1
|
Jaiswal M, Amin N, Kannaujiya VK. Impacts of PAR and UV radiation on diurnal photosynthesis performance, pigment composition, and antioxidant function of the hot-spring cyanobacterium Nostoc sp. strain VKB02. Arch Microbiol 2025; 207:144. [PMID: 40353896 DOI: 10.1007/s00203-025-04338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025]
Abstract
Diurnal oscillations are 24 h clock, that synchronize organisms biological functions based on the daily environmental fluctuation. Continuous increase in ultraviolet radiation have been shown to affect the biological clock of cyanobacteria. The present investigation deals with the 12/12 h of light/dark effects of PAR and PAB (PAR + UVA + UVB) irradiations on ecophysiology and defense management of a hot-spring cyanobacterium Nostoc sp. strain VKB02. The alternative L/D exposure of PAR showed increase in growth and pigment compositions. However, PAB radiation has significantly decreased within the same parameters after the L1 phase except for carotenoid and APC, while PE and PC recovered till the D2 phase corresponding to the counter light phase. The pigments destruction also resulted in Chl a fluorescence (Fv/Fm, Fv׳/Fm׳, Y(II), rETR) emission decline. In addition, PAB exposure accelerated free radicals generation with induced protein oxidation (RCG) and antioxidative enzymes (SOD, POD, CAT) as counteract defense during the light phase. The overall circadian regime facilitated the resynthesis fate of pigment-protein complexes and the mitigation of the high level of ROS production. This result suggests the unique survival strategy of the hot-spring cyanobacterium against ultraviolet radiation in a diurnal manner. This study also offers a deep understanding of the diurnal eco-physiological and biochemical responses of the cyanobacterium for the advancement in sustainable agricultural production with lower input in variable climate.
Collapse
Affiliation(s)
- Megha Jaiswal
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Nasreen Amin
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Kannaujiya
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Panter S, Wörner J, Chen J, Illarionov B, Bacher A, Fischer M, Weber S. Insights into the photoswitch based on 5-deazaFMN and LOV2 from Avena sativa: a combined absorption and NMR spectroscopy study. Phys Chem Chem Phys 2024; 26:28884-28893. [PMID: 39533958 DOI: 10.1039/d4cp02714k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The LOV2 domain from Avena sativa (As) is a blue light receptor that undergoes adduct formation with the native flavin mononucleotide (FMN) cofactor [Salomon et al., Biochemistry, 2000, 39, 9401]. We report the photochemical changes of AsLOV2 through cofactor exchange with the FMN analogue 5-deazaFMN. Absorption spectroscopy shows that upon illumination a thermodynamically stable adduct is formed. We were able to confirm the structure of the adduct by introducing 13C-labelled 5-deazaFMN isotopologues in solution NMR experiments. Dark-adapted state recovery can be photo-induced, providing a photoswitch that is easy to manipulate. The robust photocycle is repeatable without significant loss. Based on the data presented we propose the system as an alternative to wild-type AsLOV2 for applications in optogenetics.
Collapse
Affiliation(s)
- Sabrina Panter
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Jakob Wörner
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Jing Chen
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Boris Illarionov
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Adelbert Bacher
- TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Markus Fischer
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
Peelikuburage BGD, Martens WN, Waclawik ER. Light switching for product selectivity control in photocatalysis. NANOSCALE 2024; 16:10168-10207. [PMID: 38722105 DOI: 10.1039/d4nr00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Artificial switchable catalysis is a new, rapidly expanding field that offers great potential advantages for both homogeneous and heterogeneous catalytic systems. Light irradiation is widely accepted as the best stimulus to artificial switchable chemical systems. In recent years, tremendous progress has been made in the synthesis and application of photo-switchable catalysts that can control when and where bond formation and dissociation take place in reactant molecules. Photo-switchable catalysis is a niche area in current catalysis, on which systematic analysis and reviews are still lacking in the scientific literature, yet it offers many intriguing and versatile applications, particularly in organic synthesis. This review aims to highlight the recent advances in photo-switchable catalyst systems that can result in two different chemical product outcomes and thus achieve a degree of control over organic synthetic reactions. Furthermore, this review evaluates different approaches that have been employed to achieve dynamic control over both the catalytic function and the selectivity of several different types of synthesis reactions, along with the remaining challenges and potential opportunities. Owing to the great diversity of the types of reactions and conditions adopted, a quantitative comparison of efficiencies between considered systems is not the focus of this review, instead the review showcases how insights from successful adopted strategies can help better harness and channel the power of photoswitchability in this new and promising area of catalysis research.
Collapse
Affiliation(s)
- Bayan G D Peelikuburage
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Wayde N Martens
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Eric R Waclawik
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
4
|
Fessia A, Ponzio R, Arcibia L, Barros G, Nesci A. Effects of different light wavelengths on Bacillus subtilis and Bacillus velezensis, two biocontrol agents isolated from the maize phyllosphere. Arch Microbiol 2024; 206:104. [PMID: 38363376 DOI: 10.1007/s00203-024-03836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
In previous studies, two strains isolated from the maize phyllosphere were identified as Bacillus subtilis (EM-A7) and Bacillus velezensis (EM-A8) and selected as potential biocontrol agents against Exserohilum turcicum. This study aimed to assess the ability of EM-A7 and EM-A8 to form biofilm and have antagonistic activity under varying light conditions. LED sources were custom-designed so that each corresponded to a given spectrum at a specific photosynthetically active photon flux density. Significant differences were observed in growth parameters (generation time and constant growth rate) under different LED sources. Blue light inhibited the growth of both strains. Red increased k rate in EM-A8, while the g values increased in EM-A7. Red and white light generally increased biofilm formation, and blue light inhibited it. EM-A7 and EM-A8 significantly reduced their ability to swim under blue LED, but it was not affected by red, green, or white light. The ability to swarm was negatively affected. Fungal growth decreased significantly compared to the control when the bacterium growing on the same plate had been previously incubated under red and white light or in the dark. These results indicate that different light wavelengths clearly influenced the aspects assessed in B. subtilis and B. velezensis, with the effects of blue light being overall negative and those of red and white overall positive. Given that, all these factors can be important for the establishment and survival of Bacillus strains on leaves, as well as for their effectiveness against pathogens, light could be a significant factor to consider in the design of biocontrol strategies.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Rodrigo Ponzio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CONICET, X5804BYA, Río Cuarto, Argentina
| | - Luciana Arcibia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Pucelik S, Becker M, Heyber S, Wöhlbrand L, Rabus R, Jahn D, Härtig E. The blue light-dependent LOV-protein LdaP of Dinoroseobacter shibae acts as antirepressor of the PpsR repressor, regulating photosynthetic gene cluster expression. Front Microbiol 2024; 15:1351297. [PMID: 38404597 PMCID: PMC10890935 DOI: 10.3389/fmicb.2024.1351297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In the marine α-proteobacterium Dinoroseobacter shibae more than 40 genes of the aerobic anoxygenic photosynthesis are regulated in a light-dependent manner. A genome-wide screen of 5,605 clones from a D. shibae transposon library for loss of pigmentation and changes in bacteriochlorophyll absorbance identified 179 mutant clones. The gene encoding the LOV-domain containing protein Dshi_1135 was identified by its colorless phenotype. The mutant phenotype was complemented by the expression of a Dshi_1135-strep fusion protein in trans. The recombinantly produced and chromatographically purified Dshi_1135 protein was able to undergo a blue light-induced photocycle mediated by bound FMN. Transcriptome analyses revealed an essential role for Dshi_1135 in the light-dependent expression of the photosynthetic gene cluster. Interactomic studies identified the repressor protein PpsR as an interaction partner of Dshi_1135. The physical contact between PpsR and the Dshi_1135 protein was verified in vivo using the bacterial adenylate cyclase-based two-hybrid system. In addition, the antirepressor function of the Dshi_1135 protein was demonstrated in vivo testing of a bchF-lacZ reporter gene fusion in a heterologous Escherichia coli-based host system. We therefore propose to rename the Dshi_1135 protein to LdaP (light-dependent antirepressor of PpsR). Using the bacterial two-hybrid system, it was also shown that cobalamin (B12) is essential for the interaction of the antirepressor PpaA with PpsR. A regulatory model for the photosynthetic gene cluster in D. shibae was derived, including the repressor PpsR, the light-dependent antirepressor LdaP and the B12-dependent antirepressor PpaA.
