1
|
Solger F, Rauch J, Vormittag S, Fan M, Raykov L, Charki P, Katic A, Letourneur F, Soldati T, Seibel J, Hilbi H. Inter-kingdom signaling by the Legionella autoinducer LAI-1 involves the antimicrobial guanylate binding protein GBP. PLoS Pathog 2025; 21:e1013026. [PMID: 40300029 PMCID: PMC12040241 DOI: 10.1371/journal.ppat.1013026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/07/2025] [Indexed: 05/01/2025] Open
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, is an amoebae-resistant environmental bacterium, which replicates intracellularly in a distinct compartment, the "Legionella-containing vacuole" (LCV). L. pneumophila employs the α-hydroxyketone compound LAI-1 (Legionella autoinducer-1) for intra-species and inter-kingdom signaling. LAI-1 promotes intracellular replication and inhibits the migration of mammalian cells and Dictyostelium discoideum. In this study, we revealed that LAI-1 and "clickable" azido-LAI-1 derivatives inhibit the migration of D. discoideum and localize to LCVs. Azido-LAI-1 colocalizes with the LCV markers calnexin, P4C, and AmtA, but not with mitochondrial or lipid droplet markers. Intriguingly, LAI-1-dependent inhibition of D. discoideum migration involves the single guanylate-binding protein (GBP), a member of the GBP family of large GTPases, which in metazoan organisms promote cell autonomous immunity. D. discoideum lacking GBP (Δgnbp) allows more efficient intracellular replication of L. pneumophila, without apparently compromising LCV formation or integrity, and GBP-GFP localizes to the ER at LCV-ER membrane contact sites (MCS). However, the peri-LCV localization of LAI-1 and GBP is not mutually dependent. Synthetic LAI-1 inhibits the expansion/remodeling of LCVs (but not vacuoles harboring avirulent L. pneumophila) in a GBP-dependent manner. Taken together, the work shows that LAI-1 localizes to LCVs, and LAI-1-dependent inter-kingdom signaling involves D. discoideum GBP, which localizes to LCV-ER MCS and acts as an antimicrobial factor by restricting the intracellular growth of L. pneumophila.
Collapse
Affiliation(s)
- Franziska Solger
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Jonas Rauch
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Simone Vormittag
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Mingzhen Fan
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Lyudmil Raykov
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Paul Charki
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Ana Katic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | | | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Graham CI, Gierys AJ, MacMartin TL, Penner TV, Beck JC, Prehna G, de Kievit TR, Brassinga AKC. Transcription factors DksA and PsrA are synergistic contributors to Legionella pneumophila virulence in Acanthamoeba castellanii protozoa. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40231716 DOI: 10.1099/mic.0.001551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The environmental bacterium Legionella pneumophila, an intracellular parasite of free-living freshwater protozoa as well as an opportunistic human pathogen, has a biphasic lifestyle. The switch from the vegetative replicative form to the environmentally resilient transmissive phase form is governed by a complex stringent response-based regulatory network that includes RNA polymerase co-factor DksA. Here, we report that, through a dysfunctional DksA mutation (DksA1), a synergistic interplay was discovered between DksA and transcription regulator PsrA using the Acanthamoeba castellanii protozoan infection model. Surprisingly, in trans expression of PsrA partially rescued the growth defect of a dksA1 strain. Whilst in trans expression of DksA expectantly could fully rescue the growth defect of the dksA1 strain, it could also surprisingly rescue the growth defect of a ΔpsrA strain. Conversely, the severe intracellular growth defect of a ΔdksA strain could be rescued by in trans expression of DksA and DksA1, but not PsrA. In vitro phenotypic assays show that either DksA or DksA1 was required for extended culturability of bacterial cells, but normal cell morphology and pigmentation required DksA only. Comparative structural modelling predicts that the DksA1 mutation affects the coordination of Mg2+ into the active site of RNAP, compromising transcription efficiency. Taken together, we propose that PsrA transcriptionally assists DksA in the expression of select transmissive phase traits. Additionally, in vitro evidence suggests that the long-chain fatty acid metabolic response is mediated by PsrA together with DksA, inferring a novel regulatory link to the stringent response pathway.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Andrew J Gierys
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Tiffany V Penner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jordan C Beck
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Gerd Prehna
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
3
|
Michaelis S, Gomez-Valero L, Chen T, Schmid C, Buchrieser C, Hilbi H. Small molecule communication of Legionella: the ins and outs of autoinducer and nitric oxide signaling. Microbiol Mol Biol Rev 2024; 88:e0009723. [PMID: 39162424 PMCID: PMC11426016 DOI: 10.1128/mmbr.00097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
SUMMARYLegionella pneumophila is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of Legionella-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. L. pneumophila produces, secretes, and detects the α-hydroxyketone compound Legionella autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by L. pneumophila in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. L. pneumophila detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked via the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by Legionella species.
