1
|
Alvarez Hayes J, Blancá B, Gorgojo JP, Baroli C, Carrica MDC, Rodriguez ME. Bordetella pertussis outer membrane vesicles impair neutrophil bactericidal activity. Microbes Infect 2024; 26:105375. [PMID: 38849071 DOI: 10.1016/j.micinf.2024.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Neutrophils constitute the primary defense against bacterial infections, yet certain pathogens express virulence factors that enable them to subvert neutrophils-mediated killing. Outer membrane vesicles (OMVs) have emerged as a secretory system through which bacteria deliver virulence factors to host cells. OMVs from Bordetella pertussis, the etiological agent of whooping cough, are loaded with most of bacterial virulence factors, including CyaA, which plays a key role in B. pertussis evasion of neutrophils bactericidal activity. In our study, we investigated the role of B. pertussis OMVs in bacterial interaction with neutrophils. We observed that interaction of OMVs with neutrophils led to a decrease in the expression of cell surface CR3 and FcγRs, an effect dependent on the CyaA toxin delivered by these vesicles. This decreased receptor expression led to reduced bacterial uptake by neutrophils, irrespective of the presence of opsonic antibodies. Moreover, CyaA delivered by OMVs hindered intracellular bactericidal trafficking, promoting bacterial intracellular survival. When both bacteria and OMVs were opsonized, competition between opsonized OMVs and B. pertussis for FcγRs on neutrophils led to a significant decrease in bacterial uptake. Overall, our findings suggest that B. pertussis OMVs promote bacterial survival to the encounter with neutrophils in both naïve and immunized individuals.
Collapse
Affiliation(s)
- Jimena Alvarez Hayes
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina.
| | - Bruno Blancá
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Carlos Baroli
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | | | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| |
Collapse
|
2
|
Parrish KM, Gestal MC. Eosinophils as drivers of bacterial immunomodulation and persistence. Infect Immun 2024; 92:e0017524. [PMID: 39007622 PMCID: PMC11385729 DOI: 10.1128/iai.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Traditionally, eosinophils have been linked to parasitic infections and pathological disease states. However, emerging literature has unveiled a more nuanced and intricate role for these cells, demonstrating their key functions in maintaining mucosal homeostasis. Eosinophils exhibit diverse phenotypes and exert multifaceted effects during infections, ranging from promoting pathogen persistence to triggering allergic reactions. Our investigations primarily focus on Bordetella spp., with particular emphasis on Bordetella bronchiseptica, a natural murine pathogen that induces diseases in mice akin to pertussis in humans. Recent findings from our published work have unveiled a striking interaction between B. bronchiseptica and eosinophils, facilitated by the btrS-mediated mechanism. This interaction serves to enhance pathogen persistence while concurrently delaying adaptive immune responses. Notably, this role of eosinophils is only noted in the absence of a functional btrS signaling pathway, indicating that wild-type B. bronchiseptica, and possibly other Bordetella spp., possess such adeptness in manipulating eosinophils that the true function of these cells remains obscured during infection. In this review, we present the mounting evidence pointing toward eosinophils as targets of bacterial exploitation, facilitating pathogen persistence and fostering chronic infections in diverse mucosal sites, including the lungs, gut, and skin. We underscore the pivotal role of the master regulator of Bordetella pathogenesis, the sigma factor BtrS, in orchestrating eosinophil-dependent immunomodulation within the context of pulmonary infection. These putative convergent strategies of targeting eosinophils offer promising avenues for the development of novel therapeutics targeting respiratory and other mucosal pathogens.
Collapse
Affiliation(s)
- Katelyn M. Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
3
|
Lepesheva A, Grobarcikova M, Osickova A, Jurnecka D, Knoblochova S, Cizkova M, Osicka R, Sebo P, Masin J. Modification of the RTX domain cap by acyl chains of adapted length rules the formation of functional hemolysin pores. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184311. [PMID: 38570122 DOI: 10.1016/j.bbamem.2024.184311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The acylated pore-forming Repeats in ToXin (RTX) cytolysins α-hemolysin (HlyA) and adenylate cyclase toxin (CyaA) preferentially bind to β2 integrins of myeloid leukocytes but can also promiscuously bind and permeabilize cells lacking the β2 integrins. We constructed a HlyA1-563/CyaA860-1706 chimera that was acylated either by the toxin-activating acyltransferase CyaC, using sixteen carbon-long (C16) acyls, or by the HlyC acyltransferase using fourteen carbon-long (C14) acyls. Cytolysin assays with the C16- or C14-acylated HlyA/CyaA chimeric toxin revealed that the RTX domain of CyaA can functionally replace the RTX domain of HlyA only if it is modified by C16-acyls on the Lys983 residue of CyaA. The C16-monoacylated HlyA/CyaA chimera was as pore-forming and cytolytic as native HlyA, whereas the C14-acylated chimera exhibited very low pore-forming activity. Hence, the capacity of the RTX domain of CyaA to support the insertion of the N-terminal pore-forming domain into the target cell membrane, and promote formation of toxin pores, strictly depends on the modification of the Lys983 residue by an acyl chain of adapted length.
Collapse
Affiliation(s)
- Anna Lepesheva
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Michaela Grobarcikova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Knoblochova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Cai Y, Chen C, Sun T, Li G, Wang W, Zhao H, An T. Mariculture waters as yet another hotbed for the creation and transfer of new antibiotic-resistant pathogenome. ENVIRONMENT INTERNATIONAL 2024; 187:108704. [PMID: 38692150 DOI: 10.1016/j.envint.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
With the rapid growth of aquaculture globally, large amounts of antibiotics have been used to treat aquatic disease, which may accelerate induction and spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in aquaculture environments. Herein, metagenomic and 16S rRNA analyses were used to analyze the potentials and co-occurrence patterns of pathogenome (culturable and unculturable pathogens), antibiotic resistome (ARGs), and mobilome (mobile genetic elements (MGEs)) from mariculture waters near 5000 km coast of South China. Total 207 species of pathogens were identified, with only 10 culturable species. Furthermore, more pathogen species were detected in mariculture waters than those in coastal waters, and mariculture waters were prone to become reservoirs of unculturable pathogens. In addition, 913 subtypes of 21 ARG types were also identified, with multidrug resistance genes as the majority. MGEs including plasmids, integrons, transposons, and insertion sequences were abundantly present in mariculture waters. The co-occurrence network pattern between pathogenome, antibiotic resistome, and mobilome suggested that most of pathogens may be potential multidrug resistant hosts, possibly due to high frequency of horizontal gene transfer. These findings increase our understanding of mariculture waters as reservoirs of antibiotic resistome and mobilome, and as yet another hotbed for creation and transfer of new antibiotic-resistant pathogenome.
Collapse
Affiliation(s)
- Yiwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunliang Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tong Sun
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Huijun Zhao
- Centre for Clean Environment and Energy, and Griffith School of Environment, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Abettan A, Nguyen MH, Ladant D, Monticelli L, Chenal A. CyaA translocation across eukaryotic cell membranes. Front Mol Biosci 2024; 11:1359408. [PMID: 38584704 PMCID: PMC10995232 DOI: 10.3389/fmolb.2024.1359408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
- Amiel Abettan
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, Lyon, France
| | - Minh-Ha Nguyen
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Université de Paris Cité, Paris, France
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, Paris, France
| | - Daniel Ladant
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Université de Paris Cité, Paris, France
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Alexandre Chenal
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
- Université de Paris Cité, Paris, France
| |
Collapse
|
6
|
Kraina P, Česnek M, Tloušťová E, Mertlíková-Kaiserová H, Fulton CJ, Davidson EK, Smith BP, Watts VJ, Janeba Z. Discovery of a potent and selective human AC2 inhibitor based on 7-deazapurine analogues of adefovir. Bioorg Med Chem 2023; 95:117508. [PMID: 37931521 PMCID: PMC10842932 DOI: 10.1016/j.bmc.2023.117508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
Adefovir based acyclic nucleoside phosphonates were previously shown to modulate bacterial and, to a certain extent, human adenylate cyclases (mACs). In this work, a series of 24 novel 7-substituted 7-deazaadefovir analogues were synthesized in the form of prodrugs. Twelve analogues were single-digit micromolar inhibitors of Bordetella pertussis adenylate cyclase toxin with no cytotoxicity to J774A.1 macrophages. In HEK293 cell-based assays, compound 14 was identified as a potent (IC50 = 4.45 μM), non-toxic, and selective mAC2 inhibitor (vs. mAC1 and mAC5). Such a compound represents a valuable addition to a limited number of small-molecule probes to study the biological functions of individual endogenous mAC isoforms.
Collapse
Affiliation(s)
- Pavel Kraina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic; Department of Organic Chemistry, University of Chemistry and Technology Prague, 16628 Prague 6, Czech Republic
| | - Michal Česnek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Camryn J Fulton
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Emily K Davidson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Brenton P Smith
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic.
| |
Collapse
|
7
|
Chen G, Wang H, Bumba L, Masin J, Sebo P, Li H. The adenylate cyclase toxin RTX domain follows a series templated folding mechanism with implications for toxin activity. J Biol Chem 2023; 299:105150. [PMID: 37567473 PMCID: PMC10511787 DOI: 10.1016/j.jbc.2023.105150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Goldsmith JA, DiVenere AM, Maynard JA, McLellan JS. Structural basis for non-canonical integrin engagement by Bordetella adenylate cyclase toxin. Cell Rep 2022; 40:111196. [PMID: 35977491 PMCID: PMC9416875 DOI: 10.1016/j.celrep.2022.111196] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Integrins are ubiquitous cell-surface heterodimers that are exploited by pathogens and toxins, including leukotoxins that target β2 integrins on phagocytes. The Bordetella adenylate cyclase toxin (ACT) uses the αMβ2 integrin as a receptor, but the structural basis for integrin binding and neutralization by antibodies is poorly understood. Here, we use cryoelectron microscopy to determine a 2.7 Å resolution structure of an ACT fragment bound to αMβ2. This structure reveals that ACT interacts with the headpiece and calf-2 of the αM subunit in a non-canonical manner specific to bent, inactive αMβ2. Neutralizing antibody epitopes map to ACT residues involved in αM binding, providing the basis for antibody-mediated attachment inhibition. Furthermore, binding to αMβ2 positions the essential ACT acylation sites, which are conserved among toxins exported by type I secretion systems, at the cell membrane. These findings reveal a structural mechanism for integrin-mediated attachment and explain antibody-mediated neutralization of ACT intoxication.
