoa in the ecology and epidemiology of Y. enterocolitica.
Collapse
Affiliation(s)
- E. Lambrecht
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - J. Baré
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - I. Van Damme
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - W. Bert
- Nematology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - K. Sabbe
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - K. Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
39
|
Li T, Lu Q, Wang G, Xu H, Huang H, Cai T, Kan B, Ge J, Shao F. SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Rep 2013; 14:733-40. [PMID: 23797873 DOI: 10.1038/embor.2013.86] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 11/09/2022] Open
Abstract
Transcription of rRNA genes (rDNAs) in the nucleolus is regulated by epigenetic chromatin modifications including histone H3 lysine (de)methylation. Here we show that LegAS4, a Legionella pneumophila type IV secretion system (TFSS) effector, is targeted to specific rDNA chromatin regions in the host nucleolus. LegAS4 promotes rDNA transcription, through its SET-domain (named after Drosophila Su(var)3-9, enhancer of zeste [E(z)], and trithorax [trx]) histone lysine methyltransferase (HKMTase) activity. LegAS4's association with rDNA chromatin is mediated by interaction with host HP1α/γ. L. pneumophila infection potently activates rDNA transcription in a TFSS-dependent manner. Other bacteria, including Bordetella bronchiseptica and Burkholderia thailandensis, also harbour nucleolus-localized LegAS4-like HKMTase effectors. The B. thailandensis type III effector BtSET promotes H3K4 methylation of rDNA chromatin, contributing to infection-induced rDNA transcription and bacterial intracellular replication. Thus, activation of host rDNA transcription might be a general bacterial virulence strategy.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, 102206, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gomez-Valero L, Buchrieser C. Genome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication. Cold Spring Harb Perspect Med 2013; 3:3/6/a009993. [PMID: 23732852 DOI: 10.1101/cshperspect.a009993] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Legionella pneumophila is a bacterial pathogen present in aquatic environments that can cause a severe pneumonia called Legionnaires' disease. Soon after its recognition, it was shown that Legionella replicates inside amoeba, suggesting that bacteria replicating in environmental protozoa are able to exploit conserved signaling pathways in human phagocytic cells. Comparative, evolutionary, and functional genomics suggests that the Legionella-amoeba interaction has shaped this pathogen more than previously thought. A complex evolutionary scenario involving mobile genetic elements, type IV secretion systems, and horizontal gene transfer among Legionella, amoeba, and other organisms seems to take place. This long-lasting coevolution led to the development of very sophisticated virulence strategies and a high level of temporal and spatial fine-tuning of bacteria host-cell interactions. We will discuss current knowledge of the evolution of virulence of Legionella from a genomics perspective and propose our vision of the emergence of this human pathogen from the environment.
Collapse
Affiliation(s)
- Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, 75724 Paris, France
| | | |
Collapse
|
41
|
Abstract
Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.
Collapse
Affiliation(s)
- Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | | |
Collapse
|
42
|
Poirier V, Av-Gay Y. Mycobacterium tuberculosis modulators of the macrophage's cellular events. Microbes Infect 2012; 14:1211-9. [PMID: 22841679 DOI: 10.1016/j.micinf.2012.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
Abstract
A number of mycobacterial macromolecules have been shown to target biological processes within host macrophages; however, the exact mechanism for the majority of these host-pathogen interactions is poorly understood. The following review summarizes current knowledge and expands on a subset of mycobacterial effectors for which a cognate substrate, cellular partner or signaling pathway have been experimentally identified within the human host.
Collapse
Affiliation(s)
- Valérie Poirier
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
43
|
Weber SS, Joller N, Küntzel AB, Spörri R, Tchang VS, Scandella E, Rösli C, Ludewig B, Hilbi H, Oxenius A. Identification of Protective B Cell Antigens ofLegionella pneumophila. THE JOURNAL OF IMMUNOLOGY 2012; 189:841-9. [DOI: 10.4049/jimmunol.1200794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Ensminger AW, Yassin Y, Miron A, Isberg RR. Experimental evolution of Legionella pneumophila in mouse macrophages leads to strains with altered determinants of environmental survival. PLoS Pathog 2012; 8:e1002731. [PMID: 22693450 PMCID: PMC3364954 DOI: 10.1371/journal.ppat.1002731] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 04/19/2012] [Indexed: 12/03/2022] Open
Abstract