Collapse
Affiliation(s)
- Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Tong Chen
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Michaelis S, Chen T, Schmid C, Hilbi H. Nitric oxide signaling through three receptors regulates virulence, biofilm formation, and phenotypic heterogeneity of Legionella pneumophila. mBio 2024; 15:e0071024. [PMID: 38682908 PMCID: PMC11237717 DOI: 10.1128/mbio.00710-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, is an environmental bacterium, that replicates in macrophages, parasitizes amoeba, and forms biofilms. L. pneumophila employs the Legionella quorum sensing (Lqs) system and the transcription factor LvbR to control various bacterial traits, including virulence and biofilm architecture. LvbR negatively regulates the nitric oxide (NO) receptor Hnox1, linking quorum sensing to NO signaling. Here, we assessed the response of L. pneumophila to NO and investigated bacterial receptors underlying this process. Chemical NO donors, such as dipropylenetriamine (DPTA) NONOate and sodium nitroprusside (SNP), delayed and reduced the expression of the promoters for flagellin (PflaA) and the 6S small regulatory RNA (P6SRNA). Marker-less L. pneumophila mutant strains lacking individual (Hnox1, Hnox2, or NosP) or all three NO receptors (triple knockout, TKO) grew like the parental strain in media. However, in the TKO strain, the reduction of PflaA expression by DPTA NONOate was less pronounced, suggesting that the NO receptors are implicated in NO signaling. In the ΔnosP mutant, the lvbR promoter was upregulated, indicating that NosP negatively regulates LvbR. The single and triple NO receptor mutant strains were impaired for growth in phagocytes, and phenotypic heterogeneity of non-growing/growing bacteria in amoebae was regulated by the NO receptors. The single NO receptor and TKO mutant strains showed altered biofilm architecture and lack of response of biofilms to NO. In summary, we provide evidence that L. pneumophila regulates virulence, intracellular phenotypic heterogeneity, and biofilm formation through NO and three functionally non-redundant NO receptors, Hnox1, Hnox2, and NosP. IMPORTANCE The highly reactive diatomic gas molecule nitric oxide (NO) is produced by eukaryotes and bacteria to promote short-range and transient signaling within and between neighboring cells. Despite its importance as an inter-kingdom and intra-bacterial signaling molecule, the bacterial response and the underlying components of the signaling pathways are poorly characterized. The environmental bacterium Legionella pneumophila forms biofilms and replicates in protozoan and mammalian phagocytes. L. pneumophila harbors three putative NO receptors, one of which crosstalks with the Legionella quorum sensing (Lqs)-LvbR network to regulate various bacterial traits, including virulence and biofilm architecture. In this study, we used pharmacological, genetic, and cell biological approaches to assess the response of L. pneumophila to NO and to demonstrate that the putative NO receptors are implicated in NO detection, bacterial replication in phagocytes, intracellular phenotypic heterogeneity, and biofilm formation.