Collapse
Affiliation(s)
- Saskia Pucelik
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Miriam Becker
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffi Heyber
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Yu Z, Zhang W, Yang H, Chou SH, Galperin MY, He J. Gas and light: triggers of c-di-GMP-mediated regulation. FEMS Microbiol Rev 2023; 47:fuad034. [PMID: 37339911 PMCID: PMC10505747 DOI: 10.1093/femsre/fuad034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
The widespread bacterial second messenger c-di-GMP is responsible for regulating many important physiological functions such as biofilm formation, motility, cell differentiation, and virulence. The synthesis and degradation of c-di-GMP in bacterial cells depend, respectively, on diguanylate cyclases and c-di-GMP-specific phosphodiesterases. Since c-di-GMP metabolic enzymes (CMEs) are often fused to sensory domains, their activities are likely controlled by environmental signals, thereby altering cellular c-di-GMP levels and regulating bacterial adaptive behaviors. Previous studies on c-di-GMP-mediated regulation mainly focused on downstream signaling pathways, including the identification of CMEs, cellular c-di-GMP receptors, and c-di-GMP-regulated processes. The mechanisms of CME regulation by upstream signaling modules received less attention, resulting in a limited understanding of the c-di-GMP regulatory networks. We review here the diversity of sensory domains related to bacterial CME regulation. We specifically discuss those domains that are capable of sensing gaseous or light signals and the mechanisms they use for regulating cellular c-di-GMP levels. It is hoped that this review would help refine the complete c-di-GMP regulatory networks and improve our understanding of bacterial behaviors in changing environments. In practical terms, this may eventually provide a way to control c-di-GMP-mediated bacterial biofilm formation and pathogenesis in general.
Collapse
Affiliation(s)
- Zhaoqing Yu
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, Jiangsu 210014, PR China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - He Yang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Jin He
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| |
Collapse
|
7
|
Karlsson ME, Hellström M, Flöhr A, Bergstrand KJ, Alsanius BW. The power of light: Impact on the performance of biocontrol agents under minimal nutrient conditions. Front Microbiol 2023; 14:1087639. [PMID: 36819051 PMCID: PMC9932321 DOI: 10.3389/fmicb.2023.1087639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background The spectral distribution of light (different wavelength) has recently been identified as an important factor in the dynamics and function of leaf-associated microbes. This study investigated the impact of different wavelength on three commercial biocontrol agents (BCA): Bacillus amyloliquefaciens (BA), Pseudomonas chlororaphis (PC), and Streptomyces griseoviridis (SG). Methods The impact of light exposure on sole carbon source utilization, biofilm formation, and biosurfactant production by the selected BCA was studied using phenotypic microarray (PM) including 190 sole carbon sources (OmniLog®, PM panels 1 and 2). The BCA were exposed to five monochromatic light conditions (420, 460, 530, 630, and 660 nm) and darkness during incubation, at an intensity of 50 μmol m-2 s-1. Results Light exposure together with specific carbon source increased respiration in all three BCA. Different wavelengths of light influenced sole carbon utilization for the different BCA, with BA and PC showing increased respiration when exposed to wavelengths within the blue spectrum (420 and 460 nm) while respiration of selected carbon sources by SG increased in the presence of red light (630 and 660 nm). Only one carbon source (capric acid) generated biosurfactant production in all three BCA. A combination of specific wavelength of light and sole carbon source increased biofilm formation in all three BCA. BA showed significantly higher biofilm formation when exposed to blue (460 nm) and green (530 nm) light and propagated in D-sucrose, D-fructose, and dulcitol. PC showed higher biofilm formation when exposed to blue light. Biofilm formation by SG increased when exposed to red light (630 nm) and propagated in citraconic acid. Conclusion To increase attachment and success in BCA introduced into the phyllosphere, a suitable combination of light quality and nutrient conditions could be used.
Collapse
|
8
|
Abstract
Sunlight drives phototrophic metabolism, which affects redox conditions and produces substrates for nonphototrophs. These environmental parameters fluctuate daily due to Earth’s rotation, and nonphototrophic organisms can therefore benefit from the ability to respond to, or even anticipate, such changes. Circadian rhythms, such as daily changes in body temperature, in host organisms can also affect local conditions for colonizing bacteria. Here, we investigated the effects of light/dark and temperature cycling on biofilms of the opportunistic pathogen Pseudomonas aeruginosa PA14. We grew biofilms in the presence of a respiratory indicator dye and found that enhanced dye reduction occurred in biofilm zones that formed during dark intervals and at lower temperatures. This pattern formation occurred with cycling of blue, red, or far-red light, and a screen of mutants representing potential sensory proteins identified two with defects in pattern formation, specifically under red light cycling. We also found that the physiological states of biofilm subzones formed under specific light and temperature conditions were retained during subsequent condition cycling. Light/dark and temperature cycling affected expression of genes involved in primary metabolic pathways and redox homeostasis, including those encoding electron transport chain components. Consistent with this, we found that cbb3-type oxidases contribute to dye reduction under light/dark cycling conditions. Together, our results indicate that cyclic changes in light exposure and temperature have lasting effects on redox metabolism in biofilms formed by a nonphototrophic, pathogenic bacterium.
Collapse
|
9
|
Toda MJ, Lodowski P, Mamun AA, Kozlowski PM. Photoproduct formation in coenzyme B 12-dependent CarH via a singlet pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112471. [PMID: 35644067 DOI: 10.1016/j.jphotobiol.2022.112471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The CarH photoreceptor exploits of the light-sensing ability of coenzyme B12 ( adenosylcobalamin = AdoCbl) to perform its catalytic function, which includes large-scale structural changes to regulate transcription. In daylight, transcription is activated in CarH via the photo-cleavage of the Co-C5' bond of coenzyme B12. Subsequently, the photoproduct, 4',5'-anhydroadenosine (anhAdo) is formed inducing dissociation of the CarH tetramer from DNA. Several experimental studies have proposed that hydridocoblamin (HCbl) may be formed in process with anhAdo. The photolytic cleavage of the Co-C5' bond of AdoCbl was previously investigated using photochemical techniques and the involvement of both singlet and triplet excited states were explored. Herein, QM/MM calculations were employed to probe (1) the photolytic processes which may involve singlet excited states, (2) the mechanism of anhAdo formation, and (3) whether HCbl is a viable intermediate in CarH. Time-dependent density functional theory (TD-DFT) calculations indicate that the mechanism of photodissociation of the Ado ligand involves the ligand field (LF) portion of the lowest singlet excited state (S1) potential energy surface (PES). This is followed by deactivation to a point on the S0 PES where the Co-C5' bond remains broken. This species corresponds to a singlet diradical intermediate. From this point, the PES for anhAdo formation was explored, using the Co-C5' and Co-C4' bond distances as active coordinates, and a local minimum representing anhAdo and HCbl formation was found. The transition state (TS) for the formation of the Co-H bond of HCbl was located and its identity was confirmed by a single imaginary frequency of i1592 cm-1. Comparisons to experimental studies and the potential role of rotation around the N-glycosidic bond of the Ado ligand were discussed.
Collapse
Affiliation(s)
- Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Piotr Lodowski
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Abdullah Al Mamun
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States.
| |
Collapse
|
10
|
Poddar H, Heyes DJ, Zhang S, Hardman SJ, Sakuma M, Scrutton NS. An unusual light-sensing function for coenzyme B 12 in bacterial transcription regulator CarH. Methods Enzymol 2022; 668:349-372. [PMID: 35589201 DOI: 10.1016/bs.mie.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Coenzyme B12 is one of the most complex cofactors found in nature and synthesized de novo by certain groups of bacteria. Although its use in various enzymatic reactions is well characterized, only recently an unusual light-sensing function has been ascribed to coenzyme B12. It has been reported that the coenzyme B12 binding protein CarH, found in the carotenoid biosynthesis pathway of several thermostable bacteria, binds to the promoter region of DNA and suppresses transcription. To overcome the harmful effects of light-induced damage in the cells, CarH releases DNA in the presence of light and promotes transcription and synthesis of carotenoids, thereby working as a photoreceptor. CarH is able to achieve this by exploiting the photosensitive nature of the CoC bond between the adenosyl moiety and the cobalt atom in the coenzyme B12 molecule. Extensive structural and spectroscopy studies provided a mechanistic understanding of the molecular basis of this unique light-sensitive reaction. Most studies on CarH have used the ortholog from the thermostable bacterium Thermus thermophilus, due to the ease with which it can be expressed and purified in high quantities. In this chapter we give an overview of this intriguing class of photoreceptors and report a step-by-step protocol for expression, purification and spectroscopy experiments (both static and time-resolved techniques) employed in our laboratory to study CarH from T. thermophilus. We hope the contents of this chapter will be of interest to the wider coenzyme B12 community and apprise them of the potential and possibilities of using coenzyme B12 as a light-sensing probe in a protein scaffold.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Samantha J Hardman
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
11
|
Wang S, Luo Y, Jiang W, Li X, Qi Q, Liang Q. Development of Optogenetic Dual-Switch System for Rewiring Metabolic Flux for Polyhydroxybutyrate Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030617. [PMID: 35163885 PMCID: PMC8838604 DOI: 10.3390/molecules27030617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022]
Abstract
Several strategies, including inducer addition and biosensor use, have been developed for dynamical regulation. However, the toxicity, cost, and inflexibility of existing strategies have created a demand for superior technology. In this study, we designed an optogenetic dual-switch system and applied it to increase polyhydroxybutyrate (PHB) production. First, an optimized chromatic acclimation sensor/regulator (RBS10–CcaS#10–CcaR) system (comprising an optimized ribosomal binding site (RBS), light sensory protein CcaS, and response regulator CcaR) was selected for a wide sensing range of approximately 10-fold between green-light activation and red-light repression. The RBS10–CcaS#10–CcaR system was combined with a blue light-activated YF1–FixJ–PhlF system (containing histidine kinase YF1, response regulator FixJ, and repressor PhlF) engineered with reduced crosstalk. Finally, the optogenetic dual-switch system was used to rewire the metabolic flux for PHB production by regulating the sequences and intervals of the citrate synthase gene (gltA) and PHB synthesis gene (phbCAB) expression. Consequently, the strain RBS34, which has high gltA expression and a time lag of 3 h, achieved the highest PHB content of 16.6 wt%, which was approximately 3-fold that of F34 (expressed at 0 h). The results indicate that the optogenetic dual-switch system was verified as a practical and convenient tool for increasing PHB production.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Yue Luo
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Xiaomeng Li
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Correspondence: (Q.Q.); (Q.L.)