The Gram-negative bacterium, Legionella pneumophila, is a protozoan parasite and accidental intracellular pathogen of humans. We propose a model in which cycling through multiple protozoan hosts in the environment holds L. pneumophila in a state of evolutionary stasis as a broad host-range pathogen. Using an experimental evolution approach, we tested this hypothesis by restricting L. pneumophila to growth within mouse macrophages for hundreds of generations. Whole-genome resequencing and high-throughput genotyping identified several parallel adaptive mutations and population dynamics that led to improved replication within macrophages. Based on these results, we provide a detailed view of the population dynamics of an experimentally evolving bacterial population, punctuated by frequent instances of transient clonal interference and selective sweeps. Non-synonymous point mutations in the flagellar regulator, fleN, resulted in increased uptake and broadly increased replication in both macrophages and amoebae. Mutations in multiple steps of the lysine biosynthesis pathway were also independently isolated, resulting in lysine auxotrophy and reduced replication in amoebae. These results demonstrate that under laboratory conditions, host restriction is sufficient to rapidly modify L. pneumophila fitness and host range. We hypothesize that, in the environment, host cycling prevents L. pneumophila host-specialization by maintaining pathways that are deleterious for growth in macrophages and other hosts. Legionella pneumophila is an accidental pathogen of humans, responsible for the severe, often-fatal pneumonia known as Legionnaires' disease. In the environment, L. pneumophila survives and replicates within protozoa by co-opting the intracellular machinery of these microbial predators. These freshwater encounters between bacteria and protozoa likely provided L. pneumophila with the selective pressures required to evolve into an intracellular pathogen. Many of the host pathways that L. pneumophila manipulates during infection are highly conserved and this is presumably what allows L. pneumophila to infect human cells. It is likely that L. pneumophila is suboptimally adapted to replication within mammalian cells, however, as replication within human cells is thought to be an evolutionary dead end. In this study, we developed an experimental evolution approach to determine what unique selective pressures might be present within mammalian hosts and how these pressures might modify this pathogen. We subjected L. pneumophila to continuous passage within mouse macrophages for several months, selecting for spontaneous mutations that resulted in improved fitness within these cells. We sequenced the genomes of each of the adapted strains, measured the population dynamics of each evolving population, and identified mutations that improve replication in mammalian cells and alter bacterial fitness in amoebae.
Collapse
Affiliation(s)
- Alexander W. Ensminger
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- * E-mail: (AWE); (RRI)
| | - Yosuf Yassin
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Alexander Miron
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Ralph R. Isberg
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (AWE); (RRI)
| |
Collapse
|
45
|
Bacterial autophagy: restriction or promotion of bacterial replication? Trends Cell Biol 2012; 22:283-91. [PMID: 22555009 DOI: 10.1016/j.tcb.2012.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022]
Abstract
In order to survive inside the host cell, bacterial pathogens have evolved a variety of mechanisms to avoid or interfere with innate immune defenses. Several reports have shown that bacterial pathogens are targeted by the autophagy pathway, and autophagy has been increasingly recognized as an important defense mechanism to clear intracellular microbes. However, it now appears that some bacterial pathogens have evolved mechanisms to evade autophagic recognition or even co-opt the autophagy machinery for their own benefit as a replicative niche. A complete understanding of bacterial autophagy in vivo shall be critical to exploit autophagy and its therapeutic potential.
Collapse
|
46
|
Tiaden A, Hilbi H. α-Hydroxyketone synthesis and sensing by Legionella and Vibrio. SENSORS 2012; 12:2899-919. [PMID: 22736983 PMCID: PMC3376566 DOI: 10.3390/s120302899] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 01/09/2023]
Abstract
Bacteria synthesize and sense low molecular weight signaling molecules, termed autoinducers, to measure their population density and community complexity. One class of autoinducers, the α-hydroxyketones (AHKs), is produced and detected by the water-borne opportunistic pathogens Legionella pneumophila and Vibrio cholerae, which cause Legionnaires’ disease and cholera, respectively. The “Legionella quorum sensing” (lqs) or “cholera quorum sensing” (cqs) genes encode enzymes that produce and sense the AHK molecules “Legionella autoinducer-1” (LAI-1; 3-hydroxypentadecane-4-one) or cholera autoinducer-1 (CAI-1; 3-hydroxytridecane-4-one). AHK signaling regulates the virulence of L. pneumophila and V. cholerae, pathogen-host cell interactions, formation of biofilms or extracellular filaments, expression of a genomic “fitness island” and competence. Here, we outline the processes, wherein AHK signaling plays a role, and review recent insights into the function of proteins encoded by the lqs and cqs gene clusters. To this end, we will focus on the autoinducer synthases catalysing the biosynthesis of AHKs, on the cognate trans-membrane sensor kinases detecting the signals, and on components of the down-stream phosphorelay cascade that promote the transmission and integration of signaling events regulating gene expression.