Collapse
Affiliation(s)
- Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Tong Chen
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Barbosa A, Azevedo NF, Goeres DM, Cerqueira L. Ecology of Legionella pneumophila biofilms: The link between transcriptional activity and the biphasic cycle. Biofilm 2024; 7:100196. [PMID: 38601816 PMCID: PMC11004079 DOI: 10.1016/j.bioflm.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
There has been considerable discussion regarding the environmental life cycle of Legionella pneumophila and its virulence potential in natural and man-made water systems. On the other hand, the bacterium's morphogenetic mechanisms within host cells (amoeba and macrophages) have been well documented and are linked to its ability to transition from a non-virulent, replicative state to an infectious, transmissive state. Although the morphogenetic mechanisms associated with the formation and detachment of the L. pneumophila biofilm have also been described, the capacity of the bacteria to multiply extracellularly is not generally accepted. However, several studies have shown genetic pathways within the biofilm that resemble intracellular mechanisms. Understanding the functionality of L. pneumophila cells within a biofilm is fundamental for assessing the ecology and evaluating how the biofilm architecture influences L. pneumophila survival and persistence in water systems. This manuscript provides an overview of the biphasic cycle of L. pneumophila and its implications in associated intracellular mechanisms in amoeba. It also examines the molecular pathways and gene regulation involved in L. pneumophila biofilm formation and dissemination. A holistic analysis of the transcriptional activities in L. pneumophila biofilms is provided, combining the information of intracellular mechanisms in a comprehensive outline. Furthermore, this review discusses the techniques that can be used to study the morphogenetic states of the bacteria within biofilms, at the single cell and population levels.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Darla M. Goeres
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Laura Cerqueira
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
6
|
Graham CI, MacMartin TL, de Kievit TR, Brassinga AKC. Molecular regulation of virulence in Legionella pneumophila. Mol Microbiol 2024; 121:167-195. [PMID: 37908155 DOI: 10.1111/mmi.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 11/02/2023]
Abstract
Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Fan M, Kiefer P, Charki P, Hedberg C, Seibel J, Vorholt JA, Hilbi H. The Legionella autoinducer LAI-1 is delivered by outer membrane vesicles to promote interbacterial and interkingdom signaling. J Biol Chem 2023; 299:105376. [PMID: 37866633 PMCID: PMC10692735 DOI: 10.1016/j.jbc.2023.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Legionella pneumophila is an environmental bacterium, which replicates in amoeba but also in macrophages, and causes a life-threatening pneumonia called Legionnaires' disease. The opportunistic pathogen employs the α-hydroxy-ketone compound Legionella autoinducer-1 (LAI-1) for intraspecies and interkingdom signaling. LAI-1 is produced by the autoinducer synthase Legionella quorum sensing A (LqsA), but it is not known, how LAI-1 is released by the pathogen. Here, we use a Vibrio cholerae luminescence reporter strain and liquid chromatography-tandem mass spectrometry to detect bacteria-produced and synthetic LAI-1. Ectopic production of LqsA in Escherichia coli generated LAI-1, which partitions to outer membrane vesicles (OMVs) and increases OMV size. These E. coli OMVs trigger luminescence of the V. cholerae reporter strain and inhibit the migration of Dictyostelium discoideum amoeba. Overexpression of lqsA in L.pneumophila under the control of strong stationary phase promoters (PflaA or P6SRNA), but not under control of its endogenous promoter (PlqsA), produces LAI-1, which is detected in purified OMVs. These L. pneumophila OMVs trigger luminescence of the Vibrio reporter strain and inhibit D. discoideum migration. L. pneumophila OMVs are smaller upon overexpression of lqsA or upon addition of LAI-1 to growing bacteria, and therefore, LqsA affects OMV production. The overexpression of lqsA but not a catalytically inactive mutant promotes intracellular replication of L. pneumophila in macrophages, indicating that intracellularly produced LA1-1 modulates the interaction in favor of the pathogen. Taken together, we provide evidence that L. pneumophila LAI-1 is secreted through OMVs and promotes interbacterial communication and interactions with eukaryotic host cells.
Collapse
Affiliation(s)
- Mingzhen Fan
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Paul Charki
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Christian Hedberg
- Institute of Chemistry and Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | | | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Holland M, Farinella DN, Cruz-Lorenzo E, Laubscher MI, Doakes DA, Ramos MA, Kubota N, Levin TC. L. pneumophila resists its self-harming metabolite HGA via secreted factors and collective peroxide scavenging. mBio 2023; 14:e0120723. [PMID: 37728338 PMCID: PMC10653783 DOI: 10.1128/mbio.01207-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE Before environmental opportunistic pathogens can infect humans, they must first successfully grow and compete with other microbes in nature, often via secreted antimicrobials. We previously discovered that the bacterium Legionella pneumophila, the causative agent of Legionnaires' disease, can compete with other microbes via a secreted molecule called HGA. Curiously, L. pneumophila strains that produce HGA is not wholly immune to its toxicity, making it a mystery how these bacteria can withstand the "friendly fire" of potentially self-targeting antimicrobials during inter-bacterial battles. Here, we identify several strategies that allow the high-density bacterial populations that secrete HGA to tolerate its effects. Our study clarifies how HGA works. It also points to some explanations of why it is difficult to disinfect L. pneumophila from the built environment and prevent disease outbreaks.
