1
|
Plant Growth-Promoting Activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a Biocontrol Agent against Potato, Tomato and Taro Pathogens. BIOLOGY 2022; 11:biology11010140. [PMID: 35053136 PMCID: PMC8773043 DOI: 10.3390/biology11010140] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
P. aeruginosa strain FG106 was isolated from the rhizosphere of tomato plants and identified through morphological analysis, 16S rRNA gene sequencing, and whole-genome sequencing. In vitro and in vivo experiments demonstrated that this strain could control several pathogens on tomato, potato, taro, and strawberry. Volatile and non-volatile metabolites produced by the strain are known to adversely affect the tested pathogens. FG106 showed clear antagonism against Alternaria alternata, Botrytis cinerea, Clavibacter michiganensis subsp. michiganensis, Phytophthora colocasiae, P. infestans, Rhizoctonia solani, and Xanthomonas euvesicatoria pv. perforans. FG106 produced proteases and lipases while also inducing high phosphate solubilization, producing siderophores, ammonia, indole acetic acid (IAA), and hydrogen cyanide (HCN) and forming biofilms that promote plant growth and facilitate biocontrol. Genome mining approaches showed that this strain harbors genes related to biocontrol and growth promotion. These results suggest that this bacterial strain provides good protection against pathogens of several agriculturally important plants via direct and indirect modes of action and could thus be a valuable bio-control agent.
Collapse
|
2
|
Zhu Z, Wang W, Cao M, Zhu Q, Ma T, Zhang Y, Liu G, Zhou X, Li B, Shi Y, Zhang J. Virulence factors and molecular characteristics of Shigella flexneri isolated from calves with diarrhea. BMC Microbiol 2021; 21:214. [PMID: 34271864 PMCID: PMC8285881 DOI: 10.1186/s12866-021-02277-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background The natural hosts of Shigella are typically humans and other primates, but it has been shown that the host range of Shigella has expanded to many animals. Although Shigella is becoming a major threat to animals, there is limited information on the genetic background of local strains. The purpose of this study was to assess the presence of virulence factors and the molecular characteristics of S. flexneri isolated from calves with diarrhea. Results Fifty-four S. flexneri isolates from Gansun, Shanxi, Qinghai, Xinjiang and Tibet obtained during 2014 to 2016 possessed four typical biochemical characteristics of Shigella. The prevalences of ipaH, virA, ipaBCD, ial, sen, set1A, set1B and stx were 100 %, 100 %, 77.78 %, 79.63 %, 48.15 %, 48.15 and 0 %, respectively. Multilocus variable number tandem repeat analysis (MLVA) based on 8 variable number of tandem repeat (VNTR) loci discriminated the isolates into 39 different MLVA types (MTs), pulsed field gel electrophoresis (PFGE) based on NotI digestion divided the 54 isolates into 31 PFGE types (PTs), and multilocus sequence typing (MLST) based on 15 housekeeping genes differentiated the isolates into 7 MLST sequence types (STs). Conclusions The findings from this study enrich our knowledge of the molecular characteristics of S. flexneri collected from calves with diarrhea, which will be important for addressing clinical and epidemiological issues regarding shigellosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02277-0.
Collapse
Affiliation(s)
- Zhen Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, 730050, Lanzhou, China.,College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, 056038, Handan, China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, 730050, Lanzhou, China
| | - Mingze Cao
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, 056038, Handan, China
| | - Qiqi Zhu
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, 056038, Handan, China
| | - Tenghe Ma
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, 056038, Handan, China
| | - Yongying Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, 056038, Handan, China
| | - Guanhui Liu
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, 056038, Handan, China
| | - Xuzheng Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, 730050, Lanzhou, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, 730050, Lanzhou, China
| | - Yuxiang Shi
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, 056038, Handan, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, 730050, Lanzhou, China.
| |
Collapse
|
3
|
Ulrich K, Kube M, Becker R, Schneck V, Ulrich A. Genomic Analysis of the Endophytic Stenotrophomonas Strain 169 Reveals Features Related to Plant-Growth Promotion and Stress Tolerance. Front Microbiol 2021; 12:687463. [PMID: 34220780 PMCID: PMC8245107 DOI: 10.3389/fmicb.2021.687463] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Plant-associated Stenotrophomonas isolates have great potential for plant growth promotion, especially under stress conditions, due to their ability to promote tolerance to abiotic stresses such as salinity or drought. The endophytic strain Stenotrophomonas sp. 169, isolated from a field-grown poplar, increased the growth of inoculated in vitro plants, with a particular effect on root development, and was able to stimulate the rooting of poplar cuttings in the greenhouse. The strain produced high amounts of the plant growth-stimulating hormone auxin under in vitro conditions. The comparison of the 16S rRNA gene sequences and the phylogenetic analysis of the core genomes showed a close relationship to Stenotrophomonas chelatiphaga and a clear separation from Stenotrophomonas maltophilia. Whole genome sequence analysis revealed functional genes potentially associated with attachment and plant colonization, growth promotion, and stress protection. In detail, an extensive set of genes for twitching motility, chemotaxis, flagella biosynthesis, and the ability to form biofilms, which are connected with host plant colonization, could be identified in the genome of strain 169. The production of indole-3-acetic acid and the presence of genes for auxin biosynthesis pathways and the spermidine pathway could explain the ability to promote plant growth. Furthermore, the genome contained genes encoding for features related to the production of different osmoprotective molecules and enzymes mediating the regulation of stress tolerance and the ability of bacteria to quickly adapt to changing environments. Overall, the results of physiological tests and genome analysis demonstrated the capability of endophytic strain 169 to promote plant growth. In contrast to related species, strain 169 can be considered non-pathogenic and suitable for biotechnology applications.
Collapse
Affiliation(s)
- Kristina Ulrich
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Waldsieversdorf, Germany
| | | | - Regina Becker
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Volker Schneck
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Waldsieversdorf, Germany
| | - Andreas Ulrich
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
4
|
Tamizi AA, Abu-Bakar N, Samsuddin AF, Rozano L, Ahmad-Redzuan R, Abdul-Murad AM. Characterisation and Mutagenesis Study of An Alternative Sigma Factor Gene ( hrpL) from Erwinia mallotivora Reveal Its Central Role in Papaya Dieback Disease. BIOLOGY 2020; 9:biology9100323. [PMID: 33023069 PMCID: PMC7600996 DOI: 10.3390/biology9100323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
Simple Summary Erwinia mallotivora is the causal agent of papaya dieback disease in Malaysia, and its pathogenicity is less appreciated, especially from the molecular perspective. Our previous investigations proved that the hrpL/rpoE gene was one of the significant differentially expressed genes (DEGs) during early infection of E. mallotivora in papaya, suggesting this particular gene is important for infection. In this study, an in-depth analysis was performed using bioinformatics software on hrpL from E. mallotivora (EmhrpL) and its encoded protein (EmHrpL) obtaining crucial information including the conserved function and sequence motif, protein structural similarity with related homologs, and the possibility of being inhibited by a cognate inhibitor. Moreover, knockout (insertional mutational on DNA sequence) of the hrpL gene had caused mutant E. mallotivora (ΔEmhrpL) to be avirulent in four-month-old papaya plants. Here, the conclusion was that EmHrpL is indeed a necessary factor in E. mallotivora pathogenicity, and the findings on the potential inhibitor of this protein are useful for future studies to formulate a papaya dieback disease management programme. Abstract The alternative sigma (σ) factor E, RpoE or HrpL, has been reported to be involved in stress- and pathogenicity-related transcription initiation in Escherichia coli and many other Gram-negative bacteria, including Erwinia spp. and Pseudomonas spp. A previous study identified the hrpL/rpoE transcript as one of the significant differentially expressed genes (DEGs) during early E. mallotivora infection in papaya and those data serve as the basis of the current project. Here, the full coding DNA sequence (CDS) of hrpL from E. mallotivora (EmhrpL) was determined to be 549 bp long, and it encoded a 21.3 kDa HrpL protein that possessed two highly conserved sigma-70 (σ70) motifs—σR2 and σR4. Nucleotide sequence alignment revealed the hrpL from E. mallotivora shared high sequence similarity to rpoE/hrpL from E. tracheiphila (83%), E. pyrifoliae (81%), and E. tasmaniensis (80%). Phylogenetics analysis indicated hrpL from E. mallotivora to be monophyletic with rpoEs/hrpLs from Pantoea vagans, E. herbicola, and E. tracheiphila. Structural analysis postulated that the E. mallotivora’s alternative σ factor was non-transmembranic and was an extracytoplasmic function (ECF) protein—characteristics shared by other σ factors in different bacterial species. Notably, the protein–protein interaction (PPI) study through molecular docking suggested the σ factor could be possibly inhibited by an anti-σ. Finally, a knockout of hrpL in E. mallotivora (ΔEmhrpL) resulted in avirulence in four-month-old papaya plants. These findings have revealed that the hrpL is a necessary element in E. mallotivora pathogenicity and also predicted that the gene can be inhibited by an anti-σ.
Collapse
Affiliation(s)
- Amin-Asyraf Tamizi
- Agri-Omics and Bioinformatics Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute Headquarters, Serdang 43400, Selangor, Malaysia; (A.-A.T.); (L.R.); (R.A.-R.)
| | - Norliza Abu-Bakar
- Agri-Omics and Bioinformatics Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute Headquarters, Serdang 43400, Selangor, Malaysia; (A.-A.T.); (L.R.); (R.A.-R.)