Collapse
Affiliation(s)
- Jory A Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea M DiVenere
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Four Cholesterol-Recognition Motifs in the Pore-Forming and Translocation Domains of Adenylate Cyclase Toxin Are Essential for Invasion of Eukaryotic Cells and Lysis of Erythrocytes. Int J Mol Sci 2022; 23:ijms23158703. [PMID: 35955837 PMCID: PMC9369406 DOI: 10.3390/ijms23158703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Adenylate Cyclase Toxin (ACT or CyaA) is one of the important virulence factors secreted by Bordetella pertussis, the bacterium causative of whooping cough. ACT debilitates host defenses by production of unregulated levels of cAMP into the cell cytosol upon delivery of its N-terminal domain with adenylate cyclase activity (AC domain) and by forming pores in the plasma membrane of macrophages. Binding of soluble toxin monomers to the plasma membrane of target cells and conversion into membrane-integrated proteins are the first and last step for these toxin activities; however, the molecular determinants in the protein or the target membrane that govern this conversion to an active toxin form are fully unknown. It was previously reported that cytotoxic and cytolytic activities of ACT depend on membrane cholesterol. Here we show that ACT specifically interacts with membrane cholesterol, and find in two membrane-interacting ACT domains, four cholesterol-binding motifs that are essential for AC domain translocation and lytic activities. We hypothesize that direct ACT interaction with membrane cholesterol through those four cholesterol-binding motifs drives insertion and stabilizes the transmembrane topology of several helical elements that ultimately build the ACT structure for AC delivery and pore-formation, thereby explaining the cholesterol-dependence of the ACT activities. The requirement for lipid-mediated stabilization of transmembrane helices appears to be a unifying mechanism to modulate toxicity in pore-forming toxins.
Collapse
|
10
|
Wang H, Chen G, Li H. Templated folding of the RTX domain of the bacterial toxin adenylate cyclase revealed by single molecule force spectroscopy. Nat Commun 2022; 13:2784. [PMID: 35589788 PMCID: PMC9120197 DOI: 10.1038/s41467-022-30448-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
The RTX (repeats-in-toxin) domain of the bacterial toxin adenylate cyclase (CyaA) contains five RTX blocks (RTX-i to RTX-v) and its folding is essential for CyaA’s functions. It was shown that the C-terminal capping structure of RTX-v is critical for the whole RTX to fold. However, it is unknown how the folding signal transmits within the RTX domain. Here we use optical tweezers to investigate the interplay between the folding of RTX-iv and RTX-v. Our results show that RTX-iv alone is disordered, but folds into a Ca2+-loaded-β-roll structure in the presence of a folded RTX-v. Folding trajectories of RTX-iv-v reveal that the folding of RTX-iv is strictly conditional upon the folding of RTX-v, suggesting that the folding of RTX-iv is templated by RTX-v. This templating effect allows RTX-iv to fold rapidly, and provides significant mutual stabilization. Our study reveals a possible mechanism for transmitting the folding signal within the RTX domain. The authors use optical tweezers to show that the folding of repeats-in-toxin (RTX) block-iv in adenylate cyclase is templated by the folded RTX block-v. The findings suggest a possible mechanism for transmitting the folding signal in the RTX domain.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.,State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 300072, Tianjin, P. R. China
| | - Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
11
|
Porsch EA, Hernandez KA, Morreale DP, Montoya NR, Yount TA, St Geme JW. Pathogenic determinants of Kingella kingae disease. Front Pediatr 2022; 10:1018054. [PMID: 36304526 PMCID: PMC9592894 DOI: 10.3389/fped.2022.1018054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Kingella kingae is an emerging pediatric pathogen and is increasingly recognized as a leading etiology of septic arthritis, osteomyelitis, and bacteremia and an occasional cause of endocarditis in young children. The pathogenesis of K. kingae disease begins with colonization of the upper respiratory tract followed by breach of the respiratory epithelial barrier and hematogenous spread to distant sites of infection, primarily the joints, bones, and endocardium. As recognition of K. kingae as a pathogen has increased, interest in defining the molecular determinants of K. kingae pathogenicity has grown. This effort has identified numerous bacterial surface factors that likely play key roles in the pathogenic process of K. kingae disease, including type IV pili and the Knh trimeric autotransporter (adherence to the host), a potent RTX-family toxin (epithelial barrier breach), and multiple surface polysaccharides (complement and neutrophil resistance). Herein, we review the current state of knowledge of each of these factors, providing insights into potential approaches to the prevention and/or treatment of K. kingae disease.
Collapse
Affiliation(s)
- Eric A Porsch
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kevin A Hernandez
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel P Morreale
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nina R Montoya
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taylor A Yount
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph W St Geme
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Sivarajan R, Kessie DK, Oberwinkler H, Pallmann N, Walles T, Scherzad A, Hackenberg S, Steinke M. Susceptibility of Human Airway Tissue Models Derived From Different Anatomical Sites to Bordetella pertussis and Its Virulence Factor Adenylate Cyclase Toxin. Front Cell Infect Microbiol 2021; 11:797491. [PMID: 35059325 PMCID: PMC8765404 DOI: 10.3389/fcimb.2021.797491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
To study the interaction of human pathogens with their host target structures, human tissue models based on primary cells are considered suitable. Complex tissue models of the human airways have been used as infection models for various viral and bacterial pathogens. The Gram-negative bacterium Bordetella pertussis is of relevant clinical interest since whooping cough has developed into a resurgent infectious disease. In the present study, we created three-dimensional tissue models of the human ciliated nasal and tracheo-bronchial mucosa. We compared the innate immune response of these models towards the B. pertussis virulence factor adenylate cyclase toxin (CyaA) and its enzymatically inactive but fully pore-forming toxoid CyaA-AC-. Applying molecular biological, histological, and microbiological assays, we found that 1 µg/ml CyaA elevated the intracellular cAMP level but did not disturb the epithelial barrier integrity of nasal and tracheo-bronchial airway mucosa tissue models. Interestingly, CyaA significantly increased interleukin 6, interleukin 8, and human beta defensin 2 secretion in nasal tissue models, whereas tracheo-bronchial tissue models were not significantly affected compared to the controls. Subsequently, we investigated the interaction of B. pertussis with both differentiated primary nasal and tracheo-bronchial tissue models and demonstrated bacterial adherence and invasion without observing host cell type-specific significant differences. Even though the nasal and the tracheo-bronchial mucosa appear similar from a histological perspective, they are differentially susceptible to B. pertussis CyaA in vitro. Our finding that nasal tissue models showed an increased innate immune response towards the B. pertussis virulence factor CyaA compared to tracheo-bronchial tissue models may reflect the key role of the nasal airway mucosa as the first line of defense against airborne pathogens.
Collapse
Affiliation(s)
- Rinu Sivarajan
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Heike Oberwinkler
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Pallmann
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Walles
- Department of Thoracic Surgery, University Medicine Magdeburg, Magdeburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology – Head and Neck Surgery, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University Hospital, Aachen, Germany
| | - Maria Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
- *Correspondence: Maria Steinke,
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW RTX toxin action often defines the outcome of bacterial infections. Here, we discuss the progress in understanding the impacts of RTX toxin activities on host immunity. RECENT FINDINGS Bordetella pertussis CyaA activity paralyzes sentinel phagocytic cells by elevating cellular cAMP levels and blocks differentiation of infiltrating monocytes into bactericidal macrophages, promoting also de-differentiation of resident alveolar macrophages into monocyte-like cells. Vibrio cholerae multifunctional autoprocessing repeats-in-toxins (MARTX), through Rho inactivating and α/β-hydrolase (ABH) domain action blocks mitogen-activated protein kinase signaling in epithelial cells and dampens the inflammatory responses of intestinal epithelia by blocking immune cell recruitment. The action of actin crosslinking effector domain and Ras/Rap1-specific endopeptidase (RRSP) domains of MARTX compromises the phagocytic ability of macrophages. Aggregatibacter actinomycetemcomitans LtxA action triggers neutrophil elastase release into periodontal tissue, compromising the epithelial barrier and promoting bacterial spreads into deeper tissue. SUMMARY Action of RTX toxins enables bacterial pathogens to cope with the fierce host immune defenses. RTX toxins often block phagocytosis and bactericidal reactive oxygen species and NO production. Some RTX toxins can reprogram the macrophages to less bactericidal cell types. Autophagy is hijacked for example by the activity of the V. cholerae ABH effector domain of the MARTX protein. Subversion of immune functions by RTX toxins thus promotes bacterial survival and proliferation in the host.
Collapse
|
14
|
Voegele A, Sadi M, O'Brien DP, Gehan P, Raoux‐Barbot D, Davi M, Hoos S, Brûlé S, Raynal B, Weber P, Mechaly A, Haouz A, Rodriguez N, Vachette P, Durand D, Brier S, Ladant D, Chenal A. A High-Affinity Calmodulin-Binding Site in the CyaA Toxin Translocation Domain is Essential for Invasion of Eukaryotic Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003630. [PMID: 33977052 PMCID: PMC8097335 DOI: 10.1002/advs.202003630] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The molecular mechanisms and forces involved in the translocation of bacterial toxins into host cells are still a matter of intense research. The adenylate cyclase (CyaA) toxin from Bordetella pertussis displays a unique intoxication pathway in which its catalytic domain is directly translocated across target cell membranes. The CyaA translocation region contains a segment, P454 (residues 454-484), which exhibits membrane-active properties related to antimicrobial peptides. Herein, the results show that this peptide is able to translocate across membranes and to interact with calmodulin (CaM). Structural and biophysical analyses reveal the key residues of P454 involved in membrane destabilization and calmodulin binding. Mutational analysis demonstrates that these residues play a crucial role in CyaA translocation into target cells. In addition, calmidazolium, a calmodulin inhibitor, efficiently blocks CyaA internalization. It is proposed that after CyaA binding to target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid bilayer and binds calmodulin. Trapping of CyaA by the CaM:P454 interaction in the cytosol may assist the entry of the N-terminal catalytic domain by converting the stochastic motion of the polypeptide chain through the membrane into an efficient vectorial chain translocation into host cells.