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
- Correspondence: (Q.Q.); (Q.L.)
| |
Collapse
|
12
|
Fujisawa T, Masuda S, Takeuchi S, Tahara T. Femtosecond Time-Resolved Absorption Study of Signaling State of a BLUF Protein PixD from the Cyanobacterium Synechocystis: Hydrogen-Bond Rearrangement Completes during Forward Proton-Coupled Electron Transfer. J Phys Chem B 2021; 125:12154-12165. [PMID: 34726926 DOI: 10.1021/acs.jpcb.1c05957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Femtosecond time-resolved absorption measurements were carried out for the dark and signaling states of a BLUF (Blue Light Using FAD) protein, PixD, from the cyanobacterium Synechocystis. When the dark state was excited, FAD semiquinone radical (FADH•) was produced from the S1 state, and FADH• led to the signaling state. On the other hand, photoexcitation of the signaling state generated FADH• and FAD anion radical (FAD•-), and they decayed back to the original signaling state. In both cases, FADH• was formed and decayed with a proton-coupled electron transfer (PCET) via the hydrogen-bond network that involves FAD, Gln50, and Tyr8, and hence the kinetics of FADH• directly reflects the hydrogen-bond structure in the FAD-binding sites. It was found that the formation rate of FADH• was significantly different between the dark and signaling states, whereas the decay rate was the same. This indicates that the hydrogen-bond network of FAD-Gln50-Tyr8 in the dark and signaling states is initially different but it becomes indistinguishable after FADH• is formed, implying that the FAD-Gln50-Tyr8 hydrogen-bond network is rearranged during the PCET to generate FADH•. The present results best agree with the model in which the Gln tautomerizes without rotation in the signaling-state formation.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
13
|
Monochromic Radiations Provided by Light Emitted Diode (LED) Modulate Infection and Defense Response to Fire Blight in Pear Trees. PLANTS 2021; 10:plants10091886. [PMID: 34579419 PMCID: PMC8465259 DOI: 10.3390/plants10091886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Pathogenesis-related (PR) proteins are part of the systemic signaling network that perceives pathogens and activates defenses in the plant. Eukaryotic and bacterial species have a 24-h ‘body clock’ known as the circadian rhythm. This rhythm regulates an organism’s life, modulating the activity of the phytochromes (phys) and cryptochromes (crys) and the accumulation of the corresponding mRNAs, which results in the synchronization of the internal clock and works as zeitgeber molecules. Salicylic acid accumulation is also under light control and upregulates the PR genes expression, increasing plants’ resistance to pathogens. Erwinia amylovora causes fire blight disease in pear trees. In this work, four bacterial transcripts (erw1-4), expressed in asymptomatic E. amylovora-infected pear plantlets, were isolated. The research aimed to understand how the circadian clock, light quality, and related photoreceptors regulate PR and erw genes expression using transgenic pear lines overexpressing PHYB and CRY1 as a model system. Plantlets were exposed to different circadian conditions, and continuous monochromic radiations (Blue, Red, and Far-Red) were provided by light-emitting diodes (LED). Results showed a circadian oscillation of PR10 gene expression, while PR1 was expressed without clear evidence of circadian regulation. Bacterial growth was regulated by monochromatic light: the growth of bacteria exposed to Far-Red did not differ from that detected in darkness; instead, it was mildly stimulated under Red, while it was significantly inhibited under Blue. In this regulatory framework, the active form of phytochrome enhances the expression of PR1 five to 15 fold. An ultradian rhythm was observed fitting the zeitgeber role played by CRY1. These results also highlight a regulating role of photoreceptors on the expression of PRs genes in non-infected and infected plantlets, which influenced the expression of erw genes. Data are discussed concerning the regulatory role of photoreceptors during photoperiod and pathogen attacks.
Collapse
|
14
|
Li C, Podewitz M, Kräutler B. A Blue Zinc Complex of a Dioxobilin‐Type Pink Chlorophyll Catabolite Exhibiting Bright Chelation‐Enhanced Red Fluorescence. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chengjie Li
- Institute of Organic Chemistry University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
- Center of Molecular Biosciences University of Innsbruck (CMBI) Innrain 80/82 6020 Innsbruck Austria
- Present address: Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology Meilong Rd 130 200237 Shanghai China
| | - Maren Podewitz
- Center of Molecular Biosciences University of Innsbruck (CMBI) Innrain 80/82 6020 Innsbruck Austria
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
- Center of Molecular Biosciences University of Innsbruck (CMBI) Innrain 80/82 6020 Innsbruck Austria
| |
Collapse
|
15
|
Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms 2021; 9:microorganisms9051067. [PMID: 34063365 PMCID: PMC8156234 DOI: 10.3390/microorganisms9051067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Myxobacteria are Gram-negative δ-proteobacteria found predominantly in terrestrial habitats and often brightly colored due to the biosynthesis of carotenoids. Carotenoids are lipophilic isoprenoid pigments that protect cells from damage and death by quenching highly reactive and toxic oxidative species, like singlet oxygen, generated upon growth under light. The model myxobacterium Myxococcus xanthus turns from yellow in the dark to red upon exposure to light because of the photoinduction of carotenoid biosynthesis. How light is sensed and transduced to bring about regulated carotenogenesis in order to combat photooxidative stress has been extensively investigated in M. xanthus using genetic, biochemical and high-resolution structural methods. These studies have unearthed new paradigms in bacterial light sensing, signal transduction and gene regulation, and have led to the discovery of prototypical members of widely distributed protein families with novel functions. Major advances have been made over the last decade in elucidating the molecular mechanisms underlying the light-dependent signaling and regulation of the transcriptional response leading to carotenogenesis in M. xanthus. This review aims to provide an up-to-date overview of these findings and their significance.
Collapse
|
16
|
Poddar H, Heyes DJ, Schirò G, Weik M, Leys D, Scrutton NS. A guide to time-resolved structural analysis of light-activated proteins. FEBS J 2021; 289:576-595. [PMID: 33864718 DOI: 10.1111/febs.15880] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
Dynamical changes in protein structures are essential for protein function and occur over femtoseconds to seconds timescales. X-ray free electron lasers have facilitated investigations of structural dynamics in proteins with unprecedented temporal and spatial resolution. Light-activated proteins are attractive targets for time-resolved structural studies, as the reaction chemistry and associated protein structural changes can be triggered by short laser pulses. Proteins with different light-absorbing centres have evolved to detect light and harness photon energy to bring about downstream chemical and biological output responses. Following light absorption, rapid chemical/small-scale structural changes are typically localised around the chromophore. These localised changes are followed by larger structural changes propagated throughout the photoreceptor/photocatalyst that enables the desired chemical and/or biological output response. Time-resolved serial femtosecond crystallography (SFX) and solution scattering techniques enable direct visualisation of early chemical change in light-activated proteins on timescales previously inaccessible, whereas scattering gives access to slower timescales associated with more global structural change. Here, we review how advances in time-resolved SFX and solution scattering techniques have uncovered mechanisms of photochemistry and its coupling to output responses. We also provide a prospective on how these time-resolved structural approaches might impact on other photoreceptors/photoenzymes that have not yet been studied by these methods.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Giorgio Schirò
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Martin Weik
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| |
Collapse
|
17
|
Chen H, Li K, Cai Y, Wang P, Gong W, Wu LF, Song T. Light regulation of resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum mediated by a Cys-less LOV-like protein. Appl Microbiol Biotechnol 2020; 104:7927-7941. [PMID: 32780289 DOI: 10.1007/s00253-020-10807-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Light-oxygen-voltage (LOV) proteins are ubiquitous photoreceptors that can interact with other regulatory proteins and then mediate their activities, which results in cellular adaptation and subsequent physiological changes. Upon blue-light irradiation, a conserved cysteine (Cys) residue in LOV covalently binds to flavin to form a flavin-Cys adduct, which triggers a subsequent cascade of signal transduction and reactions. We found a group of natural Cys-less LOV-like proteins in magnetotactic bacteria (MTB) and investigated its physiological functions by conducting research on one of these unusual LOV-like proteins, Amb2291, in Magnetospirillum magneticum. In-frame deletion of amb2291 or site-directive substitution of alanine-399 for Cys mutants impaired the protective responses against hydrogen peroxide, thereby causing stress and growth impairment. Consequently, gene expression and magnetosome formation were affected, which led to high sensitivity to oxidative damage and defective phototactic behaviour. The purified wild-type and A399C-mutated LOV-like proteins had similar LOV blue-light response spectra, but Amb2291A399C exhibited a faster reaction to blue light. We especially showed that LOV-like protein Amb2291 plays a role in magnetosome synthesis and resistance to oxidative stress of AMB-1 when this bacterium was exposed to red light and hydrogen peroxide. This finding expands our knowledge of the physiological function of this widely distributed group of photoreceptors and deepens our understanding of the photoresponse of MTB. KEY POINTS: • We found a group of Cys-less light-oxygen-voltage (LOV) photoreceptors in magnetotactic bacteria, which prompted us to study the light-response and biological roles of these proteins in these non-photosynthetic bacteria. • The Cys-less LOV-like protein participates in the light-regulated signalling pathway and improves resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum. • This result will contribute to our understanding of the structural and functional diversity of the LOV-like photoreceptor and help us understand the complexity of light-regulated model organisms.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China
| | - Kefeng Li
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,Shandong Sport University, Jinan, 250102, China
| | - Yao Cai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Pingping Wang
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China
| | - Weimin Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China. .,Aix Marseille University, CNRS, LCB, 13402, Marseille, France.