- Correspondence: ; Tel.: +60-3-8953-6102
| | - Aimera-Farhana Samsuddin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.-F.S.); (A.-M.A.-M.)
| | - Lina Rozano
- Agri-Omics and Bioinformatics Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute Headquarters, Serdang 43400, Selangor, Malaysia; (A.-A.T.); (L.R.); (R.A.-R.)
| | - Rohaiza Ahmad-Redzuan
- Agri-Omics and Bioinformatics Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute Headquarters, Serdang 43400, Selangor, Malaysia; (A.-A.T.); (L.R.); (R.A.-R.)
| | - Abdul-Munir Abdul-Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.-F.S.); (A.-M.A.-M.)
| |
Collapse
|
5
|
Wang J, Wang J, Ma C, Zhou Z, Yang D, Zheng J, Wang Q, Li H, Zhou H, Sun Z, Liu H, Li J, Chen L, Kang Q, Qi Z, Jiang H, Zhu R, Wu X, Liu C, Chen Q, Xin D. QTL Mapping and Data Mining to Identify Genes Associated With the Sinorhizobium fredii HH103 T3SS Effector NopD in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:453. [PMID: 32508850 PMCID: PMC7249737 DOI: 10.3389/fpls.2020.00453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/27/2020] [Indexed: 05/10/2023]
Abstract
In some legume-rhizobium symbioses, host specificity is influenced by rhizobial type III effectors-nodulation outer proteins (Nops). However, the genes encoding host proteins that interact with Nops remain unknown. In this study, we aimed to identify candidate soybean genes associated with NopD, one of the type III effectors of Sinorhizobium fredii HH103. The results showed that the expression pattern of NopD was analyzed in rhizobia induced by genistein. We also found NopD can be induced by TtsI, and NopD as a toxic effector can induce tobacco leaf death. In 10 soybean germplasms, NopD played a positively effect on nodule number (NN) and nodule dry weight (NDW) in nine germplasms, but not in Kenjian28. Significant phenotype of NN and NDW were identified between Dongnong594 and Charleston, Suinong14 and ZYD00006, respectively. To map the quantitative trait locus (QTL) associated with NopD, a recombinant inbred line (RIL) population derived from the cross between Dongnong594 and Charleston, and chromosome segment substitution lines (CSSLs) derived from Suinong14 and ZYD00006 were used. Two overlapping conditional QTL associated with NopD on chromosome 19 were identified. Two candidate genes were identified in the confident region of QTL, we found that NopD could influence the expression of Glyma.19g068600 (FBD/LRR) and expression of Glyma.19g069200 (PP2C) after HH103 infection. Haplotype analysis showed that different types of Glyma.19g069200 haplotypes could cause significant nodule phenotypic differences, but Glyma.19g068600 (FBD/LRR) was not. These results suggest that NopD promotes S. fredii HH103 infection via directly or indirectly regulating Glyma.19g068600 and Glyma.19g069200 expression during the establishment of symbiosis between rhizobia and soybean plants.
Collapse
Affiliation(s)
- Jinhui Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jieqi Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chao Ma
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Ziqi Zhou
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Decheng Yang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Junzan Zheng
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qi Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Huiwen Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongyang Zhou
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhijun Sun
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hanxi Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jianyi Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Lin Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qinglin Kang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhaoming Qi
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Rongsheng Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaoxia Wu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chunyan Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
- *Correspondence: Chunyan Liu,
| | - Qingshan Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
- Qingshan Chen,
| | - Dawei Xin
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
- Dawei Xin,
| |
Collapse
|
6
|
Dey S, Chakravarty A, Guha Biswas P, De Guzman RN. The type III secretion system needle, tip, and translocon. Protein Sci 2019; 28:1582-1593. [PMID: 31301256 DOI: 10.1002/pro.3682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/06/2022]
Abstract
Many Gram-negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | | | | | | |
Collapse
|
7
|
Otero-Asman JR, Wettstadt S, Bernal P, Llamas MA. Diversity of extracytoplasmic function sigma (σ ECF ) factor-dependent signaling in Pseudomonas. Mol Microbiol 2019; 112:356-373. [PMID: 31206859 DOI: 10.1111/mmi.14331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 12/23/2022]
Abstract
Pseudomonas bacteria are widespread and are found in soil and water, as well as pathogens of both plants and animals. The ability of Pseudomonas to colonize many different environments is facilitated by the multiple signaling systems these bacteria contain that allow Pseudomonas to adapt to changing circumstances by generating specific responses. Among others, signaling through extracytoplasmic function σ (σECF ) factors is extensively present in Pseudomonas. σECF factors trigger expression of functions required under particular conditions in response to specific signals. This manuscript reviews the phylogeny and biological roles of σECF factors in Pseudomonas, and highlights the diversity of σECF -signaling pathways of this genus in terms of function and activation. We show that Pseudomonas σECF factors belong to 16 different phylogenetic groups. Most of them are included within the iron starvation group and are mainly involved in iron acquisition. The second most abundant group is formed by RpoE-like σECF factors, which regulate the responses to cell envelope stress. Other groups controlling solvent tolerance, biofilm formation and the response to oxidative stress, among other functions, are present in lower frequency. The role of σECF factors in the virulence of Pseudomonas pathogenic species is described.
Collapse
Affiliation(s)
- Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sarah Wettstadt
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Patricia Bernal
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
8
|
|
9
|
Shopera T, Henson WR, Moon TS. Dynamics of sequestration-based gene regulatory cascades. Nucleic Acids Res 2017; 45:7515-7526. [PMID: 28525642 PMCID: PMC5499576 DOI: 10.1093/nar/gkx465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Gene regulatory cascades are ubiquitous in biology. Because regulatory cascades are integrated within complex networks, their quantitative analysis is challenging in native systems. Synthetic biologists have gained quantitative insights into the properties of regulatory cascades by building simple circuits, but sequestration-based regulatory cascades remain relatively unexplored. Particularly, it remains unclear how the cascade components collectively control the output dynamics. Here, we report the construction and quantitative analysis of the longest sequestration-based cascade in Escherichia coli. This cascade consists of four Pseudomonas aeruginosa protein regulators (ExsADCE) that sequester their partner. Our computational analysis showed that the output dynamics are controlled in a complex way by the concentration of the unbounded transcriptional activator ExsA. By systematically varying the cascade length and the synthesis rate of each regulator, we experimentally verified the computational prediction that ExsC plays a role in rapid circuit responses by sequestering the anti-activator ExsD, while ExsD increases response times by decreasing the free ExsA concentration. In contrast, when additional ExsD was introduced to the cascade via indirect negative feedback, the response time was significantly reduced. Sequestration-based regulatory cascades with negative feedback are often found in biology, and thus our finding provides insights into the dynamics of this recurring motif.
Collapse
Affiliation(s)
- Tatenda Shopera
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - William R Henson
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
10
|
Panopoulos NJ. A Career on Both Sides of the Atlantic: Memoirs of a Molecular Plant Pathologist. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:1-21. [PMID: 28777925 DOI: 10.1146/annurev-phyto-080516-035506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This article recounts the experiences that shaped my career as a molecular plant pathologist. It focuses primarily on technical and conceptual developments in molecular phytobacteriology, shares some personal highlights and untold stories that impacted my professional development, and describes the early years of agricultural biotechnology. Writing this article required reflection on events occurring over several decades that were punctuated by a mid-career relocation across the Atlantic. I hope it will still be useful, informative, and enjoyable to read. An extended version of the abstract is provided in the Supplemental Materials , available online.
Collapse
Affiliation(s)
- Nickolas J Panopoulos
- Professor Emeritus, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94619
- Department of Biology, University of Crete, Heraklion, GR-71003, Greece;
- Hellenic Agricultural Academy, Agricultural University of Athens, 118 55 Athens, Greece
| |
Collapse
|
11
|
HpaB-Dependent Secretion of Type III Effectors in the Plant Pathogens Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria. Sci Rep 2017; 7:4879. [PMID: 28687734 PMCID: PMC5501821 DOI: 10.1038/s41598-017-04853-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/10/2017] [Indexed: 01/16/2023] Open
Abstract
Plant pathogenic bacteria exerts their pathogenicity through the injection of large repertoires of type III effectors (T3Es) into plant cells, a mechanism controlled in part by type III chaperones (T3Cs). In Ralstonia solanacearum, the causal agent of bacterial wilt, little is known about the control of type III secretion at the post-translational level. Here, we provide evidence that the HpaB and HpaD proteins do act as bona fide R. solanacearum class IB chaperones that associate with several T3Es. Both proteins can dimerize but do not interact with each other. After screening 38 T3Es for direct interactions, we highlighted specific and common interacting partners, thus revealing the first picture of the R. solanacearum T3C-T3E network. We demonstrated that the function of HpaB is conserved in two phytopathogenic bacteria, R. solanacearum and Xanthomonas campestris pv. vesicatoria (Xcv). HpaB from Xcv is able to functionally complement a R. solanacearum hpaB mutant for hypersensitive response elicitation on tobacco plants. Likewise, Xcv is able to translocate a heterologous T3E from R. solanacearum in an HpaB-dependent manner. This study underlines the central role of the HpaB class IB chaperone family and its potential contribution to the bacterial plasticity to acquire and deliver new virulence factors.