Collapse
Affiliation(s)
- Alexis Voegele
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
- Université de ParisSorbonne Paris CitéParis75006France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
- Université de ParisSorbonne Paris CitéParis75006France
| | - Darragh Patrick O'Brien
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Pauline Gehan
- Sorbonne UniversitéÉcole normale supérieurePSL UniversityCNRSLaboratoire des biomoléculesLBMParis75005France
| | - Dorothée Raoux‐Barbot
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Maryline Davi
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Sylviane Hoos
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Sébastien Brûlé
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Bertrand Raynal
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Patrick Weber
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Ariel Mechaly
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Ahmed Haouz
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Nicolas Rodriguez
- Sorbonne UniversitéÉcole normale supérieurePSL UniversityCNRSLaboratoire des biomoléculesLBMParis75005France
| | - Patrice Vachette
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Dominique Durand
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Sébastien Brier
- Biological NMR Technological PlateformCenter for Technological Resources and ResearchDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| |
Collapse
|
15
|
Omics Analysis of Blood-Responsive Regulon in Bordetella pertussis Identifies a Novel Essential T3SS Substrate. Int J Mol Sci 2021; 22:ijms22020736. [PMID: 33450976 PMCID: PMC7828420 DOI: 10.3390/ijms22020736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023] Open
Abstract
Bacterial pathogens sense specific cues associated with different host niches and integrate these signals to appropriately adjust the global gene expression. Bordetella pertussis is a Gram-negative, strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Though B. pertussis does not cause invasive infections, previous results indicated that this reemerging pathogen responds to blood exposure. Here, omics RNA-seq and LC–MS/MS techniques were applied to determine the blood-responsive regulon of B. pertussis. These analyses revealed that direct contact with blood rewired global gene expression profiles in B. pertussis as the expression of almost 20% of all genes was significantly modulated. However, upon loss of contact with blood, the majority of blood-specific effects vanished, with the exception of several genes encoding the T3SS-secreted substrates. For the first time, the T3SS regulator BtrA was identified in culture supernatants of B. pertussis. Furthermore, proteomic analysis identified BP2259 protein as a novel secreted T3SS substrate, which is required for T3SS functionality. Collectively, presented data indicate that contact with blood represents an important cue for B. pertussis cells.
Collapse
|
16
|
Bianchi M, Sivarajan R, Walles T, Hackenberg S, Steinke M. Susceptibility of primary human airway epithelial cells to Bordetella pertussis adenylate cyclase toxin in two- and three-dimensional culture conditions. Innate Immun 2020; 27:89-98. [PMID: 33317363 PMCID: PMC7780358 DOI: 10.1177/1753425920979354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The human pathogen Bordetella pertussis targets the respiratory epithelium and causes whooping cough. Its virulence factor adenylate cyclase toxin (CyaA) plays an important role in the course of infection. Previous studies on the impact of CyaA on human epithelial cells have been carried out using cell lines derived from the airways or the intestinal tract. Here, we investigated the interaction of CyaA and its enzymatically inactive but fully pore-forming toxoid CyaA-AC– with primary human airway epithelial cells (hAEC) derived from different anatomical sites (nose and tracheo-bronchial region) in two-dimensional culture conditions. To assess possible differences between the response of primary hAEC and respiratory cell lines directly, we included HBEC3-KT in our studies. In comparative analyses, we studied the impact of both the toxin and the toxoid on cell viability, intracellular cAMP concentration and IL-6 secretion. We found that the selected hAEC, which lack CD11b, were differentially susceptible to both CyaA and CyaA-AC–. HBEC3-KT appeared not to be suitable for subsequent analyses. Since the nasal epithelium first gets in contact with airborne pathogens, we further studied the effect of CyaA and its toxoid on the innate immunity of three-dimensional tissue models of the human nasal mucosa. The present study reveals first insights in toxin–cell interaction using primary hAEC.
Collapse
Affiliation(s)
- Maria Bianchi
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
| | - Rinu Sivarajan
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
| | - Thorsten Walles
- Department of Thoracic Surgery, University Medicine Magdeburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Germany
| | - Maria Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
| |
Collapse
|
17
|
Ahmad JN, Sebo P. Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation. Front Immunol 2020; 11:2181. [PMID: 33013916 PMCID: PMC7516048 DOI: 10.3389/fimmu.2020.02181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/10/2020] [Indexed: 01/28/2023] Open
Abstract
Circulating inflammatory monocytes are attracted to infected mucosa and differentiate into macrophage or dendritic cells endowed with enhanced bactericidal and antigen presenting capacities. In this brief Perspective we discuss the newly emerging insight into how the cAMP signaling capacity of Bordetella pertussis adenylate cyclase toxin manipulates the differentiation of monocytes and trigger dedifferentiation of the alveolar macrophages to facilitate bacterial colonization of human airways.
Collapse
Affiliation(s)
- Jawid Nazir Ahmad
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the CAS, Prague, Czechia
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the CAS, Prague, Czechia
| |
Collapse
|
18
|
Novak J, Fabrik I, Jurnecka D, Holubova J, Stanek O, Sebo P. Bordetella pertussis Acetylome is Shaped by Lysine Deacetylase Bkd1. J Proteome Res 2020; 19:3680-3696. [PMID: 32674575 DOI: 10.1021/acs.jproteome.0c00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-translational modifications of proteins enable swift physiological adaptation of cells to altered growth conditions and stress. Aside from protein phosphorylation, acetylation on ε-amino groups of lysine residues (N-ε-lysine acetylation) represents another important post-translational modification of proteins. For many bacterial pathogens, including the whooping cough agent Bordetella pertussis, the role and extent of protein acetylation remain to be defined. We expressed in Escherichia coli the BP0960 and BP3063 genes encoding two putative deacetylases of B. pertussis and show that BP0960 encodes a lysine deacetylase enzyme, named Bkd1, that regulates acetylation of a range of B. pertussis proteins. Comparison of the proteome and acetylome of a Δbkd1 mutant with the proteome and acetylome of wild-type B. pertussis (PRIDE ID. PXD016384) revealed that acetylation on lysine residues may modulate activities or stabilities of proteins involved in bacterial metabolism and histone-like proteins. However, increased acetylation of the BvgA response regulator protein of the B. pertussis master virulence-regulating BvgAS two-component system affected neither the total levels of produced BvgA nor its phosphorylation status. Indeed, the Δbkd1 mutant was not impaired in the production of key virulence factors and its survival within human macrophages in vitro was not affected. The Δbkd1 mutant exhibited an increased growth rate under carbon source-limiting conditions and its virulence in the in vivo mouse lung infection model was somewhat affected. These results indicate that the lysine deacetylase Bkd1 and N-ε-lysine acetylation primarily modulate the general metabolism rather than the virulence of B. pertussis.
Collapse
Affiliation(s)
- Jakub Novak
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic.,Faculty of Science, Charles University, Prague 11636, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50005, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic.,Faculty of Science, Charles University, Prague 11636, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| |
Collapse
|
19
|
Angely C, Ladant D, Planus E, Louis B, Filoche M, Chenal A, Isabey D. Functional and structural consequences of epithelial cell invasion by Bordetella pertussis adenylate cyclase toxin. PLoS One 2020; 15:e0228606. [PMID: 32392246 PMCID: PMC7213728 DOI: 10.1371/journal.pone.0228606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/18/2020] [Indexed: 01/13/2023] Open
Abstract
Bordetella pertussis, the causative agent of whopping cough, produces an adenylate cyclase toxin (CyaA) that plays a key role in the host colonization by targeting innate immune cells which express CD11b/CD18, the cellular receptor of CyaA. CyaA is also able to invade non-phagocytic cells, via a unique entry pathway consisting in a direct translocation of its catalytic domain across the cytoplasmic membrane of the cells. Within the cells, CyaA is activated by calmodulin to produce high levels of cyclic adenosine monophosphate (cAMP) and alter cellular physiology. In this study, we explored the effects of CyaA toxin on the cellular and molecular structure remodeling of A549 alveolar epithelial cells. Using classical imaging techniques, biochemical and functional tests, as well as advanced cell mechanics method, we quantify the structural and functional consequences of the massive increase of intracellular cyclic AMP induced by the toxin: cell shape rounding associated to adhesion weakening process, actin structure remodeling for the cortical and dense components, increase in cytoskeleton stiffness, and inhibition of migration and repair. We also show that, at low concentrations (0.5 nM), CyaA could significantly impair the migration and wound healing capacities of the intoxicated alveolar epithelial cells. As such concentrations might be reached locally during B. pertussis infection, our results suggest that the CyaA, beyond its major role in disabling innate immune cells, might also contribute to the local alteration of the epithelial barrier of the respiratory tract, a hallmark of pertussis.