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China.
| |
Collapse
|
18
|
Light-Mediated Decreases in Cyclic di-GMP Levels Inhibit Structure Formation in Pseudomonas aeruginosa Biofilms. J Bacteriol 2020; 202:JB.00117-20. [PMID: 32366589 DOI: 10.1128/jb.00117-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Light is known to trigger regulatory responses in diverse organisms, including slime molds, animals, plants, and phototrophic bacteria. However, light-dependent processes in nonphototrophic bacteria, and those of pathogens in particular, have received comparatively little research attention. In this study, we examined the impact of light on multicellular development in Pseudomonas aeruginosa, a leading cause of biofilm-based bacterial infections. We grew P. aeruginosa strain PA14 in a colony morphology assay and found that growth under prolonged exposure to low-intensity blue light inhibited biofilm matrix production and thereby the formation of vertical biofilm structures (i.e., "wrinkles"). Light-dependent inhibition of biofilm wrinkling was correlated with low levels of cyclic di-GMP (c-di-GMP), consistent with the role of this signal in stimulating matrix production. A screen of enzymes with the potential to catalyze c-di-GMP synthesis or degradation identified c-di-GMP phosphodiesterases that contribute to light-dependent inhibition of biofilm wrinkling. One of these, RmcA, was previously characterized by our group for its role in mediating the effect of redox-active P. aeruginosa metabolites called phenazines on biofilm wrinkle formation. Our results suggest that an RmcA sensory domain that is predicted to bind a flavin cofactor is involved in light-dependent inhibition of wrinkling. Together, these findings indicate that P. aeruginosa integrates information about light exposure and redox state in its regulation of biofilm development.IMPORTANCE Light exposure tunes circadian rhythms, which modulate the immune response and affect susceptibility to infection in plants and animals. Though molecular responses to light are defined for model plant and animal hosts, analogous pathways that function in bacterial pathogens are understudied. We examined the response to light exposure in biofilms (matrix-encased multicellular assemblages) of the nonphotosynthetic bacterium Pseudomonas aeruginosa We found that light at intensities that are not harmful to human cells inhibited biofilm maturation via effects on cellular signals. Because biofilm formation is a critical factor in many types of P. aeruginosa infections, including burn wound infections that may be exposed to light, these effects could be relevant for pathogenicity.
Collapse
|
19
|
Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organisms can respond to varying light conditions using a wide range of sensory photoreceptors. These photoreceptors can be standalone proteins or represent a module in multidomain proteins, where one or more modules sense light as an input signal which is converted into an output response via structural rearrangements in these receptors. The output signals are utilized downstream by effector proteins or multiprotein clusters to modulate their activity, which could further affect specific interactions, gene regulation or enzymatic catalysis. The blue-light using flavin (BLUF) photosensory module is an autonomous unit that is naturally distributed among functionally distinct proteins. In this study, we identified 34 BLUF photoreceptors of prokaryotic and eukaryotic origin from available bioinformatics sequence databases. Interestingly, our analysis shows diverse BLUF-effector arrangements with a functional association that was previously unknown or thought to be rare among the BLUF class of sensory proteins, such as endonucleases, tet repressor family (tetR), regulators of G-protein signaling, GAL4 transcription family and several other previously unidentified effectors, such as RhoGEF, Phosphatidyl-Ethanolamine Binding protein (PBP), ankyrin and leucine-rich repeats. Interaction studies and the indexing of BLUF domains further show the diversity of BLUF-effector combinations. These diverse modular architectures highlight how the organism’s behaviour, cellular processes, and distinct cellular outputs are regulated by integrating BLUF sensing modules in combination with a plethora of diverse signatures. Our analysis highlights the modular diversity of BLUF containing proteins and opens the possibility of creating a rational design of novel functional chimeras using a BLUF architecture with relevant cellular effectors. Thus, the BLUF domain could be a potential candidate for the development of powerful novel optogenetic tools for its application in modulating diverse cell signaling.
Collapse
|
20
|
Padmanabhan S, Pérez-Castaño R, Elías-Arnanz M. B12-based photoreceptors: from structure and function to applications in optogenetics and synthetic biology. Curr Opin Struct Biol 2019; 57:47-55. [DOI: 10.1016/j.sbi.2019.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
|
21
|
Fiebig A, Varesio LM, Alejandro Navarreto X, Crosson S. Regulation of the Erythrobacter litoralis DSM 8509 general stress response by visible light. Mol Microbiol 2019; 112:442-460. [PMID: 31125464 DOI: 10.1111/mmi.14310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/23/2023]
Abstract
Extracytoplasmic function (ECF) sigma factors are environmentally responsive transcriptional regulators. In Alphaproteobacteria, σEcfG activates general stress response (GSR) transcription and protects cells from multiple stressors. A phosphorylation-dependent protein partner switching mechanism, involving HWE/HisKA_2-family histidine kinases, underlies σEcfG activation. The identity of these sensor kinases and the signals that regulate them remain largely uncharacterized. We have developed the aerobic anoxygenic photoheterotroph (AAP), Erythrobacter litoralis DSM 8509, as a comparative genetic model to investigate GSR. Using this system, we sought to define the role of visible light and a photosensory HWE kinase, LovK, in regulation of GSR transcription. We identified three HWE kinase genes that collectively control GSR: gsrK and lovK are activators, while gsrP is a repressor. In wild-type cells, GSR transcription is activated in the dark and nearly off in the light, and the opposing activities of gsrK and gsrP are sufficient to modulate GSR transcription in response to illumination. In the absence of gsrK and gsrP, lovK alone is sufficient to activate GSR transcription. lovK is a more robust activator in the dark, and light-dependent regulation by LovK requires that its N-terminal LOV domain be photochemically active. Our studies establish a role for visible light and an ensemble of HWE kinases in light-dependent regulation of GSR transcription in E. litoralis.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Lydia M Varesio
- The Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,The Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
22
|
Blue Light Is a Universal Signal for Escherichia coli Chemoreceptors. J Bacteriol 2019; 201:JB.00762-18. [PMID: 30858302 DOI: 10.1128/jb.00762-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Blue light has been shown to elicit a tumbling response in Escherichia coli, a nonphototrophic bacterium. The exact mechanism of this phototactic response is still unknown. Here, we quantify phototaxis in E. coli by analyzing single-cell trajectories in populations of free-swimming bacteria before and after light exposure. Bacterial strains expressing only one type of chemoreceptor reveal that all five E. coli receptors (Aer, Tar, Tsr, Tap, and Trg) are capable of mediating responses to light. In particular, light exposure elicits a running response in the Tap-only strain, the opposite of the tumbling responses observed for all other strains. Therefore, light emerges as a universal stimulus for all E. coli chemoreceptors. We also show that blue light exposure causes a reversible decrease in swimming velocity, a proxy for proton motive force. This result is consistent with a previously proposed hypothesis that, rather than sensing light directly, chemoreceptors sense light-induced perturbations in proton motive force, although other factors are also likely to contribute.IMPORTANCE Our findings provide new insights into the mechanism of E. coli phototaxis, showing that all five chemoreceptor types respond to light and their interactions play an important role in cell behavior. Our results also open up new avenues for examining and manipulating E. coli taxis. Since light is a universal stimulus, it may provide a way to quantify interactions among different types of receptors. Because light is easier to control spatially and temporally than chemicals, it may be used to study swimming behavior in complex environments. Since phototaxis can cause migration of E. coli bacteria in light gradients, light may be used to control bacterial density for studying density-dependent processes in bacteria.