Collapse
|
12
|
Yaghoubi S, Ranjbar R, Dallal MMS, Fard SY, Shirazi MH, Mahmoudi M. Profiling of Virulence-associated Factors in Shigella Species Isolated from Acute Pediatric Diarrheal Samples in Tehran, Iran. Osong Public Health Res Perspect 2017; 8:220-226. [PMID: 28781945 PMCID: PMC5525559 DOI: 10.24171/j.phrp.2017.8.3.09] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The genus Shigella comprises the most infectious and diarrheagenic bacteria causing severe diseases, mostly in children under five years of age. This study aimed to detect nine virulence genes (ipaBCD, VirA, sen, set1A, set1B, ial, ipaH, stx, and sat) in Shigella species (spp.) using multiplex polymerase chain reaction (MPCR) and to determine the relation of Shigella spp. from pediatric diarrheal samples with hospitalization and bloody diarrhea in Tehran, Iran. METHODS Shigella spp. were isolated and identified using standard microbiological and serological methods. The virulence genes were detected using MPCR. RESULTS Seventy-five Shigella spp. (40 S. sonnei, 33 S. flexneri, 1 S. dysenteriae, and 1 S. boydii) were isolated in this study. The prevalence of ial, sen, sat, set1A, and set1B was 74.7%, 45.4%, 28%, 24%, and 24%, respectively. All S. flexneri isolates, while no S. sonnei, S. dysenteriae, or S. boydii isolates, contained sat, set1A, and set1B. All isolates were positive for ipaH, ipaBCD, and virA, while one (1.4%) of the isolates contained stx. The highest prevalence of virulence determinants was found in S. flexneri serotype IIa. Nineteen (57.6%) of 33 S. flexneri isolates were positive for ipaBCD, ipaH, virA, ial, and sat. The sen determinants were found to be statistically significantly associated with hospitalization and bloody diarrhea (p = 0.001). CONCLUSION This study revealed a high prevalence of enterotoxin genes in S. flexneri, especially in serotype 2a, and has presented relations between a few clinical features of shigellosis and numerous virulence determinants of clinical isolates of Shigella spp.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Yasliani Fard
- Department of Microbiology and Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Hasan Shirazi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Mahmoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Nazir R, Mazurier S, Yang P, Lemanceau P, van Elsas JD. The Ecological Role of Type Three Secretion Systems in the Interaction of Bacteria with Fungi in Soil and Related Habitats Is Diverse and Context-Dependent. Front Microbiol 2017; 8:38. [PMID: 28197129 PMCID: PMC5282467 DOI: 10.3389/fmicb.2017.00038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
Bacteria and fungi constitute important organisms in many ecosystems, in particular terrestrial ones. Both organismal groups contribute significantly to biogeochemical cycling processes. Ecological theory postulates that bacteria capable of receiving benefits from host fungi are likely to evolve efficient association strategies. The purpose of this review is to examine the mechanisms that underpin the bacterial interactions with fungi in soil and other systems, with special focus on the type III secretion system (T3SS). Starting with a brief description of the versatility of the T3SS as an interaction system with diverse eukaryotic hosts, we subsequently examine the recent advances made in our understanding of its contribution to interactions with soil fungi. The analysis used data sets ranging from circumstantial evidence to gene-knockout-based experimental data. The initial finding that the abundance of T3SSs in microbiomes is often enhanced in fungal-affected habitats like the mycosphere and the mycorrhizosphere is now substantiated with in-depth knowledge of the specific systems involved. Different fungal–interactive bacteria, in positive or negative associations with partner fungi, harbor and express T3SSs, with different ecological outcomes. In some particular cases, bacterial T3SSs have been shown to modulate the physiology of its fungal partner, affecting its ecological characteristics and consequently shaping its own habitat. Overall, the analyses of the collective data set revealed that diverse T3SSs have assumed diverse roles in the interactions of bacteria with host fungi, as driven by ecological and evolutionary niche requirements.
Collapse
Affiliation(s)
- Rashid Nazir
- Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan; Department of Soil Environmental Science, Research Centre for Eco-environmental Sciences - Chinese Academy of SciencesBeijing, China
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté Dijon, France
| | - Pu Yang
- Department of Microbial Ecology, GELIFES, University of Groningen Groningen, Netherlands
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté Dijon, France
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, GELIFES, University of Groningen Groningen, Netherlands
| |
Collapse
|
14
|
Negative Autogenous Control of the Master Type III Secretion System Regulator HrpL in Pseudomonas syringae. mBio 2017; 8:mBio.02273-16. [PMID: 28119474 PMCID: PMC5263251 DOI: 10.1128/mbio.02273-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The type III secretion system (T3SS) is a principal virulence determinant of the model bacterial plant pathogen Pseudomonas syringae T3SS effector proteins inhibit plant defense signaling pathways in susceptible hosts and elicit evolved immunity in resistant plants. The extracytoplasmic function sigma factor HrpL coordinates the expression of most T3SS genes. Transcription of hrpL is dependent on sigma-54 and the codependent enhancer binding proteins HrpR and HrpS for hrpL promoter activation. hrpL is oriented adjacently to and divergently from the HrpL-dependent gene hrpJ, sharing an intergenic upstream regulatory region. We show that association of the RNA polymerase (RNAP)-HrpL complex with the hrpJ promoter element imposes negative autogenous control on hrpL transcription in P. syringae pv. tomato DC3000. The hrpL promoter was upregulated in a ΔhrpL mutant and was repressed by plasmid-borne hrpL In a minimal Escherichia coli background, the activity of HrpL was sufficient to achieve repression of reconstituted hrpL transcription. This repression was relieved if both the HrpL DNA-binding function and the hrp-box sequence of the hrpJ promoter were compromised, implying dependence upon the hrpJ promoter. DNA-bound RNAP-HrpL entirely occluded the HrpRS and partially occluded the integration host factor (IHF) recognition elements of the hrpL promoter in vitro, implicating inhibition of DNA binding by these factors as a cause of negative autogenous control. A modest increase in the HrpL concentration caused hypersecretion of the HrpA1 pilus protein but intracellular accumulation of later T3SS substrates. We argue that negative feedback on HrpL activity fine-tunes expression of the T3SS regulon to minimize the elicitation of plant defenses. IMPORTANCE The United Nations Food and Agriculture Organization has warned that agriculture will need to satisfy a 50% to 70% increase in global food demand if the human population reaches 9 billion by 2050 as predicted. However, diseases caused by microbial pathogens represent a major threat to food security, accounting for over 10% of estimated yield losses in staple wheat, rice, and maize crops. Understanding the decision-making strategies employed by pathogens to coordinate virulence and to evade plant defenses is vital for informing crop resistance traits and management strategies. Many plant-pathogenic bacteria utilize the needle-like T3SS to inject virulence factors into host plant cells to suppress defense signaling. Pseudomonas syringae is an economically and environmentally devastating plant pathogen. We propose that the master regulator of its entire T3SS gene set, HrpL, downregulates its own expression to minimize elicitation of plant defenses. Revealing such conserved regulatory strategies will inform future antivirulence strategies targeting plant pathogens.
Collapse
|
15
|
XopN-T3SS effector of Xanthomonas axonopodis pv. punicae localizes to the plasma membrane and modulates ROS accumulation events during blight pathogenesis in pomegranate. Microbiol Res 2016; 193:111-120. [DOI: 10.1016/j.micres.2016.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/17/2016] [Accepted: 10/01/2016] [Indexed: 11/22/2022]
|
16
|
Lee JH, Sundin GW, Zhao Y. Identification of the HrpS binding site in the hrpL promoter and effect of the RpoN binding site of HrpS on the regulation of the type III secretion system in Erwinia amylovora. MOLECULAR PLANT PATHOLOGY 2016; 17:691-702. [PMID: 26440313 PMCID: PMC6638409 DOI: 10.1111/mpp.12324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by an RpoN-HrpL sigma factor cascade, which is activated by the bacterial alarmone (p)ppGpp. In this study, the binding site of HrpS, an enhancer binding protein, was identified for the first time in plant-pathogenic bacteria. Complementation of the hrpL mutant with promoter deletion constructs of the hrpL gene and promoter activity analyses using various lengths of the hrpL promoter fused to a promoter-less green fluorescent protein (gfp) reporter gene delineated the upstream region for HrpS binding. Sequence analysis revealed a dyad symmetry sequence between -138 and -125 nucleotides (TGCAA-N4-TTGCA) as the potential HrpS binding site, which is conserved in the promoter of the hrpL gene among plant enterobacterial pathogens. Results of quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and electrophoresis mobility shift assay coupled with site-directed mutagenesis (SDM) analysis showed that the intact dyad symmetry sequence was essential for HrpS binding, full activation of T3SS gene expression and virulence. In addition, the role of the GAYTGA motif (RpoN binding site) of HrpS in the regulation of T3SS gene expression in E. amylovora was characterized by complementation of the hrpS mutant using mutant variants generated by SDM. Results showed that a Y100F substitution of HrpS complemented the hrpS mutant, whereas Y100A and Y101A substitutions did not. These results suggest that tyrosine (Y) and phenylalanine (F) function interchangeably in the conserved GAYTGA motif of HrpS in E. amylovora.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
17
|
Liao CT, Liu YF, Chiang YC, Lo HH, Du SC, Hsu PC, Hsiao YM. Functional characterization and transcriptome analysis reveal multiple roles for prc in the pathogenicity of the black rot pathogen Xanthomonas campestris pv. campestris. Res Microbiol 2016; 167:299-312. [PMID: 26804425 DOI: 10.1016/j.resmic.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Gram-negative phytopathogenic Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot in crucifers. The ability of Xcc to incite this disease in plants depends on a number of factors, including exopolysaccharides, extracellular enzymes and biofilm production. In this study, transposon mutagenesis led to identification of the prc gene, encoding a tail-specific protease, which plays a role in Xcc pathogenesis. Mutation of prc resulted in decreased virulence, extracellular protease production and bacterial attachment, with restoration to the levels of wild type by the intact prc gene. From subsequent quantitative RT-PCR analysis and reporter assay, the major extracellular protease gene prt1, biofilm-related gene galE encoding a UDP-galactose 4-epimerase and two putative adhesin genes (yapH and XC_4290 encoding autotransporter-like protein H and hemagglutinin, respectively) were found to be reduced in the prc mutant. Results of transcriptome profiling of Xcc wild type and prc mutant by RNA sequencing (RNA-Seq) showed that mutation of prc in Xcc leads to alteration in the transcriptional levels (more than twofold) of 91 genes. These differentially expressed genes were associated with a wide range of biological functions such as carbohydrate transport and metabolism, cell wall/membrane biogenesis, posttranslational modification, protein turnover and chaperones, inorganic ion transport and metabolism and signal transduction mechanisms. The results of this study facilitate the functional understanding of and provide new information about the regulatory role of prc.