Collapse
Affiliation(s)
- Christelle Angely
- Equipe 13, Biomécanique & Appareil Respiratoire, Inserm U955, Créteil, France
- UMR 955, UPEC, Université Paris-Est, Créteil, France
- ERL 7000, CNRS, Créteil, France
| | - Daniel Ladant
- Unité de Biochimie des Interactions Macromoléculaires (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Emmanuelle Planus
- Institut pour l’Avancée des Biosciences (IAB), Centre de Recherche UGA/ Inserm U1209 / CNRS UMR 5309, La Tronche, France
| | - Bruno Louis
- Equipe 13, Biomécanique & Appareil Respiratoire, Inserm U955, Créteil, France
- UMR 955, UPEC, Université Paris-Est, Créteil, France
- ERL 7000, CNRS, Créteil, France
| | - Marcel Filoche
- Equipe 13, Biomécanique & Appareil Respiratoire, Inserm U955, Créteil, France
- UMR 955, UPEC, Université Paris-Est, Créteil, France
- ERL 7000, CNRS, Créteil, France
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, Palaiseau, France
| | - Alexandre Chenal
- Unité de Biochimie des Interactions Macromoléculaires (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Daniel Isabey
- Equipe 13, Biomécanique & Appareil Respiratoire, Inserm U955, Créteil, France
- UMR 955, UPEC, Université Paris-Est, Créteil, France
- ERL 7000, CNRS, Créteil, France
- * E-mail:
| |
Collapse
|
20
|
Masin J, Osickova A, Jurnecka D, Klimova N, Khaliq H, Sebo P, Osicka R. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin. J Biol Chem 2020; 295:9349-9365. [PMID: 32393579 DOI: 10.1074/jbc.ra120.013630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
The Bordetella adenylate cyclase toxin-hemolysin (CyaA) and the α-hemolysin (HlyA) of Escherichia coli belong to the family of cytolytic pore-forming Repeats in ToXin (RTX) cytotoxins. HlyA preferentially binds the αLβ2 integrin LFA-1 (CD11a/CD18) of leukocytes and can promiscuously bind and also permeabilize many other cells. CyaA bears an N-terminal adenylyl cyclase (AC) domain linked to a pore-forming RTX cytolysin (Hly) moiety, binds the complement receptor 3 (CR3, αMβ2, CD11b/CD18, or Mac-1) of myeloid phagocytes, penetrates their plasma membrane, and delivers the AC enzyme into the cytosol. We constructed a set of CyaA/HlyA chimeras and show that the CyaC-acylated segment and the CR3-binding RTX domain of CyaA can be functionally replaced by the HlyC-acylated segment and the much shorter RTX domain of HlyA. Instead of binding CR3, a CyaA1-710/HlyA411-1024 chimera bound the LFA-1 receptor and effectively delivered AC into Jurkat T cells. At high chimera concentrations (25 nm), the interaction with LFA-1 was not required for CyaA1-710/HlyA411-1024 binding to CHO cells. However, interaction with the LFA-1 receptor strongly enhanced the specific capacity of the bound CyaA1-710/HlyA411-1024 chimera to penetrate cells and deliver the AC enzyme into their cytosol. Hence, interaction of the acylated segment and/or the RTX domain of HlyA with LFA-1 promoted a productive membrane interaction of the chimera. These results help delimit residues 400-710 of CyaA as an "AC translocon" sufficient for translocation of the AC polypeptide across the plasma membrane of target cells.
Collapse
Affiliation(s)
- Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Nela Klimova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
Negative charge of the AC-to-Hly linking segment modulates calcium-dependent membrane activities of Bordetella adenylate cyclase toxin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183310. [PMID: 32333856 DOI: 10.1016/j.bbamem.2020.183310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
Two distinct conformers of the adenylate cyclase toxin (CyaA) appear to accomplish its two parallel activities within target cell membrane. The translocating conformer would deliver the N-terminal adenylyl cyclase (AC) enzyme domain across plasma membrane into cytosol of cells, while the pore precursor conformer would assemble into oligomeric cation-selective pores and permeabilize cellular membrane. Both toxin activities then involve a membrane-interacting 'AC-to-Hly-linking segment' (residues 400 to 500). Here, we report the NMR structure of the corresponding CyaA411-490 polypeptide in dodecylphosphocholine micelles and show that it consists of two α-helices linked by an unrestrained loop. The N-terminal α-helix (Gly418 to His439) remained solvent accessible, while the C-terminal α-helix (His457 to Phe485) was fully enclosed within detergent micelles. CyaA411-490 weakly bound Ca2+ ions (apparent KD 2.6 mM) and permeabilized negatively charged lipid vesicles. At high concentrations (10 μM) the CyaA411-490 polypeptide formed stable conductance units in artificial lipid bilayers with applied voltage, suggesting its possible transmembrane orientation in the membrane-inserted toxin. Mutagenesis revealed that two clusters of negatively charged residues within the 'AC-to-Hly-linking segment' (Glu419 to Glu432 and Asp445 to Glu448) regulate the balance between the AC domain translocating and pore-forming capacities of CyaA in function of calcium concentration.
Collapse
|
22
|
Knapp O, Benz R. Membrane Activity and Channel Formation of the Adenylate Cyclase Toxin (CyaA) of Bordetella pertussis in Lipid Bilayer Membranes. Toxins (Basel) 2020; 12:toxins12030169. [PMID: 32164365 PMCID: PMC7150934 DOI: 10.3390/toxins12030169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/14/2022] Open
Abstract
The Gram-negative bacterium Bordetella pertussis is the cause of whooping cough. One of its pathogenicity factors is the adenylate cyclase toxin (CyaA) secreted by a Type I export system. The 1706 amino acid long CyaA (177 kDa) belongs to the continuously increasing family of repeat in toxin (RTX) toxins because it contains in its C-terminal half a high number of nine-residue tandem repeats. The protein exhibits cytotoxic and hemolytic activities that target primarily myeloid phagocytic cells expressing the αMβ2 integrin receptor (CD11b/CD18). CyaA represents an exception among RTX cytolysins because the first 400 amino acids from its N-terminal end possess a calmodulin-activated adenylate cyclase (AC) activity. The entry of the AC into target cells is not dependent on the receptor-mediated endocytosis pathway and penetrates directly across the cytoplasmic membrane of a variety of epithelial and immune effector cells. The hemolytic activity of CyaA is rather low, which may have to do with its rather low induced permeability change of target cells and its low conductance in lipid bilayer membranes. CyaA forms highly cation-selective channels in lipid bilayers that show a strong dependence on aqueous pH. The pore-forming activity of CyaA but not its single channel conductance is highly dependent on Ca2+ concentration with a half saturation constant of about 2 to 4 mM.
Collapse
Affiliation(s)
- Oliver Knapp
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
- Correspondence: (O.K.); (R.B.)
| | - Roland Benz
- Rudolf-Virchow-Center, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
- Correspondence: (O.K.); (R.B.)
| |
Collapse
|
23
|
|
24
|
Frey J. RTX Toxins of Animal Pathogens and Their Role as Antigens in Vaccines and Diagnostics. Toxins (Basel) 2019; 11:toxins11120719. [PMID: 31835534 PMCID: PMC6950323 DOI: 10.3390/toxins11120719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/19/2023] Open
Abstract
Exotoxins play a central role in the pathologies caused by most major bacterial animal pathogens. The large variety of vertebrate and invertebrate hosts in the animal kingdom is reflected by a large variety of bacterial pathogens and toxins. The group of repeats in the structural toxin (RTX) toxins is particularly abundant among bacterial pathogens of animals. Many of these toxins are described as hemolysins due to their capacity to lyse erythrocytes in vitro. Hemolysis by RTX toxins is due to the formation of cation-selective pores in the cell membrane and serves as an important marker for virulence in bacterial diagnostics. However, their physiologic relevant targets are leukocytes expressing β2 integrins, which act as specific receptors for RTX toxins. For various RTX toxins, the binding to the CD18 moiety of β2 integrins has been shown to be host specific, reflecting the molecular basis of the host range of RTX toxins expressed by bacterial pathogens. Due to the key role of RTX toxins in the pathogenesis of many bacteria, antibodies directed against specific RTX toxins protect against disease, hence, making RTX toxins valuable targets in vaccine research and development. Due to their specificity, several structural genes encoding for RTX toxins have proven to be essential in modern diagnostic applications in veterinary medicine.
Collapse
Affiliation(s)
- Joachim Frey
- Vetsuisse Facutly, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
25
|
|
26
|
Wang H, Gao X, Li H. Single Molecule Force Spectroscopy Reveals the Mechanical Design Governing the Efficient Translocation of the Bacterial Toxin Protein RTX. J Am Chem Soc 2019; 141:20498-20506. [DOI: 10.1021/jacs.9b11281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaoqing Gao
- State Key Laboratory of Precision Measuring Technology and Instruments School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
27
|
Bordetella Adenylate Cyclase Toxin Inhibits Monocyte-to-Macrophage Transition and Dedifferentiates Human Alveolar Macrophages into Monocyte-like Cells. mBio 2019; 10:mBio.01743-19. [PMID: 31551332 PMCID: PMC6759761 DOI: 10.1128/mbio.01743-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Monocytes arriving at the site of infection differentiate into functional effector macrophages to replenish the resident sentinel cells. Bordetella pertussis, the pertussis agent, secretes an adenylate cyclase toxin-hemolysin (CyaA) that binds myeloid phagocytes through complement receptor 3 (CD11b/CD18) and swiftly delivers its adenylyl cyclase enzyme domain into phagocytes. This ablates the bactericidal capacities of phagocytes through massive and unregulated conversion of cytosolic ATP into the key signaling molecule cAMP. We show that exposure of primary human monocytes to as low a concentration as 22.5 pM CyaA, or a low (2:1) multiplicity of infection by CyaA-producing B. pertussis bacteria, blocks macrophage colony-stimulating factor (M-CSF)-driven differentiation of monocytes. CyaA-induced cAMP signaling mediated through the activity of protein kinase A (PKA) efficiently blocked expression of macrophage markers, and the monocytes exposed to 22.5 pM CyaA failed to acquire the characteristic intracellular complexity of mature macrophage cells. Neither M-CSF-induced endoplasmic reticulum (ER) expansion nor accumulation of Golgi bodies, mitochondria, or lysosomes was observed in toxin-exposed monocytes, which remained small and poorly phagocytic and lacked pseudopodia. Exposure to 22.5 pM CyaA toxin provoked loss of macrophage marker expression on in vitro differentiated macrophages, as well as on primary human alveolar macrophages, which appeared to dedifferentiate into monocyte-like cells with upregulated CD14 levels. This is the first report that terminally differentiated tissue-resident macrophage cells can be dedifferentiated in vitro The results suggest that blocking of monocyte-to-macrophage transition and/or dedifferentiation of the sentinel cells of innate immunity through cAMP-elevating toxin action may represent a novel immune evasion strategy of bacterial pathogens.IMPORTANCE Macrophages are key sentinel cells of the immune system, and, as such, they are targeted by the toxins produced by the pertussis agent Bordetella pertussis The adenylate cyclase toxin (CyaA) mediates immune evasion of B. pertussis by suspending the bactericidal activities of myeloid phagocytes. We reveal a novel mechanism of potential subversion of host immunity, where CyaA at very low (22 pM) concentrations could inhibit maturation of human monocyte precursors into the more phagocytic macrophage cells. Furthermore, exposure to low CyaA amounts has been shown to trigger dedifferentiation of mature primary human alveolar macrophages back into monocyte-like cells. This unprecedented capacity is likely to promote survival of the pathogen in the airways, both by preventing maturation of monocytes attracted to the site of infection into phagocytic macrophages and by dedifferentiation of the already airway-resident sentinel cells.