Collapse
Affiliation(s)
- Mische Holland
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Danielle N. Farinella
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily Cruz-Lorenzo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madelyn I. Laubscher
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Darian A. Doakes
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Maria A. Ramos
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nanami Kubota
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tera C. Levin
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Zhang L, Wang F, Jia L, Yan H, Gao L, Tian Y, Su X, Zhang X, Lv C, Ma Z, Xue Y, Lin Q, Wang K. Edwardsiella piscicida infection reshapes the intestinal microbiome and metabolome of big-belly seahorses: mechanistic insights of synergistic actions of virulence factors. Front Immunol 2023; 14:1135588. [PMID: 37215132 PMCID: PMC10193291 DOI: 10.3389/fimmu.2023.1135588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Uncovering the mechanism underlying the pathogenesis of Edwardsiella piscicida-induced enteritis is essential for global aquaculture. In the present study, we identified E. piscicida as a lethal pathogen of the big-belly seahorse (Hippocampus abdominalis) and revealed its pathogenic pattern and characteristics by updating our established bacterial enteritis model and evaluation system. Conjoint analysis of metagenomic and metabolomic data showed that 15 core virulence factors could mutually coordinate the remodeling of intestinal microorganisms and host metabolism and induce enteritis in the big-belly seahorse. Specifically, the Flagella, Type IV pili, and Lap could significantly increase the activities of the representative functional pathways of both flagella assembly and bacterial chemotaxis in the intestinal microbiota (P < 0.01) to promote pathogen motility, adherence, and invasion. Legiobactin, IraAB, and Hpt could increase ABC transporter activity (P < 0.01) to compete for host nutrition and promote self-replication. Capsule1, HP-NAP, and FarAB could help the pathogen to avoid phagocytosis. Upon entering epithelial cells and phagocytes, Bsa T3SS and Dot/Icm could significantly increase bacterial secretion system activity (P < 0.01) to promote the intracellular survival and replication of the pathogen and the subsequent invasion of the neighboring tissues. Finally, LPS3 could significantly increase lipopolysaccharide biosynthesis (P < 0.01) to release toxins and kill the host. Throughout the pathogenic process, BopD, PhoP, and BfmRS significantly activated the two-component system (P < 0.01) to coordinate with other VFs to promote deep invasion. In addition, the levels of seven key metabolic biomarkers, Taurine, L-Proline, Uridine, L-Glutamate, Glutathione, Xanthosine, and L-Malic acid, significantly decreased (P < 0.01), and they can be used for characterizing E. piscicida infection. Overall, the present study systematically revealed how a combination of virulence factors mediate E. piscicida-induced enteritis in fish for the first time, providing a theoretical reference for preventing and controlling this disease in the aquaculture of seahorses and other fishes.
Collapse
Affiliation(s)
- Lele Zhang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Fang Wang
- Department of Pathology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Longwu Jia
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Hansheng Yan
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Longkun Gao
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Yanan Tian
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Xiaolei Su
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Xu Zhang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Chunhui Lv
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Zhenhao Ma
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Yuanyuan Xue
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Qiang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kai Wang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| |
Collapse
|
10
|
Yi X, Miao H, Lo JKY, Elsheikh MM, Lee TH, Jiang C, Zhang Y, Segelke BW, Overton KW, Bremer PT, Laurence TA. Tailored approach to study Legionella infection using a lattice light sheet microscope (LLSM). BIOMEDICAL OPTICS EXPRESS 2022; 13:4134-4159. [PMID: 36032581 PMCID: PMC9408256 DOI: 10.1364/boe.459012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Legionella is a genus of ubiquitous environmental pathogens found in freshwater systems, moist soil, and composted materials. More than four decades of Legionella research has provided important insights into Legionella pathogenesis. Although standard commercial microscopes have led to significant advances in understanding Legionella pathogenesis, great potential exists in the deployment of more advanced imaging techniques to provide additional insights. The lattice light sheet microscope (LLSM) is a recently developed microscope for 4D live cell imaging with high resolution and minimum photo-damage. We built a LLSM with an improved version for the optical layout with two path-stretching mirror sets and a novel reconfigurable galvanometer scanner (RGS) module to improve the reproducibility and reliability of the alignment and maintenance of the LLSM. We commissioned this LLSM to study Legionella pneumophila infection with a tailored workflow designed over instrumentation, experiments, and data processing methods. Our results indicate that Legionella pneumophila infection is correlated with a series of morphological signatures such as smoothness, migration pattern and polarity both statistically and dynamically. Our work demonstrates the benefits of using LLSM for studying long-term questions in bacterial infection. Our free-for-use modifications and workflow designs on the use of LLSM system contributes to the adoption and promotion of the state-of-the-art LLSM technology for both academic and commercial applications.