Collapse
|
23
|
Terashima M, Ohashi K, Takasuka TE, Kojima H, Fukui M. Antarctic heterotrophic bacterium Hymenobacter nivis P3 T displays light-enhanced growth and expresses putative photoactive proteins. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:227-235. [PMID: 30298689 DOI: 10.1111/1758-2229.12702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Hymenobacter nivis P3T is a heterotrophic bacterium isolated from Antarctic red snow generated by algal blooms. Despite being non-photosynthetic, H. nivis was dominantly found in the red snow environment that is exposed to high light and UV irradiation, suggesting that this species can flourish under such harsh conditions. In order to further understand the adaptive strategies on the snow surface environment of Antarctica, the genome of H. nivis P3T was sequenced and analyzed, which identified genes putatively encoding for light-reactive proteins such as proteorhodopsin, phytochrome, photolyase and several copies of cryptochromes. Culture-based experiments revealed that H. nivis P3T growth was significantly enhanced under light conditions, while dark conditions had increased extracellular polymeric substances. Furthermore, the expression of several putative light-reactive proteins was determined by proteomic analysis. These results indicate that H. nivis P3T is able to potentially utilize light, which may explain its dominance on the red snow surface environment of Antarctica. ORIGINALITY-SIGNIFICANCE STATEMENT: The role of proteorhodopsin in heterotrophic bacteria is not well-characterized, as only a handful of proteorhodopsin-harbouring isolates were shown to have a light-enhanced phenotype through culture-based experiments to date. This is the first study that demonstrates light-stimulated growth and protein expression evidence of photoactive proteins for a non-marine psychrophile and for a member of the genus Hymenobacter. It is also the first study that provides comprehensive proteome information for this genus. This study presents significant results in understanding the adaptive mechanism of a heterotrophic non-photosynthetic bacterium thriving on the snow surface environment of Antarctica as well as demonstrating the role of light-utilization in promoting growth, possibly through proteorhodopsin.
Collapse
Affiliation(s)
- Mia Terashima
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, 060-0819, Japan
| | - Keisuke Ohashi
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, 060-0819, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
24
|
Liu Z, Zhang J, Jin J, Geng Z, Qi Q, Liang Q. Programming Bacteria With Light-Sensors and Applications in Synthetic Biology. Front Microbiol 2018; 9:2692. [PMID: 30467500 PMCID: PMC6236058 DOI: 10.3389/fmicb.2018.02692] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.
Collapse
Affiliation(s)
- Zedao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jizhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jiao Jin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zilong Geng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
25
|
Fernández-Zapata J, Pérez-Castaño R, Aranda J, Colizzi F, Polanco MC, Orozco M, Padmanabhan S, Elías-Arnanz M. Plasticity in oligomerization, operator architecture, and DNA binding in the mode of action of a bacterial B 12-based photoreceptor. J Biol Chem 2018; 293:17888-17905. [PMID: 30262667 DOI: 10.1074/jbc.ra118.004838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/20/2018] [Indexed: 11/06/2022] Open
Abstract
Newly discovered bacterial photoreceptors called CarH sense light by using 5'-deoxyadenosylcobalamin (AdoCbl). They repress their own expression and that of genes for carotenoid synthesis by binding in the dark to operator DNA as AdoCbl-bound tetramers, whose light-induced disassembly relieves repression. High-resolution structures of Thermus thermophilus CarHTt have provided snapshots of the dark and light states and have revealed a unique DNA-binding mode whereby only three of four DNA-binding domains contact an operator comprising three tandem direct repeats. To gain further insights into CarH photoreceptors and employing biochemical, spectroscopic, mutational, and computational analyses, here we investigated CarHBm from Bacillus megaterium We found that apoCarHBm, unlike monomeric apoCarHTt, is an oligomeric molten globule that forms DNA-binding tetramers in the dark only upon AdoCbl binding, which requires a conserved W-X 9-EH motif. Light relieved DNA binding by disrupting CarHBm tetramers to dimers, rather than to monomers as with CarHTt CarHBm operators resembled that of CarHTt, but were larger by one repeat and overlapped with the -35 or -10 promoter elements. This design persisted in a six-repeat, multipartite operator we discovered upstream of a gene encoding an Spx global redox-response regulator whose photoregulated expression links photooxidative and general redox responses in B. megaterium Interestingly, CarHBm recognized the smaller CarHTt operator, revealing an adaptability possibly related to the linker bridging the DNA- and AdoCbl-binding domains. Our findings highlight a remarkable plasticity in the mode of action of B12-based CarH photoreceptors, important for their biological functions and development as optogenetic tools.
Collapse
Affiliation(s)
- Jesús Fernández-Zapata
- From the Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas, 28006 Madrid
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100
| | - Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona; Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona
| | - Francesco Colizzi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona; Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona
| | - María Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona; Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona; Department of Biochemistry and Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - S Padmanabhan
- From the Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas, 28006 Madrid.
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100.
| |
Collapse
|
26
|
Santamaría-Hernando S, Rodríguez-Herva JJ, Martínez-García PM, Río-Álvarez I, González-Melendi P, Zamorano J, Tapia C, Rodríguez-Palenzuela P, López-Solanilla E. Pseudomonas syringae pv. tomato exploits light signals to optimize virulence and colonization of leaves. Environ Microbiol 2018; 20:4261-4280. [PMID: 30058114 DOI: 10.1111/1462-2920.14331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 11/30/2022]
Abstract
Light is pervasive in the leaf environment, creating opportunities for both plants and pathogens to cue into light as a signal to regulate plant-microbe interactions. Light enhances plant defences and regulates opening of stomata, an entry point for foliar bacterial pathogens such as Pseudomonas syringae pv. tomato DC3000 (PsPto). The effect of light perception on gene expression and virulence was investigated in PsPto. Light induced genetic reprogramming in PsPto that entailed significant changes in stress tolerance and virulence. Blue light-mediated up-regulation of type three secretion system genes and red light-mediated down-regulation of coronatine biosynthesis genes. Cells exposed to white light, blue light or darkness before inoculation were more virulent when inoculated at dawn than dusk probably due to an enhanced entry through open stomata. Exposure to red light repressed coronatine biosynthesis genes which could lead to a reduced stomatal re-opening and PsPto entry. Photoreceptor were required for the greater virulence of light-treated and dark-treated PsPto inoculated at dawn as compared to dusk, indicating that these proteins sense the absence of light and contribute to priming of virulence in the dark. These results support a model in which PsPto exploits light changes to maximize survival, entry and virulence on plants.
Collapse
Affiliation(s)
- Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - José J Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Pedro M Martínez-García
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Isabel Río-Álvarez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Jaime Zamorano
- Departamento de Astrofísica y CC. de la Atmósfera, Universidad Complutense, Madrid, Spain
| | - Carlos Tapia
- Departamento de Astrofísica y CC. de la Atmósfera, Universidad Complutense, Madrid, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| |
Collapse
|
27
|
Tuttobene MR, Cribb P, Mussi MA. BlsA integrates light and temperature signals into iron metabolism through Fur in the human pathogen Acinetobacter baumannii. Sci Rep 2018; 8:7728. [PMID: 29769610 PMCID: PMC5955987 DOI: 10.1038/s41598-018-26127-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Light modulates global features of the important human pathogen Acinetobacter baumannii lifestyle including metabolism, tolerance to antibiotics and virulence, most of which depend on the short BLUF-type photoreceptor BlsA. In this work, we show that the ability to circumvent iron deficiency is also modulated by light at moderate temperatures, and disclose the mechanism of signal transduction by showing that BlsA antagonizes the functioning of the ferric uptake regulator (Fur) in a temperature-dependent manner. In fact, we show that BlsA interacts with Fur in the dark at 23 °C, while the interaction is significantly weakened under blue light. Moreover, under iron deprived conditions, expression of Fur-regulated Acinetobactin siderophore genes is only induced in the dark in a BlsA-dependent manner. Finally, growth under iron deficiency is supported in the dark rather than under blue light at moderate temperatures through BlsA. The data is consistent with a model in which BlsA might sequester the repressor from the corresponding operator-promoters, allowing Acinetobactin gene expression. The photoregulation of iron metabolism is lost at higher temperatures such as 30 °C, consistent with fading of the BlsA-Fur interaction at this condition. Overall, we provide new understanding on the functioning of the widespread Fur regulator as well as short-BLUFs.