Collapse
Affiliation(s)
- Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Ying-Chuan Chiang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Shin-Chiao Du
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Pei-Chi Hsu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| |
Collapse
|
18
|
Lonjon F, Turner M, Henry C, Rengel D, Lohou D, van de Kerkhove Q, Cazalé AC, Peeters N, Genin S, Vailleau F. Comparative Secretome Analysis of Ralstonia solanacearum Type 3 Secretion-Associated Mutants Reveals a Fine Control of Effector Delivery, Essential for Bacterial Pathogenicity. Mol Cell Proteomics 2015; 15:598-613. [PMID: 26637540 DOI: 10.1074/mcp.m115.051078] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 12/21/2022] Open
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, exerts its pathogenicity through more than a hundred secreted proteins, many of them depending directly on the functionality of a type 3 secretion system. To date, only few type 3 effectors have been identified as required for bacterial pathogenicity, notably because of redundancy among the large R. solanacearum effector repertoire. In order to identify groups of effectors collectively promoting disease on susceptible hosts, we investigated the role of putative post-translational regulators in the control of type 3 secretion. A shotgun secretome analysis with label-free quantification using tandem mass spectrometry was performed on the R. solanacearum GMI1000 strain. There were 228 proteins identified, among which a large proportion of type 3 effectors, called Rip (Ralstonia injected proteins). Thanks to this proteomic approach, RipBJ was identified as a new effector specifically secreted through type 3 secretion system and translocated into plant cells. A focused Rip secretome analysis using hpa (hypersensitive response and pathogenicity associated) mutants revealed a fine secretion regulation and specific subsets of Rips with different secretion patterns. We showed that a set of Rips (RipF1, RipW, RipX, RipAB, and RipAM) are secreted in an Hpa-independent manner. We hypothesize that these Rips could be preferentially involved in the first stages of type 3 secretion. In addition, the secretion of about thirty other Rips is controlled by HpaB and HpaG. HpaB, a candidate chaperone was shown to positively control secretion of numerous Rips, whereas HpaG was shown to act as a negative regulator of secretion. To evaluate the impact of altered type 3 effectors secretion on plant pathogenesis, the hpa mutants were assayed on several host plants. HpaB was required for bacterial pathogenicity on multiple hosts whereas HpaG was found to be specifically required for full R. solanacearum pathogenicity on the legume plant Medicago truncatula.
Collapse
Affiliation(s)
- Fabien Lonjon
- From the ‡INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; §CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - Marie Turner
- From the ‡INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; §CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - Céline Henry
- ¶PAPPSO, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - David Rengel
- From the ‡INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; §CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - David Lohou
- From the ‡INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; §CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - Quitterie van de Kerkhove
- From the ‡INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; §CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - Anne-Claire Cazalé
- From the ‡INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; §CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - Nemo Peeters
- From the ‡INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; §CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - Stéphane Genin
- From the ‡INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; §CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - Fabienne Vailleau
- From the ‡INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; §CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France; ‖Université de Toulouse; INP; ENSAT; 18 chemin de Borde Rouge, Castanet Tolosan, 31326, France
| |
Collapse
|
19
|
Wang B, Buck M. Rapid engineering of versatile molecular logic gates using heterologous genetic transcriptional modules. Chem Commun (Camb) 2015; 50:11642-4. [PMID: 25062273 PMCID: PMC4185417 DOI: 10.1039/c4cc05264a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Versatile modular molecular logic gates are engineered in Escherichia coli bacteria that can sense and integrate multiple chemical molecules in customised digital logic manner.
We designed and constructed versatile modular genetic logic gates in bacterial cells. These function as digital logic 1-input Buffer gate, 2-input and 3-input AND gates with one inverted input and integrate multiple chemical input signals in customised logic manners. Such rapidly engineered devices serve to achieve increased sensing signal selectivity.
Collapse
Affiliation(s)
- Baojun Wang
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JR, UK.
| | | |
Collapse
|
20
|
Gao H, Wang Y, Fei X, Wright DA, Spalding MH. Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:1-11. [PMID: 25660294 DOI: 10.1111/tpj.12788] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 05/11/2023]
Abstract
The CO2 concentrating mechanism (CCM) is a key component of the carbon assimilation strategy of aquatic microalgae. Induced by limiting CO2 and tightly regulated, the CCM enables these microalgae to respond rapidly to varying environmental CO2 supplies and to perform photosynthetic CO2 assimilation in a cost-effective way. A functional CCM in eukaryotic algae requires Rubisco sequestration, rapid interconversion between CO2 and HCO3(-) catalyzed by carbonic anhydrases (CAs), and active inorganic carbon (Ci) uptake. In the model microalga Chlamydomonas reinhardtii, a membrane protein HLA3 is proposed to be involved in active Ci uptake across the plasma membrane. In this study, we use an artificially designed transcription activator-like effector (dTALE) to activate the expression of HLA3. The successful activation of HLA3 expression demonstrates dTALE as a promising tool for gene-specific activation and investigation of gene function in Chlamydomonas. Activation of HLA3 expression in high CO2 acclimated cells, where HLA3 is not expressed, resulted in increased Ci accumulation and Ci-dependent photosynthetic O2 evolution specifically in very low CO2 concentrations, which confirms that HLA3 is indeed involved in Ci uptake, and suggests it is mainly associated with HCO3(-) transport in very low CO2 concentrations, conditions in which active CO2 uptake is highly limited.
Collapse
Affiliation(s)
- Han Gao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
21
|
Wang B, Barahona M, Buck M. Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks. Nucleic Acids Res 2014; 42:9484-92. [PMID: 25030903 PMCID: PMC4132719 DOI: 10.1093/nar/gku593] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Synthetic biology aims to control and reprogram signal processing pathways within living cells so as to realize repurposed, beneficial applications. Here we report the design and construction of a set of modular and gain-tunable genetic amplifiers in Escherichia coli capable of amplifying a transcriptional signal with wide tunable-gain control in cascaded gene networks. The devices are engineered using orthogonal genetic components (hrpRS, hrpV and PhrpL) from the hrp (hypersensitive response and pathogenicity) gene regulatory network in Pseudomonas syringae. The amplifiers can linearly scale up to 21-fold the transcriptional input with a large output dynamic range, yet not introducing significant time delay or significant noise during signal amplification. The set of genetic amplifiers achieves different gains and input dynamic ranges by varying the expression levels of the underlying ligand-free activator proteins in the device. As their electronic counterparts, these engineered transcriptional amplifiers can act as fundamental building blocks in the design of biological systems by predictably and dynamically modulating transcriptional signal flows to implement advanced intra- and extra-cellular control functions.
Collapse
Affiliation(s)
- Baojun Wang
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mauricio Barahona
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
22
|
|
23
|
Cui Y, Zou L, Zou H, Li Y, Zakria M, Chen G. HrpE3 is a type III effector protein required for full virulence of Xanthomonas oryzae pv. oryzicola in rice. MOLECULAR PLANT PATHOLOGY 2013; 14:678-92. [PMID: 23672717 PMCID: PMC6638819 DOI: 10.1111/mpp.12039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) is the causal agent of bacterial leaf streak, a devastating disease in rice. Xoc uses a type III secretion (T3S) system, which is encoded by the hrp-hrc-hpa (hypersensitive response and pathogenicity, hrp-conserved and hrp-associated) genes, to inject repertoires of T3S effectors (T3Es) into plant cells. Many of the hrp-hrc-hpa genes have roles in pathogenesis, but the role of hrpE3, which shows homology to hpaE in X. campestris pv. vesicatoria (Xcv), is poorly understood. In this study, hrpE3 was shown to be transcribed independent of the hrpD operon, and its expression was dependent on a promoter within hpaB. The expression of hrpE3 was positively regulated by HrpG and HrpX, a finding probably caused by an imperfect plant-inducible promoter (PIP) box (TTCGT-N16 -TTCGA) in the hrpE3 promoter. The secretion of HrpE3 was dependent on T3S, and subcellular localization of HrpE3 was cytoplasmic and nuclear in plant cells. A mutation in hrpE3 reduced the virulence of Xoc by decreasing disease lesion length and bacterial growth in planta. Full virulence was restored to the mutant when Xoc hrpE3, but not Xcv hpaE, was expressed in trans. The differences in transcription, secretion via the T3S system and bacterial virulence in plants were attributed to N-terminal amino acid differences between Xoc HrpE3 and Xcv HpaE. Collectively, the results demonstrate that hrpE3 encodes a T3E protein which is delivered into the plant cell through the T3S system, localizes to the cytoplasm and nucleus, and is required for full virulence in rice.