Collapse
|
28
|
O'Brien DP, Cannella SE, Voegele A, Raoux-Barbot D, Davi M, Douché T, Matondo M, Brier S, Ladant D, Chenal A. Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J 2019; 33:10065-10076. [PMID: 31226003 DOI: 10.1096/fj.201802442rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The adenylate cyclase (CyaA) toxin is a major virulence factor of Bordetella pertussis, the causative agent of whooping cough. CyaA is synthetized as a pro-toxin, pro-CyaA, and converted into its cytotoxic form upon acylation of two lysines. After secretion, CyaA invades eukaryotic cells and produces cAMP, leading to host defense subversion. To gain further insights into the effect of acylation, we compared the functional and structural properties of pro-CyaA and CyaA proteins. HDX-MS results show that the refolding process of both proteins upon progressive urea removal is initiated by calcium binding to the C-terminal RTX domain. We further identified a critical hydrophobic segment, distal from the acylation region, that folds at higher urea concentration in CyaA than in pro-CyaA. Once refolded into monomers, CyaA is more compact and stable than pro-CyaA, due to a complex set of interactions between domains. Our HDX-MS data provide direct evidence that the presence of acyl chains in CyaA induces a significant stabilization of the apolar segments of the hydrophobic domain and of most of the acylation region. We propose a refolding model dependent on calcium and driven by local and distal acylation-dependent interactions within CyaA. Therefore, CyaA acylation is not only critical for cell intoxication, but also for protein refolding into its active conformation. Our data shed light on the complex relationship between post-translational modifications, structural disorder and protein folding. Coupling calcium-binding and acylation-driven folding is likely pertinent for other repeat-in-toxin cytolysins produced by many Gram-negative bacterial pathogens.-O'Brien, D. P., Cannella, S. E., Voegele, A., Raoux-Barbot, D., Davi, M., Douché, T., Matondo, M., Brier, S., Ladant, D., Chenal, A. Post-translational acylation controls the folding and functions of the CyaA RTX toxin.
Collapse
Affiliation(s)
- Darragh P O'Brien
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Sara E Cannella
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Alexis Voegele
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France.,Université Paris Diderot Paris VII, Sorbonne Paris Cité, Paris, France
| | - Dorothée Raoux-Barbot
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Marilyne Davi
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Paris, France
| | - Sébastien Brier
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France.,Biological NMR Technical Platform, Center for Technological Resources and Research, UMR CNRS 3528, Paris, France
| | - Daniel Ladant
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Alexandre Chenal
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| |
Collapse
|
29
|
González-Bullón D, Uribe KB, Largo E, Guembelzu G, García-Arribas AB, Martín C, Ostolaza H. Membrane Permeabilization by Bordetella Adenylate Cyclase Toxin Involves Pores of Tunable Size. Biomolecules 2019; 9:biom9050183. [PMID: 31083482 PMCID: PMC6572617 DOI: 10.3390/biom9050183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 01/27/2023] Open
Abstract
RTX (Repeats in ToXin) pore-forming toxins constitute an expanding family of exoproteins secreted by many Gram-negative bacteria and involved in infectious diseases caused by said pathogens. Despite the relevance in the host/pathogen interactions, the structure and characteristics of the lesions formed by these toxins remain enigmatic. Here, we capture the first direct nanoscale pictures of lytic pores formed by an RTX toxin, the Adenylate cyclase (ACT), secreted by the whooping cough bacterium Bordetella pertussis. We reveal that ACT associates into growing-size oligomers of variable stoichiometry and heterogeneous architecture (lines, arcs, and rings) that pierce the membrane, and that, depending on the incubation time and the toxin concentration, evolve into large enough “holes” so as to allow the flux of large molecular mass solutes, while vesicle integrity is preserved. We also resolve ACT assemblies of similar variable stoichiometry in the cell membrane of permeabilized target macrophages, proving that our model system recapitulates the process of ACT permeabilization in natural membranes. Based on our data we propose a non-concerted monomer insertion and sequential mechanism of toroidal pore formation by ACT. A size-tunable pore adds a new regulatory element to ACT-mediated cytotoxicity, with different pore sizes being putatively involved in different physiological scenarios or cell types.
Collapse
Affiliation(s)
- David González-Bullón
- Biofisika Institute, (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of Basque Country (UPV/EHU) Aptdo. 644, 48080 Bilbao, Spain.
| | - Kepa B Uribe
- Biofisika Institute, (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of Basque Country (UPV/EHU) Aptdo. 644, 48080 Bilbao, Spain.
| | - Eneko Largo
- Biofisika Institute, (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of Basque Country (UPV/EHU) Aptdo. 644, 48080 Bilbao, Spain.
| | | | | | | | | |
Collapse
|
30
|
Scanlon K, Skerry C, Carbonetti N. Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:35-51. [PMID: 31376138 DOI: 10.1007/5584_2019_403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bordetella pertussis produces several toxins that affect host-pathogen interactions. Of these, the major toxins that contribute to pertussis infection and disease are pertussis toxin, adenylate cyclase toxin-hemolysin and tracheal cytotoxin. Pertussis toxin is a multi-subunit protein toxin that inhibits host G protein-coupled receptor signaling, causing a wide array of effects on the host. Adenylate cyclase toxin-hemolysin is a single polypeptide, containing an adenylate cyclase enzymatic domain coupled to a hemolysin domain, that primarily targets phagocytic cells to inhibit their antibacterial activities. Tracheal cytotoxin is a fragment of peptidoglycan released by B. pertussis that elicits damaging inflammatory responses in host cells. This chapter describes these three virulence factors of B. pertussis, summarizing background information and focusing on the role of each toxin in infection and disease pathogenesis, as well as their role in pertussis vaccination.
Collapse
Affiliation(s)
- Karen Scanlon
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ciaran Skerry
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholas Carbonetti
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Functional Programming of Innate Immune Cells in Response to Bordetella pertussis Infection and Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:53-80. [PMID: 31432398 DOI: 10.1007/5584_2019_404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite widespread vaccination, B. pertussis remains one of the least controlled vaccine-preventable diseases. Although it is well known that acellular and whole cell pertussis vaccines induce distinct immune functionalities in memory cells, much less is known about the role of innate immunity in this process. In this review, we provide an overview of the known differences and similarities in innate receptors, innate immune cells and inflammatory signalling pathways induced by the pertussis vaccines either licensed or in development and compare this to primary infection with B. pertussis. Despite the crucial role of innate immunity in driving memory responses to B. pertussis, it is clear that a significant knowledge gap remains in our understanding of the early innate immune response to vaccination and infection. Such knowledge is essential to develop the next generation of pertussis vaccines with improved host defense against B. pertussis.
Collapse
|
32
|
Cauchi S, Locht C. Non-specific Effects of Live Attenuated Pertussis Vaccine Against Heterologous Infectious and Inflammatory Diseases. Front Immunol 2018; 9:2872. [PMID: 30581436 PMCID: PMC6292865 DOI: 10.3389/fimmu.2018.02872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Bordetella pertussis is the agent of pertussis, also referred to as whooping cough, a disease that remains an important public health issue. Vaccine-induced immunity to pertussis wanes over time. In industrialized countries, high vaccine coverage has not prevented infection and transmission of B. pertussis, leading to periodic outbreaks in people of all ages. The consequence is the formation of a large source for transmission to children, who show the highest susceptibility of developing severe whooping cough and mortality. With the aim of providing protection against both disease and infection, a live attenuated pertussis vaccine, in which three toxins have been genetically inactivated or removed, is now in clinical development. This vaccine, named BPZE1, offers strong protection in mice and non-human primates. It has completed a phase I clinical trial in which safety, transient colonization of the human airway and immunogenicity could be demonstrated. In mice, BPZE1 was also found to protect against inflammation resulting from heterologous airway infections, including those caused by other Bordetella species, influenza virus and respiratory syncytial virus. Furthermore, the heterologous protection conferred by BPZE1 was also observed for non-infectious inflammatory diseases, such as allergic asthma, as well as for inflammatory disorders outside of the respiratory tract, such as contact dermatitis. Current studies focus on the mechanisms underlying the anti-inflammatory effects associated with nasal BPZE1 administration. Given the increasing importance of inflammatory disorders, novel preventive and therapeutic approaches are urgently needed. Therefore, live vaccines, such as BPZE1, may offer attractive solutions. It is now essential to understand the cellular and molecular mechanisms of action before translating these biological findings into new healthcare solutions.