Collapse
Affiliation(s)
- Marisel R Tuttobene
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI- CONICET), 2000, Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), 2000, Rosario, Argentina
| | - María Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI- CONICET), 2000, Rosario, Argentina.
| |
Collapse
|
28
|
Gharaie S, Vaas LAI, Rosberg AK, Windstam ST, Karlsson ME, Bergstrand KJ, Khalil S, Wohanka W, Alsanius BW. Light spectrum modifies the utilization pattern of energy sources in Pseudomonas sp. DR 5-09. PLoS One 2017; 12:e0189862. [PMID: 29267321 PMCID: PMC5739431 DOI: 10.1371/journal.pone.0189862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/04/2017] [Indexed: 11/18/2022] Open
Abstract
Despite the overruling impact of light in the phyllosphere, little is known regarding the influence of light spectra on non-phototrophic bacteria colonizing the leaf surface. We developed an in vitro method to study phenotypic profile responses of bacterial pure cultures to different bands of the visible light spectrum using monochromatic (blue: 460 nm; red: 660 nm) and polychromatic (white: 350–990 nm) LEDs, by modification and optimization of a protocol for the Phenotype MicroArray™ technique (Biolog Inc., CA, USA). The new protocol revealed high reproducibility of substrate utilization under all conditions tested. Challenging the non-phototrophic bacterium Pseudomonas sp. DR 5–09 with white, blue, and red light demonstrated that all light treatments affected the respiratory profile differently, with blue LED having the most decisive impact on substrate utilization by impairing respiration of 140 substrates. The respiratory activity was decreased on 23 and 42 substrates under red and white LEDs, respectively, while utilization of one, 16, and 20 substrates increased in the presence of red, blue, and white LEDs, respectively. Interestingly, on four substrates contrasting utilization patterns were found when the bacterium was exposed to different light spectra. Although non-phototrophic bacteria do not rely directly on light as an energy source, Pseudomonas sp. DR 5–09 changed its respiratory activity on various substrates differently when exposed to different lights. Thus, ability to sense and distinguish between different wavelengths even within the visible light spectrum must exist, and leads to differential regulation of substrate usage. With these results, we hypothesize that different light spectra might be a hitherto neglected key stimulus for changes in microbial lifestyle and habits of substrate usage by non-phototrophic phyllospheric microbiota, and thus might essentially stratify leaf microbiota composition and diversity.
Collapse
Affiliation(s)
- Samareh Gharaie
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | | | - Anna Karin Rosberg
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Sofia T. Windstam
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
- State University of New York, Department of Biological Sciences, Oswego, New York, United States of America
| | - Maria E. Karlsson
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Karl-Johan Bergstrand
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Sammar Khalil
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Walter Wohanka
- Geisenheim University, Department of Phytomedicine, Geisenheim, Germany
| | - Beatrix W. Alsanius
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
- * E-mail:
| |
Collapse
|
29
|
Wilde A, Mullineaux CW. Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev 2017; 41:900-922. [PMID: 29077840 PMCID: PMC5812497 DOI: 10.1093/femsre/fux045] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/12/2017] [Indexed: 12/02/2022] Open
Abstract
The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea.
Collapse
Affiliation(s)
- Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
30
|
Padmanabhan S, Jost M, Drennan CL, Elías-Arnanz M. A New Facet of Vitamin B 12: Gene Regulation by Cobalamin-Based Photoreceptors. Annu Rev Biochem 2017; 86:485-514. [PMID: 28654327 PMCID: PMC7153952 DOI: 10.1146/annurev-biochem-061516-044500] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Living organisms sense and respond to light, a crucial environmental factor, using photoreceptors, which rely on bound chromophores such as retinal, flavins, or linear tetrapyrroles for light sensing. The discovery of photoreceptors that sense light using 5'-deoxyadenosylcobalamin, a form of vitamin B12 that is best known as an enzyme cofactor, has expanded the number of known photoreceptor families and unveiled a new biological role of this vitamin. The prototype of these B12-dependent photoreceptors, the transcriptional repressor CarH, is widespread in bacteria and mediates light-dependent gene regulation in a photoprotective cellular response. CarH activity as a transcription factor relies on the modulation of its oligomeric state by 5'-deoxyadenosylcobalamin and light. This review surveys current knowledge about these B12-dependent photoreceptors, their distribution and mode of action, and the structural and photochemical basis of how they orchestrate signal transduction and control gene expression.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain;
| | - Marco Jost
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158-2140;
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética, Unidad Asociada al Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
| |
Collapse
|
31
|
Tardu M, Bulut S, Kavakli IH. MerR and ChrR mediate blue light induced photo-oxidative stress response at the transcriptional level in Vibrio cholerae. Sci Rep 2017; 7:40817. [PMID: 28098242 PMCID: PMC5241685 DOI: 10.1038/srep40817] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Blue light (BL) is a major environmental factor that affects the physiology, behavior, and infectivity of bacteria as it contributes to the generation of reactive oxygen species (ROS) while increasing photo-oxidative stress in cells. However, precise photo-oxidative response mechanism in non-phototrophic bacteria is yet to be elucidated. In this study, we investigated the effect of BL in Vibrio cholerae by using genetics and transcriptome profiling. Genome-wide analysis revealed that transcription of 6.3% of V. cholerae genes were regulated by BL. We further showed that BL enhances ROS production, which is generated through the oxidative phosphorylation. To understand signaling mechanisms, we generated several knockouts and analyzed their transcriptome under BL exposure. Studies with a double-knockout confirm an anti-sigma factor (ChrR) and putative metalloregulatory-like protein (MerR) are responsible for the genome-wide regulation to BL response in V. cholerae. Collectively, these results demonstrate that MerR-like proteins, in addition to ChrR, are required for V. cholerae to mount an appropriate response against photo-oxidative stress induced by BL. Outside its natural host, V. cholerae can survive for extended periods in natural aquatic environments. Therefore, the regulation of light response for V. cholerae may be a critical cellular process for its survival in these environments.
Collapse
Affiliation(s)
- Mehmet Tardu
- Computational Science and Engineering, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey
| | - Selma Bulut
- Chemical and Biological Engineering, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Computational Science and Engineering, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey.,Chemical and Biological Engineering, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey.,Molecular Biology and Genetics, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey
| |
Collapse
|
32
|
Shimomura A, Naka A, Miyazaki N, Moriuchi S, Arima S, Sato S, Hirakawa H, Hayashi M, Maymon M, Hirsch AM, Suzuki A. Blue Light Perception by Both Roots and Rhizobia Inhibits Nodule Formation in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:786-796. [PMID: 27611874 DOI: 10.1094/mpmi-03-16-0048-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In many legumes, roots that are exposed to light do not form nodules. Here, we report that blue light inhibits nodulation in Lotus japonicus roots inoculated with Mesorhizobium loti. Using RNA interference, we suppressed the expression of the phototropin and cryptochrome genes in L. japonicus hairy roots. Under blue light, plants transformed with an empty vector did not develop nodules, whereas plants exhibiting suppressed expression of cry1 and cry2 genes formed nodules. We also measured rhizobial growth to investigate whether the inhibition of nodulation could be caused by a reduced population of rhizobia in response to light. Although red light had no effect on rhizobial growth, blue light had a strong inhibitory effect. Rhizobial growth under blue light was partially restored in signature-tagged mutagenesis (STM) strains in which LOV-HK/PAS- and photolyase-related genes were disrupted. Moreover, when Ljcry1A and Ljcry2B-silenced plants were inoculated with the STM strains, nodulation was additively increased. Our data show that blue light receptors in both the host plant and the symbiont have a profound effect on nodule development. The exact mechanism by which these photomorphogenetic responses function in the symbiosis needs further study, but they are clearly involved in optimizing legume nodulation.
Collapse
Affiliation(s)
- Aya Shimomura
- 1 United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| | - Ayumi Naka
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| | - Nobuyuki Miyazaki
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| | - Sayaka Moriuchi
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| | - Susumu Arima
- 1 United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| | - Shusei Sato
- 3 Department of Environmental Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hideki Hirakawa
- 4 Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Makoto Hayashi
- 5 RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Maskit Maymon
- 6 Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA 90095-1606, U.S.A.; and
| | - Ann M Hirsch
- 6 Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA 90095-1606, U.S.A.; and
- 7 Molecular Biology Institute, University of California-Los Angeles
| | - Akihiro Suzuki
- 1 United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| |
Collapse
|
33
|
Bonomi HR, Toum L, Sycz G, Sieira R, Toscani AM, Gudesblat GE, Leskow FC, Goldbaum FA, Vojnov AA, Malamud F. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Rep 2016; 17:1565-1577. [PMID: 27621284 DOI: 10.15252/embr.201541691] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/02/2016] [Indexed: 11/09/2022] Open
Abstract
Phytochromes constitute a major photoreceptor family found in plants, algae, fungi, and prokaryotes, including pathogens. Here, we report that Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot disease which affects cruciferous crops worldwide, codes for a functional bacteriophytochrome (XccBphP). XccBphP possesses an N-terminal PAS2-GAF-PHY photosensory domain triad and a C-terminal PAS9 domain as its output module. Our results show that illumination of Xcc, prior to plant infection, attenuates its virulence in an XccBphP-dependent manner. Moreover, in response to light, XccBphP downregulates xanthan exopolysaccharide production and biofilm formation, two known Xcc virulence factors. Furthermore, the XccbphP null mutant shows enhanced virulence, similar to that of dark-adapted Xcc cultures. Stomatal aperture regulation and callose deposition, both well-established plant defense mechanisms against bacterial pathogens, are overridden by the XccbphP strain. Additionally, an RNA-Seq analysis reveals that far-red light or XccBphP overexpression produces genomewide transcriptional changes, including the inhibition of several Xcc virulence systems. Our findings indicate that Xcc senses light through XccBphP, eliciting bacterial virulence attenuation via downregulation of bacterial virulence factors. The capacity of XccBphP to respond to light both in vitro and in vivo was abolished by a mutation on the conserved Cys13 residue. These results provide evidence for a novel bacteriophytochrome function affecting an infectious process.