Collapse
Affiliation(s)
- Yiping Cui
- Department of Plant Pathology, Nanjing Agricultural University/Key Laboratory of Monitoring and Management for Plant Diseases and Insects, Ministry of Agriculture of China, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
24
|
Vrancken K, Holtappels M, Schoofs H, Deckers T, Valcke R. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: State of the art. Microbiology (Reading) 2013; 159:823-832. [DOI: 10.1099/mic.0.064881-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- K. Vrancken
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Agoralaan gebouw D, 3590 Diepenbeek, Belgium
| | - M. Holtappels
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Agoralaan gebouw D, 3590 Diepenbeek, Belgium
| | - H. Schoofs
- Pomology department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - T. Deckers
- Pomology department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - R. Valcke
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Agoralaan gebouw D, 3590 Diepenbeek, Belgium
| |
Collapse
|
25
|
Barak JD, Schroeder BK. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:241-66. [PMID: 22656644 DOI: 10.1146/annurev-phyto-081211-172936] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.
Collapse
Affiliation(s)
- Jeri D Barak
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
26
|
Xin DW, Liao S, Xie ZP, Hann DR, Steinle L, Boller T, Staehelin C. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathog 2012; 8:e1002707. [PMID: 22615567 PMCID: PMC3355095 DOI: 10.1371/journal.ppat.1002707] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/02/2012] [Indexed: 12/29/2022] Open
Abstract
Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS) are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia) and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M) of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL) domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP) kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant's defense response, as shown by a reduced production of reactive oxygen species (ROS) in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.
Collapse
Affiliation(s)
- Da-Wei Xin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sha Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dagmar R. Hann
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Lea Steinle
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Thomas Boller
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Christian Staehelin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Akimoto-Tomiyama C, Furutani A, Tsuge S, Washington EJ, Nishizawa Y, Minami E, Ochiai H. XopR, a type III effector secreted by Xanthomonas oryzae pv. oryzae, suppresses microbe-associated molecular pattern-triggered immunity in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:505-14. [PMID: 22204644 DOI: 10.1094/mpmi-06-11-0167] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial blight of rice. The XopR protein, secreted into plant cells through the type III secretion apparatus, is widely conserved in xanthomonads and is predicted to play important roles in bacterial pathogenicity. Here, we examined the function of XopR by constructing transgenic Arabidopsis thaliana plants expressing it under control of the dexamethasone (DEX)-inducible promoter. In the transgenic plants treated with DEX, slightly delayed growth and variegation on leaves were observed. Induction of four microbe-associated molecular pattern (MAMP)-specific early-defense genes by a nonpathogenic X. campestris pv. campestris hrcC deletion mutant were strongly suppressed in the XopR-expressing plants. XopR expression also reduced the deposition of callose, an immune response induced by flg22. When transiently expressed in Nicotiana benthamiana, a XopR::Citrine fusion gene product localized to the plasma membrane. The deletion of XopR in X. oryzae pv. oryzae resulted in reduced pathogenicity on host rice plants. Collectively, these results suggest that XopR inhibits basal defense responses in plants rapidly after MAMP recognition.
Collapse
Affiliation(s)
- Chiharu Akimoto-Tomiyama
- Plant-Microbe Interaction Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8603, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV. HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol 2012; 194:553-60. [PMID: 22123252 PMCID: PMC3264070 DOI: 10.1128/jb.05065-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 11/14/2011] [Indexed: 12/30/2022] Open
Abstract
Fire blight is a devastating disease of rosaceous plants caused by the Gram-negative bacterium Erwinia amylovora. This pathogen delivers virulence proteins into host cells utilizing the type III secretion system (T3SS). Expression of the T3SS and of translocated and secreted substrates is activated by the alternative sigma factor HrpL, which recognizes hrp box promoters upstream of regulated genes. A collection of hidden Markov model (HMM) profiles was used to identify putative hrp boxes in the genome sequence of Ea273, a highly virulent strain of E. amylovora. Among potential virulence factors preceded by putative hrp boxes, two genes previously known as Eop3 and Eop2 were characterized. The presence of functionally active hrp boxes upstream of these two genes was confirmed by β-glucuronidase (GUS) assays. Deletion mutants of the latter candidate genes, renamed hopX1(Ea) and hopAK1(Ea), respectively, did not differ in virulence from the wild-type strain when assayed in pear fruit and apple shoots. The hopX1(Ea) deletion mutant of Ea273, complemented with a plasmid overexpressing hopX1(E)(a), suppressed the development of the hypersensitivity response (HR) when inoculated into Nicotiana benthamiana; however, it contributed to HR in Nicotiana tabacum and significantly reduced the progress of disease in apple shoots, suggesting that HopX1(Ea) may act as an avirulence protein in apple shoots.
Collapse
Affiliation(s)
- A. M. Bocsanczy
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - D. J. Schneider
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
- United States Department of Agriculture, Agricultural Research Service, Ithaca, New York, USA
| | - G. A. DeClerck
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, USA
| | - S. Cartinhour
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
- United States Department of Agriculture, Agricultural Research Service, Ithaca, New York, USA
| | - S. V. Beer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
29
|
Tegli S, Gori A, Cerboneschi M, Cipriani MG, Sisto A. Type Three Secretion System in Pseudomonas savastanoi Pathovars: Does Timing Matter? Genes (Basel) 2011; 2:957-79. [PMID: 24710300 PMCID: PMC3927595 DOI: 10.3390/genes2040957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas savastanoi pv. savastanoi is the causal agent of Olive knot disease, relying on the Type Three Secretion System (TTSS) for its pathogenicity. In this regard, nothing was known about the two other pathovars belonging to this species, pv. nerii and pv. fraxini, characterized by a different host range. Here we report on the organization of the entire TTSS cluster on the three pathovars, and a phylogenetic analysis including the TTSS of those bacteria belonging to the P. syringae complex sequenced so far, highlighting the evolution of each operon (hrpC, hrpJ, hrpRS, hrpU and hrpZ). Moreover, by Real-Time PCR we analyzed the in vitro expression of four main TTSS genes, revealing different activation patterns in the three pathovars, hypothetically related to their diverse virulence behaviors.
Collapse
Affiliation(s)
- Stefania Tegli
- Laboratorio di Patologia Vegetale Molecolare, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; E-Mails: (A.G.); (M.C.)
| | - Andrea Gori
- Laboratorio di Patologia Vegetale Molecolare, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; E-Mails: (A.G.); (M.C.)
| | - Matteo Cerboneschi
- Laboratorio di Patologia Vegetale Molecolare, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; E-Mails: (A.G.); (M.C.)
| | - Maria Grazia Cipriani
- Plant Protection Institute, Section of Bari, National Research Council (CNR), Via Amendola 122/D, 70126 Bari, Italy; E-Mail:
| | - Angelo Sisto
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; E-Mail:
| |
Collapse
|
30
|
Wang B, Kitney RI, Joly N, Buck M. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2011; 2:508. [PMID: 22009040 PMCID: PMC3207208 DOI: 10.1038/ncomms1516] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/21/2011] [Indexed: 01/08/2023] Open
Abstract
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ54-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts. Biological digital sensors require the fabrication of modular genetic logic gates. Using the Pseudomonas syringae hrp system, Wang and colleagues generate AND, NOT and NAND gates, demonstrating the ability to engineer a modular system from biological elements.
Collapse
Affiliation(s)
- Baojun Wang
- Centre for Synthetic Biology and Innovation and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
31
|
Li YR, Zou HS, Che YZ, Cui YP, Guo W, Zou LF, Chatterjee S, Biddle EM, Yang CH, Chen GY. A novel regulatory role of HrpD6 in regulating hrp-hrc-hpa genes in Xanthomonas oryzae pv. oryzicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1086-1101. [PMID: 21615204 DOI: 10.1094/mpmi-09-10-0205] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak in the model plant rice, possesses a hypersensitive response and pathogenicity (hrp), hrp-conserved (hrc), hrp-associated (hpa) cluster (hrp-hrc-hpa) that encodes a type III secretion system (T3SS) through which T3SS effectors are injected into host cells to cause disease or trigger plant defenses. Mutations in this cluster usually abolish the bacterial ability to cause hypersensitive response in nonhost tobacco and pathogenicity in host rice. In Xanthomonas spp., these genes are generally assumed to be regulated by the key master regulators HrpG and HrpX. However, we present evidence that, apart from HrpG and HrpX, HrpD6 is also involved in regulating the expression of hrp genes. Interestingly, the expression of hpa2, hpa1, hpaB, hrcC, and hrcT is positively controlled by HrpD6. Transcriptional expression assays demonstrated that the expression of the hrcC, hrpD5, hrpE, and hpa3 genes was not completely abolished by hrpG and hrpX mutations. As observed in analysis of their corresponding mutants, HrpG and HrpX exhibit contrasting gene regulation, particularly for hpa2 and hrcT. Other two-component system regulators (Zur, LrpX, ColR/S, and Trh) did not completely inhibit the expression of hrcC, hrpD5, hrpE, and hpa3. Immunoblotting assays showed that the secretion of HrpF, which is an HpaB-independent translocator, is not affected by the mutation in hrpD6. However, the mutation in hrpD6 affects the secretion of an HpaB-dependent TAL effector, AvrXa27. These novel findings suggest that, apart from HrpG and HrpX, HrpD6 plays important roles not only in the regulation of hrp genes but also in the secretion of TAL effectors.