Collapse
Affiliation(s)
- Stéphane Cauchi
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Camille Locht
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
33
|
Voegele A, O'Brien DP, Subrini O, Sapay N, Cannella SE, Enguéné VYN, Hessel A, Karst J, Hourdel V, Perez ACS, Davi M, Veneziano R, Chopineau J, Vachette P, Durand D, Brier S, Ladant D, Chenal A. Translocation and calmodulin-activation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis. Pathog Dis 2018; 76:5188676. [PMID: 30452651 DOI: 10.1093/femspd/fty085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/16/2018] [Indexed: 01/19/2023] Open
Abstract
The adenylate cyclase toxin (CyaA) is a multi-domain protein secreted by Bordetella pertussis, the causative agent of whooping cough. CyaA is involved in the early stages of respiratory tract colonization by Bordetella pertussis. CyaA is produced and acylated in the bacteria, and secreted via a dedicated secretion system. The cell intoxication process involves a unique mechanism of transport of the CyaA toxin catalytic domain (ACD) across the plasma membrane of eukaryotic cells. Once translocated, ACD binds to and is activated by calmodulin and produces high amounts of cAMP, subverting the physiology of eukaryotic cells. Here, we review our work on the identification and characterization of a critical region of CyaA, the translocation region, required to deliver ACD into the cytosol of target cells. The translocation region contains a segment that exhibits membrane-active properties, i.e. is able to fold upon membrane interaction and permeabilize lipid bilayers. We proposed that this region is required to locally destabilize the membrane, decreasing the energy required for ACD translocation. To further study the translocation process, we developed a tethered bilayer lipid membrane (tBLM) design that recapitulate the ACD transport across a membrane separating two hermetic compartments. We showed that ACD translocation is critically dependent on calcium, membrane potential, CyaA acylation and on the presence of calmodulin in the trans compartment. Finally, we describe how calmodulin-binding triggers key conformational changes in ACD, leading to its activation and production of supraphysiological concentrations of cAMP.
Collapse
Affiliation(s)
- Alexis Voegele
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France.,Université Paris Diderot Paris VII, 75013 Paris, France
| | - Darragh P O'Brien
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France.,University of Oxford, United Kingdom
| | - Orso Subrini
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Nicolas Sapay
- Bioaster Technology Research Institute, 69007 Lyon, France
| | - Sara E Cannella
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France.,University of Oxford, United Kingdom
| | - Véronique Yvette Ntsogo Enguéné
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Audrey Hessel
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Johanna Karst
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Véronique Hourdel
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Ana Cristina Sotomayor Perez
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Marilyne Davi
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Rémi Veneziano
- ICGM, UMR 5253 Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France.,Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030-4422, USA
| | - Joel Chopineau
- ICGM, UMR 5253 Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Patrice Vachette
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Sébastien Brier
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Daniel Ladant
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Alexandre Chenal
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| |
Collapse
|
34
|
Česnek M, Skácel J, Jansa P, Dračínský M, Šmídková M, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z. Nucleobase Modified Adefovir (PMEA) Analogues as Potent and Selective Inhibitors of Adenylate Cyclases from Bordetella pertussis and Bacillus anthracis. ChemMedChem 2018; 13:1779-1796. [PMID: 29968968 PMCID: PMC6415679 DOI: 10.1002/cmdc.201800332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/26/2018] [Indexed: 02/06/2023]
Abstract
A series of 13 acyclic nucleoside phosphonates (ANPs) as bisamidate prodrugs was prepared. Five compounds were found to be non-cytotoxic and selective inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT) in J774A.1 macrophage cell-based assays. The 8-aza-7-deazapurine derivative of adefovir (PMEA) was found to be the most potent ACT inhibitor in the series (IC50 =16 nm) with substantial selectivity over mammalian adenylate cyclases (mACs). AC inhibitory properties of the most potent analogues were confirmed by direct evaluation of the corresponding phosphonodiphosphates in cell-free assays and were found to be potent inhibitors of both ACT and edema factor (EF) from Bacillus anthracis (IC50 values ranging from 0.5 to 21 nm). Moreover, 7-halo-7-deazapurine analogues of PMEA were discovered to be potent and selective mammalian AC1 inhibitors (no inhibition of AC2 and AC5) with IC50 values ranging from 4.1 to 5.6 μm in HEK293 cell-based assays.
Collapse
Affiliation(s)
- Michal Česnek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Jan Skácel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Petr Jansa
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Markéta Šmídková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Monica P Soto-Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
35
|
The Eukaryotic Host Factor 14-3-3 Inactivates Adenylate Cyclase Toxins of Bordetella bronchiseptica and B. parapertussis, but Not B. pertussis. mBio 2018; 9:mBio.00628-18. [PMID: 30154257 PMCID: PMC6113625 DOI: 10.1128/mbio.00628-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bordetella pertussis, Bordetella bronchiseptica, and Bordetella parapertussis share highly homologous virulence factors and commonly cause respiratory infections in mammals; however, their host specificities and disease severities differ, and the reasons for this remain largely unknown. Adenylate cyclase toxin (CyaA) is a homologous virulence factor that is thought to play crucial roles in Bordetella infections. We herein demonstrate that CyaAs function as virulence factors differently between B. bronchiseptica/B. parapertussis and B. pertussis. B. bronchiseptica CyaA bound to target cells, and its enzyme domain was translocated into the cytosol similarly to B. pertussis CyaA. The hemolytic activity of B. bronchiseptica CyaA on sheep erythrocytes was also preserved. However, in nucleated target cells, B. bronchiseptica CyaA was phosphorylated at Ser375, which constitutes a motif (RSXpSXP [pS is phosphoserine]) recognized by the host factor 14-3-3, resulting in the abrogation of adenylate cyclase activity. Consequently, the cytotoxic effects of B. bronchiseptica CyaA based on its enzyme activity were markedly attenuated. B. parapertussis CyaA carries the 14-3-3 motif, indicating that its intracellular enzyme activity is abrogated similarly to B. bronchiseptica CyaA; however, B. pertussis CyaA has Phe375 instead of Ser, and thus, was not affected by 14-3-3. In addition, B. pertussis CyaA impaired the barrier function of epithelial cells, whereas B. bronchiseptica CyaA did not. Rat infection experiments suggested that functional differences in CyaA are related to differences in pathogenicity between B. bronchiseptica/B. parapertussis and B. pertussis. Bordetella pertussis, B. bronchiseptica, and B. parapertussis are bacterial respiratory pathogens that are genetically close to each other and produce many homologous virulence factors; however, their host specificities and disease severities differ, and the reasons for this remain unknown. Previous studies attempted to explain these differences by the distinct virulence factors produced by each Bordetella species. In contrast, we indicated functional differences in adenylate cyclase toxin, a homologous virulence factor of Bordetella. The toxins of B. bronchiseptica and presumably B. parapertussis were inactivated by the host factor 14-3-3 after phosphorylation in target cells, whereas the B. pertussis toxin was not inactivated because of the lack of the phosphorylation site. This is the first study to show that 14-3-3 inactivates the virulence factors of pathogens. The present results suggest that pathogenic differences in Bordetella are attributed to the different activities of adenylate cyclase toxins.
Collapse
|
36
|
Chenal A, Ladant D. Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Antigen-Delivery and Immunotherapy. Toxins (Basel) 2018; 10:E302. [PMID: 30037010 PMCID: PMC6070788 DOI: 10.3390/toxins10070302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
The adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic cells where, upon activation by endogenous calmodulin, it synthesizes massive amounts of cAMP that alters cellular physiology. The CyaA toxin is a 1706 residues-long bifunctional protein: the catalytic domain is located in the 400 amino-proximal residues, whereas the carboxy-terminal 1306 residues are implicated in toxin binding to the cellular receptor, the αMβ₂ (CD11b/CD18) integrin, and subsequently in the translocation of the catalytic domain across the cytoplasmic membrane of the target cells. Indeed, this protein is endowed with the unique capability of delivering its N-terminal catalytic domain directly across the plasma membrane of eukaryotic target cells. These properties have been exploited to engineer the CyaA toxin as a potent non-replicating vector able to deliver antigens into antigen presenting cells and elicit specific cell-mediated immune responses. Antigens of interest can be inserted into the CyaA protein to yield recombinant molecules that are targeted in vivo to dendritic cells, where the antigens are processed and presented by the major class I and class II histocompatibility complexes (MHC-I and II). CyaA turned out to be a remarkably effective and versatile vaccine vector capable of inducing all the components of the immune response (T-CD4, T-CD8, and antibody). In this chapter, we summarize the basic knowledge on the adenylate cyclase toxin and then describe the application of CyaA in vaccinology, including some recent results of clinical trials of immunotherapy using a recombinant CyaA vaccine.
Collapse
Affiliation(s)
- Alexandre Chenal
- Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, UMR CNRS 3528, Structural Biology and Chemistry Department, 28 rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Daniel Ladant
- Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, UMR CNRS 3528, Structural Biology and Chemistry Department, 28 rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
37
|
O'Brien DP, Perez ACS, Karst J, Cannella SE, Enguéné VYN, Hessel A, Raoux-Barbot D, Voegele A, Subrini O, Davi M, Guijarro JI, Raynal B, Baron B, England P, Hernandez B, Ghomi M, Hourdel V, Malosse C, Chamot-Rooke J, Vachette P, Durand D, Brier S, Ladant D, Chenal A. Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough. Toxicon 2018; 149:37-44. [DOI: 10.1016/j.toxicon.2018.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
38
|
Etxaniz A, González-Bullón D, Martín C, Ostolaza H. Membrane Repair Mechanisms against Permeabilization by Pore-Forming Toxins. Toxins (Basel) 2018; 10:E234. [PMID: 29890730 PMCID: PMC6024578 DOI: 10.3390/toxins10060234] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 01/29/2023] Open
Abstract
Permeabilization of the plasma membrane represents an important threat for any cell, since it compromises its viability by disrupting cell homeostasis. Numerous pathogenic bacteria produce pore-forming toxins that break plasma membrane integrity and cause cell death by colloid-osmotic lysis. Eukaryotic cells, in turn, have developed different ways to cope with the effects of such membrane piercing. Here, we provide a short overview of the general mechanisms currently proposed for plasma membrane repair, focusing more specifically on the cellular responses to membrane permeabilization by pore-forming toxins and presenting new data on the effects and cellular responses to the permeabilization by an RTX (repeats in toxin) toxin, the adenylate cyclase toxin-hemolysin secreted by the whooping cough bacterium Bordetella pertussis, which we have studied in the laboratory.