Collapse
Affiliation(s)
- Hernán R Bonomi
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Laila Toum
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Rodrigo Sieira
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Andrés M Toscani
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo E Gudesblat
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Buenos Aires, Argentina
| | - Federico C Leskow
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Adrián A Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Buenos Aires, Argentina
| | - Florencia Malamud
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Buenos Aires, Argentina .,UNSAM Campus Miguelete IIB - Instituto de Investigaciones Biotecnológicas, Buenos Aires, Argentina
| |
Collapse
|
34
|
Gruber K, Kräutler B. Coenzyme B12 Repurposed for Photoregulation of Gene Expression. Angew Chem Int Ed Engl 2016; 55:5638-40. [PMID: 27010518 DOI: 10.1002/anie.201601120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Old cofactor, new tricks: In enzymes, coenzyme B12 has a well-known function as a radical initiator through homolysis of the Co-C bond. It has recently been shown that nature has repurposed this cofactor as a photosensitive switch for the regulation of bacterial carotenoid biosynthesis. Co-C bond breakage is again the key event in this process, triggering huge conformational changes in the B12 -binding protein.
Collapse
Affiliation(s)
- Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010, Graz, Austria.
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
35
|
Gruber K, Kräutler B. Coenzym B12- umfunktioniert für die Photoregulation der Genexpression. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Karl Gruber
- Institut für Molekulare Biowissenschaften; Universität Graz; Humboldtstraße 50 8010 Graz Österreich
| | - Bernhard Kräutler
- Institut für Organische Chemie und Zentrum für molekulare Biowissenschaften (CMBI); Universität Innsbruck; Innrain 80/82 6020 Innsbruck Österreich
| |
Collapse
|
36
|
Takano H. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci Biotechnol Biochem 2016; 80:1264-73. [PMID: 26967471 DOI: 10.1080/09168451.2016.1156478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Light is a ubiquitous environmental factor serving as an energy source and external stimulus. Here, I review the conserved molecular mechanism of light-inducible production of carotenoids in three nonphototrophic bacteria: Streptomyces coelicolor A3(2), Thermus thermophilus HB27, and Bacillus megaterium QM B1551. A MerR family transcriptional regulator, LitR, commonly plays a central role in their light-inducible carotenoid production. Genetic and biochemical studies on LitR proteins revealed a conserved function: LitR in complex with adenosyl B12 (AdoB12) has a light-sensitive DNA-binding activity and thus suppresses the expression of the Crt biosynthesis gene cluster. The in vitro DNA-binding and transcription assays showed that the LitR-AdoB12 complex serves as a repressor allowing transcription initiation by RNA polymerase in response to illumination. The existence of novel light-inducible genes and the unique role of the megaplasmid were revealed by the transcriptomic analysis of T. thermophilus. The findings suggest that LitR is a general regulator responsible for the light-inducible carotenoid production in the phylogenetically divergent nonphototrophic bacteria, and that LitR performs diverse physiological functions in bacteria.
Collapse
Affiliation(s)
- Hideaki Takano
- a Applied Biological Science and Life Science Research Center, College of Bioresource Sciences , Nihon University , Fujisawa , Japan
| |
Collapse
|
37
|
Jost M, Fernández-Zapata J, Polanco MC, Ortiz-Guerrero JM, Chen PYT, Kang G, Padmanabhan S, Elías-Arnanz M, Drennan CL. Structural basis for gene regulation by a B12-dependent photoreceptor. Nature 2015; 526:536-41. [PMID: 26416754 PMCID: PMC4634937 DOI: 10.1038/nature14950] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/14/2015] [Indexed: 12/29/2022]
Abstract
Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here, we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide a visualization of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter −35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation.
Collapse
Affiliation(s)
- Marco Jost
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Jésus Fernández-Zapata
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - María Carmen Polanco
- Department of Genetics and Microbiology, Area of Genetics (Unidad Asociada al Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas), Faculty of Biology, Universidad de Murcia, Murcia 30100, Spain
| | - Juan Manuel Ortiz-Guerrero
- Department of Genetics and Microbiology, Area of Genetics (Unidad Asociada al Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas), Faculty of Biology, Universidad de Murcia, Murcia 30100, Spain
| | - Percival Yang-Ting Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Montserrat Elías-Arnanz
- Department of Genetics and Microbiology, Area of Genetics (Unidad Asociada al Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas), Faculty of Biology, Universidad de Murcia, Murcia 30100, Spain
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.,Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
38
|
Nudel CB, Hellingwerf KJ. Photoreceptors in Chemotrophic Prokaryotes: The Case of Acinetobacter spp. Revisited. Photochem Photobiol 2015; 91:1012-20. [PMID: 26147719 DOI: 10.1111/php.12491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 12/23/2022]
Abstract
A comprehensive description of blue light using flavin (BLUF) photosensory proteins, including preferred domain architectures and the molecular mechanism of their light activation and signal generation, among chemotrophic prokaryotes is presented. Light-regulated physiological responses in Acinetobacter spp. from environmental and clinically relevant strains are discussed. The twitching motility response in A. baylyi sp. ADP1 and the joint involvement of three of the four putative BLUF-domain-containing proteins in this response, in this species, is presented as an example of remarkable photoreceptor redundancy.
Collapse
Affiliation(s)
- Clara B Nudel
- Nanobiotec Institute, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Fraikin GY, Strakhovskaya MG, Belenikina NS, Rubin AB. Bacterial photosensory proteins: Regulatory functions and optogenetic applications. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715040086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Rasmussen JA, Fletcher JR, Long ME, Allen LAH, Jones BD. Characterization of Francisella tularensis Schu S4 mutants identified from a transposon library screened for O-antigen and capsule deficiencies. Front Microbiol 2015; 6:338. [PMID: 25999917 PMCID: PMC4419852 DOI: 10.3389/fmicb.2015.00338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/06/2015] [Indexed: 02/02/2023] Open
Abstract
The lipopolysaccharide (LPS) and O-antigen polysaccharide capsule structures of Francisella tularensis play significant roles in helping these highly virulent bacteria avoid detection within a host. We previously created pools of F. tularensis mutants that we screened to identify strains that were not reactive to a monoclonal antibody to the O-antigen capsule. To follow up previously published work, we characterize further seven of the F. tularensis Schu S4 mutant strains identified by our screen. These F. tularensis strains carry the following transposon mutations: FTT0846::Tn5, hemH::Tn5, wbtA::Tn5, wzy::Tn5, FTT0673p/prsA::Tn5, manB::Tn5, or dnaJ::Tn5. Each of these strains displayed sensitivity to human serum, to varying degrees, when compared to wild-type F. tularensis Schu S4. By Western blot, only FTT0846::Tn5, wbtA::Tn5, wzy::Tn5, and manB::Tn5 strains did not react to the capsule and LPS O-antigen antibody 11B7, although the wzy::Tn5 strain did have a single O-antigen reactive band that was detected by the FB11 monoclonal antibody. Of these strains, manB::Tn5 and FTT0846 appear to have LPS core truncations, whereas wbtA::Tn5 and wzy::Tn5 had LPS core structures that are similar to the parent F. tularensis Schu S4. These strains were also shown to have poor growth within human monocyte derived macrophages (MDMs) and bone marrow derived macrophages (BMDMs). We examined the virulence of these strains in mice, following intranasal challenge, and found that each was attenuated compared to wild type Schu S4. Our results provide additional strong evidence that LPS and/or capsule are F. tularensis virulence factors that most likely function by providing a stealth shield that prevents the host immune system from detecting this potent pathogen.
Collapse
Affiliation(s)
- Jed A Rasmussen
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- Genetics Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Matthew E Long
- Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Lee-Ann H Allen
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Bradley D Jones
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Genetics Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
41
|
Nagendran R, Lee YH. Green and Red Light Reduces the Disease Severity by Pseudomonas cichorii JBC1 in Tomato Plants via Upregulation of Defense-Related Gene Expression. PHYTOPATHOLOGY 2015; 105:412-8. [PMID: 25536016 DOI: 10.1094/phyto-04-14-0108-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Light influences many physiological processes in most organisms. To investigate the influence of light on plant and pathogen interaction, we challenged tomato seedlings with Pseudomonas cichorii JBC1 by flood inoculation and incubated the seedlings under different light conditions. Tomato seedlings exposed to green or red light showed a significant reduction in disease incidence compared with those grown under white light or dark conditions. To understand the underlying mechanisms, we investigated the effects of each light wavelength on P. cichorii JBC1 and tomato plants. Treatment with various light wavelengths at 120 µmol m(-2) s(-1) revealed no significant difference in growth, swarming motility, or biofilm formation of the pathogen. In addition, when we vacuum-infiltrated P. cichorii JBC1 into tomato plants, green and red light also suppressed disease incidence which indicated that the reduced disease severity was not from direct influence of light on the pathogen. Significant upregulation of the defense-related genes, phenylalanine ammonia-lyase (PAL) and pathogenesis-related protein 1a (PR-1a) was observed in P. cichorii JBC1-infected tomato seedlings grown under green or red light compared with seedlings grown under white light or dark conditions. The results of this study indicate that light conditions can influence plant defense mechanisms. In particular, green and red light increase the resistance of tomato plants to infection by P. cichorii.