Collapse
Affiliation(s)
- Xiyu Yi
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Haichao Miao
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jacky Kai-Yin Lo
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Maher M Elsheikh
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Tek-Hyung Lee
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Chenfanfu Jiang
- Department of Mathematics, University of California, Los Angeles, CA, 90095, USA
| | - Yuliang Zhang
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Brent W Segelke
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - K Wesley Overton
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Peer-Timo Bremer
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Ted A Laurence
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|
11
|
Hochstrasser R, Michaelis S, Brülisauer S, Sura T, Fan M, Maaß S, Becher D, Hilbi H. Migration of Acanthamoeba through Legionella biofilms is regulated by the bacterial Lqs-LvbR network, effector proteins and the flagellum. Environ Microbiol 2022; 24:3672-3692. [PMID: 35415862 PMCID: PMC9544456 DOI: 10.1111/1462-2920.16008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
The environmental bacterium Legionella pneumophila causes the pneumonia Legionnaires' disease. The opportunistic pathogen forms biofilms and employs the Icm/Dot type IV secretion system (T4SS) to replicate in amoebae and macrophages. A regulatory network comprising the Legionella quorum sensing (Lqs) system and the transcription factor LvbR controls bacterial motility, virulence and biofilm architecture. Here we show by comparative proteomics that in biofilms formed by the L. pneumophila ΔlqsR or ΔlvbR regulatory mutants the abundance of proteins encoded by a genomic ‘fitness island’, metabolic enzymes, effector proteins and flagellar components (e.g. FlaA) varies. ∆lqsR or ∆flaA mutants form ‘patchy’ biofilms like the parental strain JR32, while ∆lvbR forms a ‘mat‐like’ biofilm. Acanthamoeba castellanii amoebae migrated more slowly through biofilms of L. pneumophila lacking lqsR, lvbR, flaA, a functional Icm/Dot T4SS (∆icmT), or secreted effector proteins. Clusters of bacteria decorated amoebae in JR32, ∆lvbR or ∆icmT biofilms but not in ∆lqsR or ∆flaA biofilms. The amoeba‐adherent bacteria induced promoters implicated in motility (PflaA) or virulence (PsidC, PralF). Taken together, the Lqs‐LvbR network (quorum sensing), FlaA (motility) and the Icm/Dot T4SS (virulence) regulate migration of A. castellanii through L. pneumophila biofilms, and – apart from the T4SS – govern bacterial cluster formation on the amoebae.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Sabrina Brülisauer
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Thomas Sura
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489, Greifswald, Germany
| | - Mingzhen Fan
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489, Greifswald, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| |
Collapse
|
12
|
The Legionella Lqs-LvbR Regulatory Network Controls Temperature-Dependent Growth Onset and Bacterial Cell Density. Appl Environ Microbiol 2022; 88:e0237021. [PMID: 34985976 DOI: 10.1128/aem.02370-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella species are facultative intracellular pathogens that cause a life-threatening pneumonia termed Legionnaires' disease. Legionella pneumophila employs the Lqs-LvbR (Legionella quorum sensing-Legionella virulence and biofilm regulator) network to regulate virulence and motility, but its role for growth in media is ill-defined. Here, we report that compared to the L. pneumophila reference strain JR32, a ΔlqsR mutant showed a reduced lag phase at 30°C and reached a higher cell density at 45°C, while the ΔlqsA, ΔlqsS, and ΔlqsT mutants showed a longer lag phase and reached a lower cell density. A ΔlvbR mutant resumed growth like the parental strain at 30°C but exhibited a substantially reduced cell density at 45°C. Thus, LvbR is an important cell density regulator at elevated temperatures. Environmental and clinical L. pneumophila strains grew in N-(2-acetamido)-2-aminoethanesulfonic acid (ACES)-buffered yeast extract (AYE) medium after distinct lag phases with similar rates at 30°C, reached different cell densities at the optimal growth temperature of 40°C, and no longer grew at 50°C. Legionella longbeachae reached a rather low cell density at 40°C and did not grow at and beyond 45°C. Genes encoding components of the Lqs-LvbR network were present in the genomes of the environmental and clinical L. pneumophila isolates, and upon growth at 30°C or 45°C, the PlqsR, PlqsA, PlqsS, and PlvbR promoters from strain JR32 were expressed in these strains with distinct patterns. Taken together, our results indicate that the Lqs-LvbR network governs the temperature-dependent growth onset and cell density of the L. pneumophila reference strain JR32 and possibly also of environmental and clinical L. pneumophila isolates. IMPORTANCE Environmental bacteria of the genus Legionella are the causative agents of the severe pneumonia Legionnaires' disease, the incidence of which is on the rise worldwide. Legionella pneumophila and Legionella longbeachae are the clinically most relevant species. The opportunistic pathogens are inhaled through contaminated aerosols and replicate in human lung macrophages with a mechanism similar to that in their natural hosts, free-living amoebae. Given their prevalence in natural and technical water systems, an efficient control of Legionella spp. by physical, chemical, or biological means will reduce the incidence of Legionnaires' disease. Here, we show that the Legionella quorum sensing (Lqs) system and the pleiotropic transcription factor LvbR govern the temperature-dependent growth onset and cell density of bacterial cultures. Hence, the growth of L. pneumophila in water systems is determined not only by the temperature and nutrient availability but also by quorum sensing, i.e., density- and signaling molecule-dependent gene regulation.