Collapse
Affiliation(s)
- Yu-Rong Li
- Shanghai Jiaotong University, Shangai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Structure-function analysis of the HrpB2-HrcU interaction in the Xanthomonas citri type III secretion system. PLoS One 2011; 6:e17614. [PMID: 21408079 PMCID: PMC3052322 DOI: 10.1371/journal.pone.0017614] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/01/2011] [Indexed: 12/02/2022] Open
Abstract
Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcUAAAH) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the ΔhrcU mutant with HrcUAAAH produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the ΔhrcU mutant complemented with HrcUAAAH, suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the ΔhrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta.
Collapse
|
33
|
Salomon D, Dar D, Sreeramulu S, Sessa G. Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:305-14. [PMID: 21062109 DOI: 10.1094/mpmi-09-10-0196] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. X. campestris pv. vesicatoria pathogenicity depends on a type III secretion system delivering effector proteins into the host cells. We hypothesized that some X. campestris pv. vesicatoria effectors target conserved eukaryotic cellular processes and examined phenotypes induced by their expression in yeast. Out of 21 effectors tested, 14 inhibited yeast growth in normal or stress conditions. Viability assay revealed that XopB and XopF2 attenuated cell proliferation, while AvrRxo1, XopX, and XopE1 were cytotoxic. Inspection of morphological features and DNA content of yeast cells indicated that cytotoxicity caused by XopX and AvrRxo1 was associated with cell-cycle arrest at G0/1. Interestingly, XopB, XopE1, XopF2, XopX, and AvrRxo1 that inhibited growth in yeast also caused phenotypes, such as chlorosis and cell death, when expressed in either host or nonhost plants. Finally, the ability of several effectors to cause phenotypes in yeast and plants was dependent on their putative catalytic residues or localization motifs. This study supports the use of yeast as a heterologous system for functional analysis of X. campestris pv. vesicatoria type III effectors, and sets the stage for identification of their eukaryotic molecular targets and modes of action.
Collapse
Affiliation(s)
- Dor Salomon
- Department of Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
34
|
Viollet A, Corberand T, Mougel C, Robin A, Lemanceau P, Mazurier S. Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. FEMS Microbiol Ecol 2011; 75:457-67. [PMID: 21204867 DOI: 10.1111/j.1574-6941.2010.01021.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Type III secretion systems (T3SSs) of Gram-negative bacteria mediate direct interactions with eukaryotic cells. Pseudomonas spp. harboring T3SS genes (T3SS+) were previously shown to be more abundant in the rhizosphere than in bulk soil. To discriminate the contribution of roots and associated arbuscular mycorrhizal fungi (AMF) on the enrichment of T3SS+ fluorescent pseudomonads in the rhizosphere of Medicago truncatula, their frequency was assessed among pseudomonads isolated from mycorrhizal and nonmycorrhizal roots and from bulk soil. T3SS genes were identified by PCR targeting a conserved hrcRST DNA fragment. Polymorphism of hrcRST in T3SS+ isolates was assessed by PCR-restriction fragment length polymorphism and sequencing. Genotypic diversity of all pseudomonads isolated, whether or not harboring T3SS, was described by BOX-PCR. T3SS+ pseudomonads were significantly more abundant in mycorrhizal than in nonmycorrhizal roots and in bulk soil, and all were shown to belong to the phylogenetic group of Pseudomonas fluorescens on the basis of 16S rRNA gene identity. Four hrcRST genotypes were described; two only included isolates from mycorrhizal roots. T3SS+ and T3SS- pseudomonads showed different genetic backgrounds as indicated by their different BOX-PCR types. Taken together, these data suggest that T3SSs are implicated in interactions between fluorescent pseudomonads and AM in medic rhizosphere.
Collapse
Affiliation(s)
- Amandine Viollet
- INRA, Université de Bourgogne, UMR 1229 Microbiologie du Sol et de l'Environnement, CMSE, Dijon, France
| | | | | | | | | | | |
Collapse
|
35
|
Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clément C, Baillieul F, Dorey S. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:595-603. [PMID: 20881012 DOI: 10.1093/jxb/erq291] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that colonize the rhizosphere of many plant species and confer beneficial effects, such as an increase in plant growth. PGPR are also well known as inducers of systemic resistance to pathogens in plants. However, the molecular mechanisms involved locally after direct perception of these bacteria by plant cells still remain largely unknown. Burkholderia phytofirmans strain PsJN is an endophytic PGPR that colonizes grapevine and protects the plant against the grey mould disease caused by Botrytis cinerea. This report focuses on local defence events induced by B. phytofirmans PsJN after perception by the grapevine cells. It is demonstrated that, after addition to cell suspension cultures, the bacteria were tightly attaching to plant cells in a way similar to the grapevine non-host bacteria Pseudomonas syringae pv. pisi. B. phytofirmans PsJN perception led to a transient and monophasic extracellular alkalinization but no accumulation of reactive oxygen species or cell death were detected. By contrast, challenge with P. syringae pv. pisi induced a sustained and biphasic extracellular alkalinization, a two phases oxidative burst, and a HR-like response. Perception of the PGPR also led to the production of salicylic acid (SA) and the expression of a battery of defence genes that was, however, weaker in intensity compared with defence gene expression triggered by the non-host bacteria. Some defence genes up-regulated after B. phytofirmans PsJN challenge are specifically induced by exogenous treatment with SA or jasmonic acid, suggesting that both signalling pathways are activated by the PGPR in grapevine.
Collapse
Affiliation(s)
- Sophie Bordiec
- Université de Reims Champagne-Ardenne, URVVC-SE-EA 2069, Laboratoire Stress, Défense et Reproduction des Plantes, BP 1039, F-51687 Reims cedex 2, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aidemark M, Tjellström H, Sandelius AS, Stålbrand H, Andreasson E, Rasmusson AG, Widell S. Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. BMC PLANT BIOLOGY 2010; 10:274. [PMID: 21156059 PMCID: PMC3017840 DOI: 10.1186/1471-2229-10-274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/14/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND Alamethicin is a membrane-active peptide isolated from the beneficial root-colonising fungus Trichoderma viride. This peptide can insert into membranes to form voltage-dependent pores. We have previously shown that alamethicin efficiently permeabilises the plasma membrane, mitochondria and plastids of cultured plant cells. In the present investigation, tobacco cells (Nicotiana tabacum L. cv Bright Yellow-2) were pre-treated with elicitors of defence responses to study whether this would affect permeabilisation. RESULTS Oxygen consumption experiments showed that added cellulase, already upon a limited cell wall digestion, induced a cellular resistance to alamethicin permeabilisation. This effect could not be elicited by xylanase or bacterial elicitors such as flg22 or elf18. The induction of alamethicin resistance was independent of novel protein synthesis. Also, the permeabilisation was unaffected by the membrane-depolarising agent FCCP. As judged by lipid analyses, isolated plasma membranes from cellulase-pretreated tobacco cells contained less negatively charged phospholipids (PS and PI), yet higher ratios of membrane lipid fatty acid to sterol and to protein, as compared to control membranes. CONCLUSION We suggest that altered membrane lipid composition as induced by cellulase activity may render the cells resistant to alamethicin. This induced resistance could reflect a natural process where the plant cells alter their sensitivity to membrane pore-forming agents secreted by Trichoderma spp. to attack other microorganisms, and thus adding to the beneficial effect that Trichoderma has for plant root growth. Furthermore, our data extends previous reports on artificial membranes on the importance of lipid packing and charge for alamethicin permeabilisation to in vivo conditions.
Collapse
Affiliation(s)
- Mari Aidemark
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| | - Henrik Tjellström
- Plant Biology Department, Michigan State University, East Lansing, 48824, MI, USA
- Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, SE-405 30 Göteborg, Sweden
| | - Anna Stina Sandelius
- Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, SE-405 30 Göteborg, Sweden
| | - Henrik Stålbrand
- Department of Biochemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish Agricultural University, P.O. Box 102, SE-230 53 Alnarp, Sweden
| | - Allan G Rasmusson
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| | - Susanne Widell
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| |
Collapse
|
37
|
Khaosaad T, Staehelin C, Steinkellner S, Hage-Ahmed K, Ocampo JA, Garcia-Garrido JM, Vierheilig H. The Rhizobium sp. strain NGR234 systemically suppresses arbuscular mycorrhizal root colonization in a split-root system of barley (Hordeum vulgare). PHYSIOLOGIA PLANTARUM 2010; 140:238-45. [PMID: 20618761 DOI: 10.1111/j.1399-3054.2010.01396.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nitrogen-fixing bacteria (rhizobia) form a nodule symbiosis with legumes, but also induce certain effects on non-host plants. Here, we used a split-root system of barley to examine whether inoculation with Rhizobium sp. strain NGR234 on one side of a split-root system systemically affects arbuscular mycorrhizal (AM) root colonization on the other side. Mutant strains of NGR234 deficient in Nod factor production (strain NGRΔnodABC), perception of flavonoids (strain NGRΔnodD1) and secretion of type 3 effector proteins (strain NGRΩrhcN) were included in this study. Inoculation resulted in a systemic reduction of AM root colonization with all tested strains. However, the suppressive effect of strain NGRΩrhcN was less pronounced. Moreover, levels of salicylic acid, an endogenous molecule related to plant defense, were increased in roots challenged with rhizobia. These data indicate that barley roots perceived NGR234 and that a systemic regulatory mechanism of AM root colonization was activated. The suppressive effect appears to be Nod factor independent, but enhanced by type 3 effector proteins of NGR234.