Collapse
Affiliation(s)
- Asier Etxaniz
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - David González-Bullón
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - César Martín
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - Helena Ostolaza
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| |
Collapse
|
39
|
Raksanoh V, Prangkio P, Imtong C, Thamwiriyasati N, Suvarnapunya K, Shank L, Angsuthanasombat C. Structural requirement of the hydrophobic region of the Bordetella pertussis CyaA-hemolysin for functional association with CyaC-acyltransferase in toxin acylation. Biochem Biophys Res Commun 2018; 499:862-867. [PMID: 29625104 DOI: 10.1016/j.bbrc.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 01/21/2023]
Abstract
Previously, we demonstrated that the ∼130-kDa CyaA-hemolysin (CyaA-Hly, Met482-Arg1706) from Bordetella pertussis was palmitoylated at Lys983 when co-expressed with CyaC-acyltransferase in Escherichia coli, and thus activated its hemolytic activity. Here, further investigation on a possible requirement of the N-terminal hydrophobic region (HP, Met482-Leu750) for toxin acylation was performed. The ∼100-kDa RTX (Repeat-in-ToXin) fragment (CyaA-RTX, Ala751-Arg1706) containing the Lys983-acylation region (AR, Ala751-Gln1000), but lacking HP, was co-produced with CyaC in E. coli. Hemolysis assay indicated that CyaA-RTX showed no hemolytic activity. Additionally, MALDI-TOF/MS and LC-MS/MS analyses confirmed that CyaA-RTX was non-acylated, although the co-expressed CyaC-acyltransferase was able to hydrolyze its chromogenic substrate-p-nitrophenyl palmitate and acylate CyaA-Hly to become hemolytically active. Unlike CyaA-RTX, the ∼70-kDa His-tagged CyaA-HP/BI fragment which is hemolytically inactive and contains both HP and AR was constantly co-eluted with CyaC during IMAC-purification as the presence of CyaC was verified by Western blotting. Such potential interactions between the two proteins were also revealed by semi-native PAGE. Moreover, structural analysis via electrostatic potential calculations and molecular docking suggested that CyaA-HP comprising α1-α5 (Leu500-Val698) can interact with CyaC through several hydrogen and ionic bonds formed between their opposite electrostatic surfaces. Overall, our results demonstrated that the HP region of CyaA-Hly is conceivably required for not only membrane-pore formation but also functional association with CyaC-acyltransferase, and hence effective palmitoylation at Lys983.
Collapse
Affiliation(s)
- Veerada Raksanoh
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Biochemistry and Biochemical Technology, Department of Chemistry, Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Center of Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panchika Prangkio
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Center of Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chompounoot Imtong
- Division of Biology, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Niramon Thamwiriyasati
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Kittipong Suvarnapunya
- Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | - Lalida Shank
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Center of Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand; Laboratory of Molecular Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Fang, Chiang Mai 50110, Thailand.
| |
Collapse
|
40
|
Hasan S, Kulkarni NN, Asbjarnarson A, Linhartova I, Osicka R, Sebo P, Gudmundsson GH. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers. Infect Immun 2018; 86:e00445-17. [PMID: 29203545 PMCID: PMC5820963 DOI: 10.1128/iai.00445-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
The airway epithelium restricts the penetration of inhaled pathogens into the underlying tissue and plays a crucial role in the innate immune defense against respiratory infections. The whooping cough agent, Bordetella pertussis, adheres to ciliated cells of the human airway epithelium and subverts its defense functions through the action of secreted toxins and other virulence factors. We examined the impact of B. pertussis infection and of adenylate cyclase toxin-hemolysin (CyaA) action on the functional integrity of human bronchial epithelial cells cultured at the air-liquid interface (ALI). B. pertussis adhesion to the apical surface of polarized pseudostratified VA10 cell layers provoked a disruption of tight junctions and caused a drop in transepithelial electrical resistance (TEER). The reduction of TEER depended on the capacity of the secreted CyaA toxin to elicit cAMP signaling in epithelial cells through its adenylyl cyclase enzyme activity. Both purified CyaA and cAMP-signaling drugs triggered a decrease in the TEER of VA10 cell layers. Toxin-produced cAMP signaling caused actin cytoskeleton rearrangement and induced mucin 5AC production and interleukin-6 (IL-6) secretion, while it inhibited the IL-17A-induced secretion of the IL-8 chemokine and of the antimicrobial peptide beta-defensin 2. These results indicate that CyaA toxin activity compromises the barrier and innate immune functions of Bordetella-infected airway epithelia.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | | | | - Irena Linhartova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | |
Collapse
|
41
|
Tsai HC, Velichko S, Lee S, Wu R. Cholera toxin enhances interleukin-17A production in both CD4 + and CD8 + cells via a cAMP/protein kinase A-mediated interleukin-17A promoter activation. Immunology 2018; 154:500-509. [PMID: 29377102 DOI: 10.1111/imm.12900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 12/26/2022] Open
Abstract
Cholera toxin (CT) is a bacterial component that increases intracellular cAMP levels in host cells and suppresses T-cell activation. Recently, CT was reported to induce T helper type 17-skewing dendritic cells and activate interleukin-17A (IL-17A) production in CD4+ T cells through a cAMP-dependent pathway. However, the underlying mechanism by which cAMP regulates IL-17A production in T cells is not completely defined. In this study, we took advantage of a small molecule protein kinase A (PKA) inhibitor (H89) and different cAMP analogues: a PKA-specific activator (N6-benzoyl-adenosine-cAMP), an exchange protein activated by cAMP-specific activator (Rp-8-chlorophenylthio-2'-O-methyl cAMP), and a PKA inhibitor (Rp-8-bromo-cAMP), to elucidate the signalling cascade of cAMP in IL-17A regulation in T cells. We found that CT induced IL-17A production and IL-17A promoter activity in activated CD4+ T cells through a cAMP/PKA pathway. Moreover, this regulation was via cAMP-response element binding protein (CREB) -mediated transcriptional activation by using the transfection of an IL-17A promoter-luciferase reporter construct and CREB small interfering RNA in Jurkat cells. Also, we showed that CREB bound to the CRE motif located at -183 of the IL-17A promoter in vitro. Most interestingly, not only in CD4+ T cells, CT also enhanced cAMP/PKA-dependent IL-17A production and CREB phosphorylation in CD8+ T cells. In conclusion, our data suggest that CT induces an IL-17A-dominated immune microenvironment through the cAMP/PKA/CREB signalling pathway. Our study also highlights the potentials of CT and cAMP in modulating T helper type 17 responses in vivo.
Collapse
Affiliation(s)
- Hsing-Chuan Tsai
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Sharlene Velichko
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA, USA
| | - Shanshan Lee
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA, USA
| | - Reen Wu
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA, USA
| |
Collapse
|
42
|
Dorji D, Mooi F, Yantorno O, Deora R, Graham RM, Mukkur TK. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol 2018; 207:3-26. [PMID: 29164393 DOI: 10.1007/s00430-017-0524-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.
Collapse
Affiliation(s)
- Dorji Dorji
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
- Jigme Dorji Wangchuck National Referral Hospital, Khesar Gyalpo Medical University of Bhutan, Thimphu, Bhutan
| | - Frits Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Osvaldo Yantorno
- Laboratorio de Biofilms Microbianos, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston Salem, NC, 27157, USA
| | - Ross M Graham
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
| | - Trilochan K Mukkur
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia.
| |
Collapse
|
43
|
Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins (Basel) 2017; 9:toxins9100300. [PMID: 28946636 PMCID: PMC5666347 DOI: 10.3390/toxins9100300] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023] Open
Abstract
Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMβ₂) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3',5'-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.
Collapse
|
44
|
Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity. Toxins (Basel) 2017; 9:toxins9100293. [PMID: 28934122 PMCID: PMC5666340 DOI: 10.3390/toxins9100293] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/27/2023] Open
Abstract
Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host’s respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3′,5′-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.
Collapse
|
45
|
Abstract
The secretion of proteins that damage host tissue is well established as integral to the infectious processes of many bacterial pathogens. However, recent advances in our understanding of the activity of toxins suggest that the attributes we have assigned to them from early in vitro experimentation have misled us into thinking of them as merely destructive tools. Here, we will discuss the multifarious ways in which toxins contribute to the lifestyle of bacteria and, by considering their activity from an evolutionary perspective, demonstrate how this extends far beyond their ability to destroy host tissue.
Collapse
|
46
|
Guiso N. Bordetella Adenylate Cyclase-Hemolysin Toxins. Toxins (Basel) 2017; 9:E277. [PMID: 28892012 PMCID: PMC5618210 DOI: 10.3390/toxins9090277] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/03/2017] [Accepted: 09/07/2017] [Indexed: 01/04/2023] Open
Abstract
Adenylate cyclase-hemolysin toxin is secreted and produced by three classical species of the genus Bordetella: Bordetella pertussis, B. parapertussis and B. bronchiseptica. This toxin has several properties such as: (i) adenylate cyclase activity, enhanced after interaction with the eukaryotic protein, calmodulin; (ii) a pore-forming activity; (iii) an invasive activity. It plays an important role in the pathogenesis of these Bordetella species responsible for whooping cough in humans or persistent respiratory infections in mammals, by modulating host immune responses. In contrast with other Bordetella toxins or adhesins, lack of (or very low polymorphism) is observed in the structural gene encoding this toxin, supporting its importance as well as a potential role as a vaccine antigen against whooping cough. In this article, an overview of the investigations undertaken on this toxin is presented.