Collapse
|
13
|
Striednig B, Hilbi H. Bacterial quorum sensing and phenotypic heterogeneity: how the collective shapes the individual. Trends Microbiol 2021; 30:379-389. [PMID: 34598862 DOI: 10.1016/j.tim.2021.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023]
Abstract
Bacteria communicate with each other through a plethora of small, diffusible organic molecules called autoinducers. This cell-density-dependent regulatory principle is termed quorum sensing, and in many cases the process indeed coordinates group behavior of bacterial populations. Yet, even clonal bacterial populations are not uniform entities; rather, they adopt phenotypic heterogeneity to cope with consecutive, rapid, and frequent environmental fluctuations (bet-hedging) or to concurrently interact with each other by exerting different, often complementary, functions (division of labor). Quorum sensing is mainly regarded as a coordinator of bacterial collective behavior. However, it can also be a driver or a target of individual phenotypic heterogeneity. Hence, quorum sensing increases the overall fitness of a bacterial community by orchestrating group behavior as well as individual traits.
Collapse
Affiliation(s)
- Bianca Striednig
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland.
| |
Collapse
|
14
|
Striednig B, Lanner U, Niggli S, Katic A, Vormittag S, Brülisauer S, Hochstrasser R, Kaech A, Welin A, Flieger A, Ziegler U, Schmidt A, Hilbi H, Personnic N. Quorum sensing governs a transmissive Legionella subpopulation at the pathogen vacuole periphery. EMBO Rep 2021; 22:e52972. [PMID: 34314090 PMCID: PMC8419707 DOI: 10.15252/embr.202152972] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023] Open
Abstract
The Gram‐negative bacterium Legionella pneumophila is the causative agent of Legionnaires' disease and replicates in amoebae and macrophages within a distinct compartment, the Legionella‐containing vacuole (LCV). The facultative intracellular pathogen switches between a replicative, non‐virulent and a non‐replicating, virulent/transmissive phase. Here, we show on a single‐cell level that at late stages of infection, individual motile (PflaA‐GFP‐positive) and virulent (PralF‐ and PsidC‐GFP‐positive) L. pneumophila emerge in the cluster of non‐growing bacteria within an LCV. Comparative proteomics of PflaA‐GFP‐positive and PflaA‐GFP‐negative L. pneumophila subpopulations reveals distinct proteomes with flagellar proteins or cell division proteins being preferentially produced by the former or the latter, respectively. Toward the end of an infection cycle (˜ 48 h), the PflaA‐GFP‐positive L. pneumophila subpopulation emerges at the cluster periphery, predominantly escapes the LCV, and spreads from the bursting host cell. These processes are mediated by the Legionella quorum sensing (Lqs) system. Thus, quorum sensing regulates the emergence of a subpopulation of transmissive L. pneumophila at the LCV periphery, and phenotypic heterogeneity underlies the intravacuolar bi‐phasic life cycle of L. pneumophila.