Collapse
Affiliation(s)
- Thanasan Khaosaad
- Faculty of Sciences, Department of Biotechnology, Ramkhamhaeng University, Bangkok 10240, Thailand
| | | | | | | | | | | | | |
Collapse
|
38
|
Rong W, Feng F, Zhou J, He C. Effector-triggered innate immunity contributes Arabidopsis resistance to Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2010; 11:783-93. [PMID: 21029323 PMCID: PMC6640269 DOI: 10.1111/j.1364-3703.2010.00642.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Xanthomonas campestris pv. campestris, the causal agent of black rot disease, depends on its type III secretion system (TTSS) to infect cruciferous plants, including Brassica oleracea, B. napus and Arabidopsis. Previous studies on the Arabidopsis-Pseudomonas syringae model pathosystem have indicated that a major function of TTSS from virulent bacteria is to suppress host defences triggered by pathogen-associated molecular patterns. Similar analyses have not been made for the Arabidopsis-X. campestris pv. campestris pathosystem. In this study, we report that X. campestris pv. campestris strain 8004, which is modestly pathogenic on Arabidopsis, induces strong defence responses in Arabidopsis in a TTSS-dependent manner. Furthermore, the induction of defence responses and disease resistance to X. campestris pv. campestris strain 8004 requires NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE1), RAR1 (required for Mla12 resistance) and SGT1b (suppressor of G2 allele of skp1), suggesting that effector-triggered immunity plays a large role in resistance to this strain. Consistent with this notion, AvrXccC, an X. campestris pv. campestris TTSS effector protein, induces PR1 expression and confers resistance in Arabidopsis in a RAR1- and SGT1b-dependent manner. In rar1 and sgt1b mutants, AvrXccC acts as a virulence factor, presumably because of impaired resistance gene function.
Collapse
Affiliation(s)
- Wei Rong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
39
|
Yang S, Peng Q, Zhang Q, Zou L, Li Y, Robert C, Pritchard L, Liu H, Hovey R, Wang Q, Birch P, Toth IK, Yang CH. Genome-wide identification of HrpL-regulated genes in the necrotrophic phytopathogen Dickeya dadantii 3937. PLoS One 2010; 5:e13472. [PMID: 20976052 PMCID: PMC2957411 DOI: 10.1371/journal.pone.0013472] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 09/30/2010] [Indexed: 12/26/2022] Open
Abstract
Background Dickeya dadantii is a necrotrophic pathogen causing disease in many plants. Previous studies have demonstrated that the type III secretion system (T3SS) of D. dadantii is required for full virulence. HrpL is an alternative sigma factor that binds to the hrp box promoter sequence of T3SS genes to up-regulate their expression. Methodology/Principal Findings To explore the inventory of HrpL-regulated genes of D. dadantii 3937 (3937), transcriptome profiles of wild-type 3937 and a hrpL mutant grown in a T3SS-inducing medium were examined. Using a cut-off value of 1.5, significant differential expression was observed in sixty-three genes, which are involved in various cellular functions such as type III secretion, chemotaxis, metabolism, regulation, and stress response. A hidden Markov model (HMM) was used to predict candidate hrp box binding sites in the intergenic regions of 3937, including the promoter regions of HrpL-regulated genes identified in the microarray assay. In contrast to biotrophic phytopathgens such as Pseudomonas syringae, among the HrpL up-regulated genes in 3937 only those within the T3SS were found to contain a hrp box sequence. Moreover, direct binding of purified HrpL protein to the hrp box was demonstrated for hrp box-containing DNA fragments of hrpA and hrpN using the electrophoretic mobility shift assay (EMSA). In this study, a putative T3SS effector DspA/E was also identified as a HrpL-upregulated gene, and shown to be translocated into plant cells in a T3SS-dependent manner. Conclusion/Significances We provide the genome-wide study of HrpL-regulated genes in a necrotrophic phytopathogen (D. dadantii 3937) through a combination of transcriptomics and bioinformatics, which led to identification of several effectors. Our study indicates the extent of differences for T3SS effector protein inventory requirements between necrotrophic and biotrophic pathogens, and may allow the development of different strategies for disease control for these different groups of pathogens.
Collapse
Affiliation(s)
- Shihui Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Quan Peng
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Qiu Zhang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Lifang Zou
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yan Li
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Christelle Robert
- Plant Pathology, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | - Leighton Pritchard
- Plant Pathology, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | - Hui Liu
- Plant Pathology, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | - Raymond Hovey
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Qi Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Paul Birch
- Plant Pathology, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | - Ian K. Toth
- Plant Pathology, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
- * E-mail: (CHY); (IKT)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail: (CHY); (IKT)
| |
Collapse
|
40
|
EseG, an effector of the type III secretion system of Edwardsiella tarda, triggers microtubule destabilization. Infect Immun 2010; 78:5011-21. [PMID: 20855515 DOI: 10.1128/iai.00152-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and both gastrointestinal and extraintestinal infections in humans. A type III secretion system (T3SS) was recently shown to contribute to pathogenesis, since deletions of various T3SS genes increased the 50% lethal dose (LD(50)) by about 1 log unit in the blue gourami infection model. In this study, we report EseG as the first identified effector protein of T3SS. EseG shares partial homology with two Salmonella T3SS effectors (SseG and SseF) over a conserved domain (amino acid residues 142 to 192). The secretion of EseG is dependent on a functional T3SS and, in particular, requires the chaperone EscB. Experiments using TEM-1 β-lactamase as a fluorescence-based reporter showed that EseG was translocated into HeLa cells at 35°C. Fractionation of infected HeLa cells demonstrated that EseG was localized to the host membrane fraction after translocation. EseG is able to disassemble microtubule structures when overexpressed in mammalian cells. This phenotype may require a conserved motif of EseG (EseG(142-192)), since truncated versions of EseG devoid of this motif lose their ability to cause microtubule destabilization. By demonstrating the function of EseG, our study contributes to the understanding of E. tarda pathogenesis. Moreover, the approach established in this study to identify type III effectors can be used to identify and characterize more type III and possible type VI effectors in Edwardsiella.
Collapse
|
41
|
Song C, Yang B. Mutagenesis of 18 type III effectors reveals virulence function of XopZ(PXO99) in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:893-902. [PMID: 20521952 DOI: 10.1094/mpmi-23-7-0893] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Xanthomonas oryzae pv. oryzae depends on a type III secretion system (T3SS) to translocate effectors into host cells for its ability to cause bacterial blight of rice. All type III (T3) effectors with known function in X. oryzae pv. oryzae belong to a family of transcription activator-like (TAL) effectors. However, other, non-TAL-related effector genes are present in the genome, although their role in virulence and their mode of action have yet to be elucidated. Here, we report the generation of mutants for 18 non-TAL T3 effector genes and the identification of one that contributes to the virulence of strain PXO99(A). XopZ(PXO99) encodes a predicted 1,414-amino-acid protein of unknown function. PXO99(A) contains two identical copies of the gene due to a duplication of 212 kb in the genome. Strains with knockout mutations of one copy of XopZ(PXO99) did not exhibit any visible virulence defect. However, strains with mutations in both copies of XopZ(PXO99) displayed reduced virulence in terms of lesion length and bacterial multiplication compared with PXO99(A). The introduction of one genomic copy of XopZ(PXO99) restores the mutant to full virulence. Transient expression of XopZ(PXO99) in Nicotiana benthamiana leaves suppresses host basal defense, which is otherwise induced by a T3SS mutant of PXO99(A), suggesting a role for XopZ(PXO99) in interfering with host innate immunity during X. oryzae pv. oryzae infection. XopZ(PXO99)-related genes are found in all Xanthomonas spp. whose genomic sequences have been determined, suggesting a conserved role for this type of effector gene in pathogenesis of Xanthomonas spp. Our results indicate that XopZ(PXO99) encodes a novel T3 effector and contributes virulence to X. oryzae pv. oryzae strains for bacterial blight of rice.
Collapse
Affiliation(s)
- Congfeng Song
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
42
|
Berger C, Robin GP, Bonas U, Koebnik R. Membrane topology of conserved components of the type III secretion system from the plant pathogen Xanthomonas campestris pv. vesicatoria. Microbiology (Reading) 2010; 156:1963-1974. [DOI: 10.1099/mic.0.039248-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Type III secretion (T3S) systems play key roles in the assembly of flagella and the translocation of bacterial effector proteins into eukaryotic host cells. Eleven proteins which are conserved among Gram-negative plant and animal pathogenic bacteria have been proposed to build up the basal structure of the T3S system, which spans both inner and outer bacterial membranes. We studied six conserved proteins, termed Hrc, predicted to reside in the inner membrane of the plant pathogen Xanthomonas campestris pv. vesicatoria. The membrane topology of HrcD, HrcR, HrcS, HrcT, HrcU and HrcV was studied by translational fusions to a dual alkaline phosphatase–β-galactosidase reporter protein. Two proteins, HrcU and HrcV, were found to have the same membrane topology as the Yersinia homologues YscU and YscV. For HrcR, the membrane topology differed from the model for the homologue from Yersinia, YscR. For our data on three other protein families, exemplified by HrcD, HrcS and HrcT, we derived the first topology models. Our results provide what is believed to be the first complete model of the inner membrane topology of any bacterial T3S system and will aid in elucidating the architecture of T3S systems by ultrastructural analysis.