Collapse
Affiliation(s)
- Rajalingam Nagendran
- First author: Division of Biotechnology, Chonbuk National University, 194-5 Ma-Dong, Iksan, Jeonbuk 570-752, Republic of Korea; and second author: Advanced Institute of Environment and Bioscience, and Plant Medical Research Center, Chonbuk National University 194-5 Ma-Dong, Iksan, Jeonbuk 570-752, Republic of Korea
| | | |
Collapse
|
42
|
Müller K, Naumann S, Weber W, Zurbriggen MD. Optogenetics for gene expression in mammalian cells. Biol Chem 2015; 396:145-52. [DOI: 10.1515/hsz-2014-0199] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/29/2014] [Indexed: 12/14/2022]
Abstract
Abstract
Molecular switches that are controlled by chemicals have evolved as central research instruments in mammalian cell biology. However, these tools are limited in terms of their spatiotemporal resolution due to freely diffusing inducers. These limitations have recently been addressed by the development of optogenetic, genetically encoded, and light-responsive tools that can be controlled with the unprecedented spatiotemporal precision of light. In this article, we first provide a brief overview of currently available optogenetic tools that have been designed to control diverse cellular processes. Then, we focus on recent developments in light-controlled gene expression technologies and provide the reader with a guideline for choosing the most suitable gene expression system.
Collapse
|
43
|
Fujisawa T, Takeuchi S, Masuda S, Tahara T. Signaling-State Formation Mechanism of a BLUF Protein PapB from the Purple Bacterium Rhodopseudomonas palustris Studied by Femtosecond Time-Resolved Absorption Spectroscopy. J Phys Chem B 2014; 118:14761-73. [PMID: 25406769 DOI: 10.1021/jp5076252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied the signaling-state formation of a BLUF (blue light using FAD) protein, PapB, from the purple bacterium Rhodopseudomonas palustris, using femtosecond time-resolved absorption spectroscopy. Upon photoexcitation of the dark state, FADH(•) (neutral flavin semiquinone FADH radical) was observed as the intermediate before the formation of the signaling state. The kinetic analysis based on singular value decomposition showed that FADH(•) mediates the signaling-state formation, showing that PapB is the second example of FADH(•)-mediated formation of the signaling state after Slr1694 (M. Gauden et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10895-10900). The mechanism of the signaling-state formation is discussed on the basis of the comparison between femtosecond time-resolved absorption spectra of the dark state and those obtained by exciting the signaling state. FADH(•) was observed also with excitation of the signaling state, and surprisingly, the kinetics of FADH(•) was indistinguishable from the case of exciting the dark state. This result suggests that the hydrogen bond environment in the signaling state is realized before the formation of FADH(•) in the photocycle of PapB.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, and Earth-Life Science Institute, Tokyo Institute of Technology , Yokohama 226-8501, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
44
|
Optobiology: optical control of biological processes via protein engineering. Biochem Soc Trans 2014; 41:1183-8. [PMID: 24059506 DOI: 10.1042/bst20130150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enabling optical control over biological processes is a defining goal of the new field of optogenetics. Control of membrane voltage by natural rhodopsin family ion channels has found widespread acceptance in neuroscience, due to the fact that these natural proteins control membrane voltage without further engineering. In contrast, optical control of intracellular biological processes has been a fragmented effort, with various laboratories engineering light-responsive properties into proteins in different manners. In the present article, we review the various systems that have been developed for controlling protein functions with light based on vertebrate rhodopsins, plant photoregulatory proteins and, most recently, the photoswitchable fluorescent protein Dronpa. By allowing biology to be controlled with spatiotemporal specificity and tunable dynamics, light-controllable proteins will find applications in the understanding of cellular and organismal biology and in synthetic biology.
Collapse
|
45
|
Río-Álvarez I, Rodríguez-Herva JJ, Martínez PM, González-Melendi P, García-Casado G, Rodríguez-Palenzuela P, López-Solanilla E. Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000. Environ Microbiol 2013; 16:2072-85. [PMID: 24033935 DOI: 10.1111/1462-2920.12240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 01/27/2023]
Abstract
Pseudomonas syringae pv tomato DC3000 (Pto) is the causal agent of the bacterial speck of tomato, which leads to significant economic losses in this crop. Pto inhabits the tomato phyllosphere, where the pathogen is highly exposed to light, among other environmental factors. Light represents a stressful condition and acts as a source of information associated with different plant defence levels. Here, we analysed the presence of both blue and red light photoreceptors in a group of Pseudomonas. In addition, we studied the effect of white, blue and red light on Pto features related to epiphytic fitness. While white and blue light inhibit motility, bacterial attachment to plant leaves is promoted. Moreover, these phenotypes are altered in a blue-light receptor mutant. These light-controlled changes during the epiphytic stage cause a reduction in virulence, highlighting the relevance of motility during the entry process to the plant apoplast. This study demonstrated the key role of light perception in the Pto phenotype switching and its effect on virulence.
Collapse
Affiliation(s)
- Isabel Río-Álvarez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain; Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM. Avda. Complutense S/N, 28040, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Ziessel R, Ulrich G, Haefele A, Harriman A. An Artificial Light-Harvesting Array Constructed from Multiple Bodipy Dyes. J Am Chem Soc 2013; 135:11330-44. [DOI: 10.1021/ja4049306] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Raymond Ziessel
- Laboratoire de Chimie Organique
et Spectroscopies Avancées (ICPEES-LCOSA), UMR 7515 au CNRS,
Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel,
67087 Strasbourg Cedex 02, France
| | - Gilles Ulrich
- Laboratoire de Chimie Organique
et Spectroscopies Avancées (ICPEES-LCOSA), UMR 7515 au CNRS,
Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel,
67087 Strasbourg Cedex 02, France
| | - Alexandre Haefele
- Laboratoire de Chimie Organique
et Spectroscopies Avancées (ICPEES-LCOSA), UMR 7515 au CNRS,
Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel,
67087 Strasbourg Cedex 02, France
| | - Anthony Harriman
- Molecular Photonics Laboratory,
School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
47
|
Müller K, Weber W. Optogenetic tools for mammalian systems. MOLECULAR BIOSYSTEMS 2013; 9:596-608. [DOI: 10.1039/c3mb25590e] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Pathak GP, Vrana JD, Tucker CL. Optogenetic control of cell function using engineered photoreceptors. Biol Cell 2012; 105:59-72. [PMID: 23157573 DOI: 10.1111/boc.201200056] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022]
Abstract
Over the past decades, there has been growing recognition that light can provide a powerful stimulus for biological interrogation. Light-actuated tools allow manipulation of molecular events with ultra-fine spatial and fast temporal resolution, as light can be rapidly delivered and focused with sub-micrometre precision within cells. While light-actuated chemicals such as photolabile 'caged' compounds have been in existence for decades, the use of genetically encoded natural photoreceptors for optical control of biological processes has recently emerged as a powerful new approach with several advantages over traditional methods. Here, we review recent advances using light to control basic cellular functions and discuss the engineering challenges that lie ahead for improving and expanding the ever-growing optogenetic toolkit.
Collapse
Affiliation(s)
- Gopal P Pathak
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 90045, USA
| | | | | |
Collapse
|
49
|
Bonomi HR, Posadas DM, Paris G, Carrica MDC, Frederickson M, Pietrasanta LI, Bogomolni RA, Zorreguieta A, Goldbaum FA. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor. Proc Natl Acad Sci U S A 2012; 109:12135-40. [PMID: 22773814 PMCID: PMC3409720 DOI: 10.1073/pnas.1121292109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum.
Collapse
Affiliation(s)
- Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
| | - Diana M. Posadas
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
| | - Gastón Paris
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
| | - Mariela del Carmen Carrica
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
| | | | - Lía Isabel Pietrasanta
- Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1033AAJ, Buenos Aires, Argentina; and
| | | | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
- Departamento de Química Biológica, FCEyN, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
50
|
Tanaka K, Nakasone Y, Okajima K, Ikeuchi M, Tokutomi S, Terazima M. Time-Resolved Tracking of Interprotein Signal Transduction: Synechocystis PixD–PixE Complex as a Sensor of Light Intensity. J Am Chem Soc 2012; 134:8336-9. [DOI: 10.1021/ja301540r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keisuke Tanaka
- Department of Chemistry, Graduate
School of Science, Kyoto University, Kyoto
606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate
School of Science, Kyoto University, Kyoto
606-8502, Japan
| | - Koji Okajima
- Department
of Life Sciences
(Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department of Biological Science,
Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahiko Ikeuchi
- Department
of Life Sciences
(Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Satoru Tokutomi
- Department of Biological Science,
Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate
School of Science, Kyoto University, Kyoto
606-8502, Japan
| |
Collapse
|