Collapse
Affiliation(s)
- Nicole Guiso
- Institut Pasteur Unité de Prévention et Thérapies Moléculaires des Maladies Humaines, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
47
|
Angely C, Nguyen NM, Andre Dias S, Planus E, Pelle G, Louis B, Filoche M, Chenal A, Ladant D, Isabey D. Exposure to Bordetella pertussis adenylate cyclase toxin affects integrin-mediated adhesion and mechanics in alveolar epithelial cells. Biol Cell 2017; 109:293-311. [PMID: 28597954 DOI: 10.1111/boc.201600082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION The adenylate cyclase (CyaA) toxin is a major virulent factor of Bordetella pertussis, the causative agent of whooping cough. CyaA toxin is able to invade eukaryotic cells where it produces high levels of cyclic adenosine monophosphate (cAMP) affecting cellular physiology. Whether CyaA toxin can modulate cell matrix adhesion and mechanics of infected cells remains largely unknown. RESULTS In this study, we use a recently proposed multiple bond force spectroscopy (MFS) with an atomic force microscope to assess the early phase of cell adhesion (maximal detachment and local rupture forces) and cell rigidity (Young's modulus) in alveolar epithelial cells (A549) for toxin exposure <1 h. At 30 min of exposure, CyaA toxin has a minimal effect on cell viability (>95%) at CyaA concentration of 0.5 nM, but a significant effect (≈81%) at 10 nM. MFS performed on A549 for three different concentrations (0.5, 5 and 10 nM) demonstrates that CyaA toxin significantly affects both cell adhesion (detachment forces are decreased) and cell mechanics (Young's modulus is increased). CyaA toxin (at 0.5 nM) assessed at three indentation/retraction speeds (2, 5 and 10 μm/s) significantly affects global detachment forces, local rupture events and Young modulus compared with control conditions, while an enzymatically inactive variant CyaAE5 has no effect. These results reveal the loading rate dependence of the multiple bonds newly formed between the cell and integrin-specific coated probe as well as the individual bond kinetics which are only slightly affected by the patho-physiological dose of CyaA toxin. Finally, theory of multiple bond force rupture enables us to deduce the bond number N which is reduced by a factor of 2 upon CyaA exposure (N ≈ 6 versus N ≈ 12 in control conditions). CONCLUSIONS MFS measurements demonstrate that adhesion and mechanical properties of A549 are deeply affected by exposure to the CyaA toxin but not to an enzymatically inactive variant. This indicates that the alteration of cell mechanics triggered by CyaA is a consequence of the increase in intracellular cAMP in these target cells. SIGNIFICANCE These results suggest that mechanical and adhesion properties of the cells appear as pertinent markers of cytotoxicity of CyaA toxin.
Collapse
Affiliation(s)
- Christelle Angely
- Inserm, U955, Equipe 13, Biomécanique & Appareil Respiratoire: une approche multi-échelle, Créteil Cedex, 94010, France.,Université Paris Est, UMRS 955, UPEC, Créteil Cedex, 94010, France.,CNRS, ERL 7240, Créteil Cedex, 94010, France
| | - Ngoc-Minh Nguyen
- Inserm, U955, Equipe 13, Biomécanique & Appareil Respiratoire: une approche multi-échelle, Créteil Cedex, 94010, France.,Université Paris Est, UMRS 955, UPEC, Créteil Cedex, 94010, France.,CNRS, ERL 7240, Créteil Cedex, 94010, France
| | - Sofia Andre Dias
- Inserm, U955, Equipe 13, Biomécanique & Appareil Respiratoire: une approche multi-échelle, Créteil Cedex, 94010, France.,Université Paris Est, UMRS 955, UPEC, Créteil Cedex, 94010, France.,CNRS, ERL 7240, Créteil Cedex, 94010, France
| | - Emmanuelle Planus
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U1209/CNRS UMR 5309, La Tronche 38700, France
| | - Gabriel Pelle
- Inserm, U955, Equipe 13, Biomécanique & Appareil Respiratoire: une approche multi-échelle, Créteil Cedex, 94010, France.,Université Paris Est, UMRS 955, UPEC, Créteil Cedex, 94010, France.,CNRS, ERL 7240, Créteil Cedex, 94010, France.,AP-HP, Groupe Hospitalier H. Mondor - A. Chenevier, Service des Explorations Fonctionnelles, Créteil Cedex, 94010, France
| | - Bruno Louis
- Inserm, U955, Equipe 13, Biomécanique & Appareil Respiratoire: une approche multi-échelle, Créteil Cedex, 94010, France.,Université Paris Est, UMRS 955, UPEC, Créteil Cedex, 94010, France.,CNRS, ERL 7240, Créteil Cedex, 94010, France
| | - Marcel Filoche
- Inserm, U955, Equipe 13, Biomécanique & Appareil Respiratoire: une approche multi-échelle, Créteil Cedex, 94010, France.,Université Paris Est, UMRS 955, UPEC, Créteil Cedex, 94010, France.,CNRS, ERL 7240, Créteil Cedex, 94010, France.,Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, Université Paris Saclay, Palaiseau, 91128, France
| | - Alexandre Chenal
- Unité de Biochimie des Interactions Macromoléculaires (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, 75014, France
| | - Daniel Ladant
- Unité de Biochimie des Interactions Macromoléculaires (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, 75014, France
| | - Daniel Isabey
- Inserm, U955, Equipe 13, Biomécanique & Appareil Respiratoire: une approche multi-échelle, Créteil Cedex, 94010, France.,Université Paris Est, UMRS 955, UPEC, Créteil Cedex, 94010, France.,CNRS, ERL 7240, Créteil Cedex, 94010, France
| |
Collapse
|
48
|
Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis. Infect Immun 2017; 85:IAI.00937-16. [PMID: 28396322 DOI: 10.1128/iai.00937-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/02/2017] [Indexed: 02/05/2023] Open
Abstract
The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) of Bordetella pertussis targets phagocytic cells expressing the complement receptor 3 (CR3, Mac-1, αMβ2 integrin, or CD11b/CD18). CyaA delivers into cells an N-terminal adenylyl cyclase (AC) enzyme domain that is activated by cytosolic calmodulin and catalyzes unregulated conversion of cellular ATP into cyclic AMP (cAMP), a key second messenger subverting bactericidal activities of phagocytes. In parallel, the hemolysin (Hly) moiety of CyaA forms cation-selective hemolytic pores that permeabilize target cell membranes. We constructed the first B. pertussis mutant secreting a CyaA toxin having an intact capacity to deliver the AC enzyme into CD11b-expressing (CD11b+) host phagocytes but impaired in formation of cell-permeabilizing pores and defective in cAMP elevation in CD11b- cells. The nonhemolytic AC+ Hly- bacteria inhibited the antigen-presenting capacities of coincubated mouse dendritic cells in vitro and skewed their Toll-like receptor (TLR)-triggered maturation toward a tolerogenic phenotype. The AC+ Hly- mutant also infected mouse lungs as efficiently as the parental AC+ Hly+ strain. Hence, elevation of cAMP in CD11b- cells and/or the pore-forming capacity of CyaA were not required for infection of mouse airways. The latter activities were, however, involved in bacterial penetration across the epithelial layer, enhanced neutrophil influx into lung parenchyma during sublethal infections, and the exacerbated lung pathology and lethality of B. pertussis infections at higher inoculation doses (>107 CFU/mouse). The pore-forming activity of CyaA further synergized with the cAMP-elevating activity in downregulation of major histocompatibility complex class II (MHC-II) molecules on infiltrating myeloid cells, likely contributing to immune subversion of host defenses by the whooping cough agent.
Collapse
|
49
|
Albumin, in the Presence of Calcium, Elicits a Massive Increase in Extracellular Bordetella Adenylate Cyclase Toxin. Infect Immun 2017; 85:IAI.00198-17. [PMID: 28396321 DOI: 10.1128/iai.00198-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/02/2017] [Indexed: 12/14/2022] Open
Abstract
Pertussis (whooping cough), caused by Bordetella pertussis, is resurging in the United States and worldwide. Adenylate cyclase toxin (ACT) is a critical factor in establishing infection with B. pertussis and acts by specifically inhibiting the response of myeloid leukocytes to the pathogen. We report here that serum components, as discovered during growth in fetal bovine serum (FBS), elicit a robust increase in the amount of ACT, and ≥90% of this ACT is localized to the supernatant, unlike growth without FBS, in which ≥90% is associated with the bacterium. We have found that albumin, in the presence of physiological concentrations of calcium, acts specifically to enhance the amount of ACT and its localization to the supernatant. Respiratory secretions, which contain albumin, promote an increase in amount and localization of active ACT that is comparable to that elicited by serum and albumin. The response to albumin is not mediated through regulation of ACT at the transcriptional level or activation of the Bvg two-component system. As further illustration of the specificity of this phenomenon, serum collected from mice that lack albumin does not stimulate an increase in ACT. These data, demonstrating that albumin and calcium act synergistically in the host environment to increase production and release of ACT, strongly suggest that this phenomenon reflects a novel host-pathogen interaction that is central to infection with B. pertussis and other Bordetella species.
Collapse
|
50
|
El-Aouar Filho RA, Nicolas A, De Paula Castro TL, Deplanche M, De Carvalho Azevedo VA, Goossens PL, Taieb F, Lina G, Le Loir Y, Berkova N. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections. Front Cell Infect Microbiol 2017; 7:208. [PMID: 28589102 PMCID: PMC5440457 DOI: 10.3389/fcimb.2017.00208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host.
Collapse
Affiliation(s)
- Rachid A El-Aouar Filho
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France.,Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Aurélie Nicolas
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Thiago L De Paula Castro
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Martine Deplanche
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Vasco A De Carvalho Azevedo
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Pierre L Goossens
- HistoPathologie et Modèles Animaux/Pathogénie des Toxi-Infections Bactériennes, Institut PasteurParis, France
| | - Frédéric Taieb
- CHU Purpan USC INRA 1360-CPTP, U1043 Institut National de la Santé et de la Recherche Médicale, Pathogénie Moléculaire et Cellulaire des Infections à Escherichia coliToulouse, France
| | - Gerard Lina
- International Center for Infectiology ResearchLyon, France.,Centre National de la Recherche Scientifique, UMR5308, Institut National de la Santé et de la Recherche Médicale U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1Lyon, France.,Département de Biologie, Institut des Agents Infectieux, Hospices Civils de LyonLyon, France
| | - Yves Le Loir
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Nadia Berkova
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| |
Collapse
|