Collapse
Affiliation(s)
- Carolin Berger
- Institute of Biology, Department of Genetics, Martin-Luther-University, 06099 Halle, Germany
| | - Guillaume P. Robin
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia–CNRS–IRD, UMR 5096, IRD Montpellier, France
| | - Ulla Bonas
- Institute of Biology, Department of Genetics, Martin-Luther-University, 06099 Halle, Germany
| | - Ralf Koebnik
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia–CNRS–IRD, UMR 5096, IRD Montpellier, France
- Institute of Biology, Department of Genetics, Martin-Luther-University, 06099 Halle, Germany
| |
Collapse
|
43
|
Soto-Suárez M, González C, Piégu B, Tohme J, Verdier V. Genomic comparison between Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, using suppression-subtractive hybridization. FEMS Microbiol Lett 2010; 308:16-23. [DOI: 10.1111/j.1574-6968.2010.01985.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
44
|
Mokryakov MV, Abdeev IA, Piruzyan ES, Schaad NW, Ignatov AN. Diversity of effector genes in plant pathogenic bacteria of genus Xanthomonas. Microbiology (Reading) 2010. [DOI: 10.1134/s002626171001008x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Hayward A, Fegan N, Fegan M, Stirling G. Stenotrophomonas
and
Lysobacter
: ubiquitous plant‐associated
gamma‐
proteobacteria of developing significance in applied microbiology. J Appl Microbiol 2010; 108:756-770. [DOI: 10.1111/j.1365-2672.2009.04471.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- A.C. Hayward
- School of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, Qld, Australia
| | - N. Fegan
- Food Science Australia, Werribee, Vic, Australia
| | - M. Fegan
- School of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, Qld, Australia
| | | |
Collapse
|
46
|
Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL. Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1401-1411. [PMID: 19810809 DOI: 10.1094/mpmi-22-11-1401] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Xanthomonas campestris pv. campestris is the pathogen of black rot of cruciferous plants. The pathogenicity of the pathogen depends on the type III secretion system (T3SS) that translocates directly effector proteins into plant cells, where they play important roles in the molecular interaction between the pathogen and its hosts. The T3SS of Xanthomonas spp. is encoded by a cluster of hypersensitive response and pathogenicity (hrp) genes. It has been demonstrated that the expression of hrp genes and some type III secreted (T3S)-effector genes is coactivated by the key hrp regulatory protein HrpX. The regulation by HrpX can be mediated by the binding of HrpX protein to a cis-regulatory element named the plant-inducible promoter (PIP) box present in the promoter region of HrpX-regulated genes. A genome screen revealed that X. campestris pv. campestris 8004 possesses 56 predicted genes with the PIP box. Nine of these genes have been shown to encode T3S effectors, Hrp, and Hrp-associated proteins. In this study, we employed an established T3S effector translocation assay with the hypersensitive-reaction-inducing domain of X. campestris pv. campestris AvrBs1 as a reporter to characterize the remaining 47 genes with the PIP box and showed that 6 of them, designated as XopXccE1, XopXccP, XopXccQ, XopXccR1, XopXccLR, and AvrXccB, harbor a functional translocation signal in their N-terminal regions, indicating that they are T3S effectors of X. campestris pv. campestris. We provided evidence to demonstrate that all these effectors are expressed in an HrpX-dependent manner and their translocation into plant cells relies on the translocon protein HrpF and the chaperone HpaB. Mutational analyses demonstrated that all these effectors, except AvrXccB, are individually required for full virulence and growth of X. campestris pv. campestris in the host plant Chinese radish.
Collapse
Affiliation(s)
- Wei Jiang
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Triplett LR, Melotto M, Sundin GW. Functional analysis of the N terminus of the Erwinia amylovora secreted effector DspA/E reveals features required for secretion, translocation, and binding to the chaperone DspB/F. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1282-92. [PMID: 19737101 DOI: 10.1094/mpmi-22-10-1282] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DspA/E is a type III secreted effector protein required for pathogenicity in the apple and pear pathogen Erwinia amylovora, and DspB/F is a small chaperone protein involved in DspA/E secretion. While the secretion and translocation signals of many type III secretion effector proteins in human enteric pathogens have been characterized extensively, relatively little is known about the translocation requirements of many effectors in plant pathogens, including large DspE-like proteins. In this study, we report a functional analysis of the N terminus of DspE. The minimal requirements for secretion, translocation, and chaperone binding were characterized. Translocation assays using an adenylate cyclase (CyaA) reporter indicated that the first 51 amino acids of DspE were sufficient for translocation and that 150 amino acids were required for optimal translocation levels. The minimal translocation signal corresponded with the requirements for secretion into culture media. Mutations of conserved regions in amino acids 2 through 10 and 31 through 40 were found to influence translocation levels of an N-terminal DspE-CyaA fusion. Yeast two-hybrid and in-vitro pull-down assays revealed a chaperone-binding site within amino acids 51 through 100 of DspE and binding to DspF in this region was disrupted by specific mutations. However, neither disruption of the chaperone-binding domain nor deletion of the dspF gene had a significant impact on translocation levels of N-terminal DspE-CyaA fusions. Our results indicate that the minimal translocation signal of DspE is not coincident with the signal for DspF binding and that translocation of the N terminus of DspE is not dependent on the N-terminal DspF-binding domain.
Collapse
Affiliation(s)
- Lindsay R Triplett
- Department of Plant Pathology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
48
|
Büttner D, He SY. Type III protein secretion in plant pathogenic bacteria. PLANT PHYSIOLOGY 2009; 150:1656-64. [PMID: 19458111 PMCID: PMC2719110 DOI: 10.1104/pp.109.139089] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/13/2009] [Indexed: 05/18/2023]
Affiliation(s)
- Daniela Büttner
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
| | | |
Collapse
|
49
|
Bartetzko V, Sonnewald S, Vogel F, Hartner K, Stadler R, Hammes UZ, Börnke F. The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall-associated defense responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:655-64. [PMID: 19445590 DOI: 10.1094/mpmi-22-6-0655] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria uses the type III secretion system (T3SS) to inject effector proteins into cells of its Solanaceous host plants. It is generally assumed that these effectors manipulate host pathways to favor bacterial replication and survival. However, the molecular mechanisms by which type III effectors suppress host defense responses are far from being understood. Based on sequence similarity, Xanthomonas outer protein J (XopJ) is a member of the YopJ/AvrRxv family of SUMO peptidases and acetyltranferases, although its biochemical activity has not yet been demonstrated. Confocal laser scanning microscopy revealed that green fluorescent protein (GFP) fusions of XopJ are targeted to the plasma membrane when expressed in plant cells, which most likely involves N-myristoylation. In contrast to a XopJ(C235A) mutant disrupted in the catalytic triad sequence, the wild-type effector GFP fusion protein was also localized in vesicle-like structures colocalizing together with a Golgi marker protein, suggesting an effect of XopJ on vesicle trafficking. To explore an effect of XopJ on protein secretion, we used a GFP-based secretion assay. When a secreted (sec)GFP marker was coexpressed with XopJ in leaves of Nicotiana benthamiana, GFP fluorescence was retained in reticulate structures. In contrast, in plant cells expressing secGFP alone or along with the XopJ(C235A) mutant, no GFP fluorescence accumulated within the cells. Moreover, coexpressing secGFP together with XopJ led to a reduced accumulation of secGFP within the apoplastic fluid of N. benthamiana leaves, further showing that XopJ affects protein secretion. Transgenic expression of XopJ in Arabidopsis suppressed callose deposition elicited by a T3SS-negative mutant of Pseudomonas syringae pv. tomato DC3000. A role of XopJ in the inhibition of cell wall-based defense responses is discussed.
Collapse
Affiliation(s)
- Verena Bartetzko
- Institut für Biologie, Lehrstuhl für Biochemie, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Elucidation of a pH-folding switch in the Pseudomonas syringae effector protein AvrPto. Proc Natl Acad Sci U S A 2009; 106:8543-8. [PMID: 19423671 DOI: 10.1073/pnas.0809138106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic bacteria have developed extraordinary strategies for invading host cells. The highly conserved type III secretion system (T3SS) provides a regulated conduit between the bacterial and host cytoplasm for delivery of a specific set of bacterial effector proteins that serve to disrupt host signaling and metabolism for the benefit of the bacterium. Remarkably, the inner diameter of the T3SS apparatus requires that effector proteins pass through in at least a partially unfolded form. AvrPto, an effector protein of the plant pathogen Pseudomonas syringae, adopts a helical bundle fold of low stability (DeltaG(F-->U) = 2 kcal/mol at pH 7, 26.6 degrees C) and offers a model system for chaperone-independent secretion. P. syringae effector proteins encounter a pH gradient as they translocate from the bacterial cytoplasm (mildly acidic) into the host cell (neutral). Here, we demonstrate that AvrPto possesses a pH-sensitive folding switch controlled by conserved residue H87 that operates precisely in the pH range expected between the bacterial and host cytoplasm environments. These results provide a mechanism for how a bacterial effector protein employs an intrinsic pH sensor to unfold for translocation via the T3SS and refold once in the host cytoplasm and provide fundamental insights for developing strategies for delivery of engineered therapeutic proteins to target tissues.
Collapse
|