Collapse
Affiliation(s)
- Bianca Striednig
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Ulrike Lanner
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Selina Niggli
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Ana Katic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Simone Vormittag
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Sabrina Brülisauer
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Ramon Hochstrasser
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zürich, Zürich, Switzerland
| | - Amanda Welin
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zürich, Zürich, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Herran B, Grève P, Berjeaud JM, Bertaux J, Crépin A. Legionella spp. All Ears? The Broad Occurrence of Quorum Sensing Elements outside Legionella pneumophila. Genome Biol Evol 2021; 13:6143035. [PMID: 33599258 PMCID: PMC8023197 DOI: 10.1093/gbe/evab032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/26/2022] Open
Abstract
Legionella spp. are ubiquitous bacteria principally found in water networks and ∼20 species are implicated in Legionnaire’s disease. Among them, Legionella pneumophila is an intracellular pathogen of environmental protozoa, responsible for ∼90% of cases in the world. Legionella pneumophila regulates in part its virulence by a quorum sensing system named “Legionella quorum sensing,” composed of a signal synthase LqsA, two histidine kinase membrane receptors LqsS and LqsT and a cytoplasmic receptor LqsR. To date, this communication system was only found in L. pneumophila. Here, we investigated 58 Legionella genomes to determine the presence of a lqs cluster or homologous receptors using TBlastN. This analysis revealed three categories of species: 19 harbored a complete lqs cluster, 20 did not possess lqsA but maintained the receptor lqsR and/or lqsS, and 19 did not have any of the lqs genes. No correlation was observed between pathogenicity and the presence of a quorum sensing system. We determined by RT-qPCR that the lqsA gene was expressed at least in four strains among different species available in our laboratory. Furthermore, we showed that the lqs genomic region was conserved even in species possessing only the receptors of the quorum sensing system, indicating an ancestral acquisition and various loss dynamics during evolution. This system could therefore function in interspecific communication as well.
Collapse
Affiliation(s)
- Benjamin Herran
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France
| | - Pierre Grève
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France
| | - Joanne Bertaux
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France
| | - Alexandre Crépin
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France
| |
Collapse
|
16
|
Personnic N, Striednig B, Hilbi H. Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms. ISME JOURNAL 2020; 15:196-210. [PMID: 32951019 DOI: 10.1038/s41396-020-00774-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
The water-borne bacterium Legionella pneumophila is the causative agent of Legionnaires' disease. In the environment, the opportunistic pathogen colonizes different niches, including free-living protozoa and biofilms. The physiological state(s) of sessile Legionella in biofilms and their functional consequences are not well understood. Using single-cell techniques and fluorescent growth rate probes as well as promoter reporters, we show here that sessile L. pneumophila exhibits phenotypic heterogeneity and adopts growing and nongrowing ("dormant") states in biofilms and microcolonies. Phenotypic heterogeneity is controlled by the Legionella quorum sensing (Lqs) system, the transcription factor LvbR, and the temperature. The Lqs system and LvbR determine the ratio between growing and nongrowing sessile subpopulations, as well as the frequency of growth resumption ("resuscitation") and microcolony formation of individual bacteria. Nongrowing L. pneumophila cells are metabolically active, express virulence genes and show tolerance toward antibiotics. Therefore, these sessile nongrowers are persisters. Taken together, the Lqs system, LvbR and the temperature control the phenotypic heterogeneity of sessile L. pneumophila, and these factors regulate the formation of a distinct subpopulation of nongrowing, antibiotic tolerant, virulent persisters. Hence, the biofilm niche of L. pneumophila has a profound impact on the ecology and virulence of this opportunistic pathogen.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| | - Bianca Striednig
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| |
Collapse
|
17
|
Hochstrasser R, Hutter CAJ, Arnold FM, Bärlocher K, Seeger MA, Hilbi H. The structure of the
Legionella
response regulator LqsR reveals amino acids critical for phosphorylation and dimerization. Mol Microbiol 2020; 113:1070-1084. [DOI: 10.1111/mmi.14477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | | | - Fabian M. Arnold
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | - Kevin Bärlocher
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | - Markus A. Seeger
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| |
Collapse
|
18
|
Hochstrasser R, Hilbi H. Legionella quorum sensing meets cyclic-di-GMP signaling. Curr Opin Microbiol 2020; 55:9-16. [PMID: 32045871 DOI: 10.1016/j.mib.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022]
Abstract
Bacterial gene regulation occurs through complex networks, wherein linear systems respond to intracellular or extracellular cues and engage on vivid crosstalk. The ubiquitous water-borne bacterium Legionella pneumophila colonizes various distinct environmental niches ranging from biofilms to protozoa, and - as an 'accidental' pathogen - the human lung. Consequently, L. pneumophila gene regulation evolved to integrate a broad spectrum of different endogenous and exogenous signals. Endogenous signals produced and detected by L. pneumophila comprise the quorum sensing autoinducer LAI-1 (3-hydroxypentadecane-4-one) and c-di-GMP. As an exogenous cue, nitric oxide controls the c-di-GMP regulatory network of L. pneumophila. The Legionella quorum sensing (Lqs) system regulates virulence, motility and natural competence of L. pneumophila. The Lqs system is linked to c-di-GMP signaling through the pleiotropic transcription factor LvbR, which also regulates the architecture of L. pneumophila biofilms. In this review, we highlight recent insights into the crosstalk of Legionella quorum sensing and c-di-GMP signaling.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland.