Collapse
Affiliation(s)
- André Tiaden
- Competence Center for Applied Biotechnology and Molecular Medicine, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; E-Mail:
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-89-5160-5264; Fax: +49-89-5160-5223
| |
Collapse
|
47
|
Cheng W, Yin K, Lu D, Li B, Zhu D, Chen Y, Zhang H, Xu S, Chai J, Gu L. Structural insights into a unique Legionella pneumophila effector LidA recognizing both GDP and GTP bound Rab1 in their active state. PLoS Pathog 2012; 8:e1002528. [PMID: 22416225 PMCID: PMC3295573 DOI: 10.1371/journal.ppat.1002528] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/26/2011] [Indexed: 01/07/2023] Open
Abstract
The intracellular pathogen Legionella pneumophila hijacks the endoplasmic reticulum (ER)-derived vesicles to create an organelle designated Legionella-containing vacuole (LCV) required for bacterial replication. Maturation of the LCV involved acquisition of Rab1, which is mediated by the bacterial effector protein SidM/DrrA. SidM/DrrA is a bifunctional enzyme having the activity of both Rab1-specific GDP dissociation inhibitor (GDI) displacement factor (GDF) and guanine nucleotide exchange factor (GEF). LidA, another Rab1-interacting bacterial effector protein, was reported to promote SidM/DrrA-mediated recruitment of Rab1 to the LCV as well. Here we report the crystal structures of LidA complexes with GDP- and GTP-bound Rab1 respectively. Structural comparison revealed that GDP-Rab1 bound by LidA exhibits an active and nearly identical conformation with that of GTP-Rab1, suggesting that LidA can disrupt the switch function of Rab1 and render it persistently active. As with GTP, LidA maintains GDP-Rab1 in the active conformation through interaction with its two conserved switch regions. Consistent with the structural observations, biochemical assays showed that LidA binds to GDP- and GTP-Rab1 equally well with an affinity approximately 7.5 nM. We propose that the tight interaction with Rab1 allows LidA to facilitate SidM/DrrA-catalyzed release of Rab1 from GDIs. Taken together, our results support a unique mechanism by which a bacterial effector protein regulates Rab1 recycling.
Collapse
Affiliation(s)
- Wei Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Kun Yin
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
- Shandong Institute of Parasitical Diseases, Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Defen Lu
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
| | - Bingqing Li
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
| | - Deyu Zhu
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
| | - Yuzhen Chen
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Hao Zhang
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
| | - Sujuan Xu
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
| | - Jijie Chai
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- * E-mail: (LG); (JC)
| | - Lichuan Gu
- Key Laboratory for Protein Sciences of Ministry of Education, School of Biological Sciences, Tsinghua University, Beijing, China
- * E-mail: (LG); (JC)
| |
Collapse
|
48
|
Lockwood S, Voth DE, Brayton KA, Beare PA, Brown WC, Heinzen RA, Broschat SL. Identification of Anaplasma marginale type IV secretion system effector proteins. PLoS One 2011; 6:e27724. [PMID: 22140462 PMCID: PMC3225360 DOI: 10.1371/journal.pone.0027724] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/23/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS). The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now. RESULTS By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141) of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system. CONCLUSIONS The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.
Collapse
Affiliation(s)
- Svetlana Lockwood
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
| | - Daniel E. Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Kelly A. Brayton
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Wendy C. Brown
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Shira L. Broschat
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
49
|
Ge J, Shao F. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell Microbiol 2011; 13:1870-80. [PMID: 21981078 DOI: 10.1111/j.1462-5822.2011.01710.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, infects and replicates in macrophages and amoebas. Following internalization, L. pneumophila resides in a vacuole structure called Legionella-containing vacuole (LCV). The LCV escapes from the endocytic maturation process and avoids fusion with the lysosome, a hallmark of Legionella pathogenesis. Interference with the secretory vesicle transport and avoiding lysosomal targeting render the LCV permissive for L. pneumophila intracellular replication. Central to L. pneumophila pathogenesis is a defect in the organelle trafficking/intracellular multiplication (Dot/Icm) type IV secretion system that translocates a large number of effector proteins into host cells. Many of the Dot/Icm effectors employ diverse and sophisticated biochemical strategies to manipulate the host vesicular transport system, playing an important role in LCV biogenesis and trafficking. Similar to other bacterial pathogens, L. pneumophila also delivers effector proteins to modulate or counteract host innate immune defence pathways such as the NF-κB and apoptotic signalling. This review summarizes the known functions and mechanisms of Dot/Icm effectors that target host membrane trafficking and innate immune defence pathways.
Collapse
Affiliation(s)
- Jianning Ge
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | | |
Collapse
|
50
|
Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C. Comparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol 2011; 2:208. [PMID: 22059087 PMCID: PMC3203374 DOI: 10.3389/fmicb.2011.00208] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/23/2011] [Indexed: 11/20/2022] Open
Abstract
Although best known for its ability to cause severe pneumonia in people whose immune defenses are weakened, Legionella pneumophila and Legionella longbeachae are two species of a large genus of bacteria that are ubiquitous in nature, where they parasitize protozoa. Adaptation to the host environment and exploitation of host cell functions are critical for the success of these intracellular pathogens. The establishment and publication of the complete genome sequences of L. pneumophila and L. longbeachae isolates paved the way for major breakthroughs in understanding the biology of these organisms. In this review we present the knowledge gained from the analyses and comparison of the complete genome sequences of different L. pneumophila and L. longbeachae strains. Emphasis is given on putative virulence and Legionella life cycle related functions, such as the identification of an extended array of eukaryotic like proteins, many of which have been shown to modulate host cell functions to the pathogen’s advantage. Surprisingly, many of the eukaryotic domain proteins identified in L. pneumophila as well as many substrates of the Dot/Icm type IV secretion system essential for intracellular replication are different between these two species, although they cause the same disease. Finally, evolutionary aspects regarding the eukaryotic like proteins in Legionella are discussed.
Collapse
Affiliation(s)
- Laura Gomez-Valero
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires Paris, France
| | | | | | | |
Collapse
|