| |
Collapse
|
19
|
Personnic N, Striednig B, Lezan E, Manske C, Welin A, Schmidt A, Hilbi H. Quorum sensing modulates the formation of virulent Legionella persisters within infected cells. Nat Commun 2019; 10:5216. [PMID: 31740681 PMCID: PMC6861284 DOI: 10.1038/s41467-019-13021-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
The facultative intracellular bacterium Legionella pneumophila replicates in environmental amoebae and in lung macrophages, and causes Legionnaires' disease. Here we show that L. pneumophila reversibly forms replicating and nonreplicating subpopulations of similar size within amoebae. The nonreplicating bacteria are viable and metabolically active, display increased antibiotic tolerance and a distinct proteome, and show high virulence as well as the capacity to form a degradation-resistant compartment. Upon infection of naïve or interferon-γ-activated macrophages, the nonreplicating subpopulation comprises ca. 10% or 50%, respectively, of the total intracellular bacteria; hence, the nonreplicating subpopulation is of similar size in amoebae and activated macrophages. The numbers of nonreplicating bacteria within amoebae are reduced in the absence of the autoinducer synthase LqsA or other components of the Lqs quorum-sensing system. Our results indicate that virulent, antibiotic-tolerant subpopulations of L. pneumophila are formed during infection of evolutionarily distant phagocytes, in a process controlled by the Lqs system.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| | - Bianca Striednig
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Emmanuelle Lezan
- Proteomics Core Facility, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Christian Manske
- Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | - Amanda Welin
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Hubert Hilbi
- Institute for Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| |
Collapse
|
20
|
Fu H, Elena RC, Marquez PH. The roles of small RNAs: insights from bacterial quorum sensing. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0027-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Ribonucleic acids (RNAs) mainly played auxiliary roles in regulations of genetic processes while recent explorations into small non-coding RNAs (sRNAs) in bacteria have broadened the scope of RNAs studies in these processes. sRNAs have been demonstrated to be involved in various genetic processes and to regulate a variety of bacterial physiologies. Comparatively, quorum sensing (QS) is a mature bacterial cell signaling system which regulates bacteria physiologies as well. Prokaryotic sRNAs studies in the status quo have revealed an emerging picture of trans-kingdom signaling regulation and increasing investigations have demonstrated the feasibility of inter-kingdom signaling as the consequence of QS. We therefore review such phenomena and their similarities to investigate the potential of prokaryote-sourced interkingdom signaling and regulation.
Collapse
|
21
|
Abstract
The amoeba-resistant bacterium Legionella pneumophila infects humans through aerosols and thereby can cause a life-threatening pneumonia termed Legionnaires' disease. In the environment L. pneumophila forms and colonizes biofilms, which usually comprise complex multispecies communities. In these biofilms L. pneumophila persists and replicates intracellularly in protozoa, such as the amoeba Acanthamoeba castellanii. The interactions between sessile L. pneumophila in biofilms and their natural protozoan hosts are not understood on a molecular level. Here, we describe a method to visualize by confocal microscopy the formation and architecture of mono-species L. pneumophila biofilms. Furthermore, we describe and quantify the migration or "grazing" of A. castellanii in the biofilm. This allows investigating on a molecular and cellular level L. pneumophila biofilm formation and Legionella-amoeba interactions within biofilms.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
22
|
Hochstrasser R, Kessler A, Sahr T, Simon S, Schell U, Gomez-Valero L, Buchrieser C, Hilbi H. The pleiotropic Legionella transcription factor LvbR links the Lqs and c-di-GMP regulatory networks to control biofilm architecture and virulence. Environ Microbiol 2019; 21:1035-1053. [PMID: 30623561 DOI: 10.1111/1462-2920.14523] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/05/2019] [Indexed: 11/29/2022]
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, colonizes amoebae and biofilms in the environment. The opportunistic pathogen employs the Lqs (Legionella quorum sensing) system and the signalling molecule LAI-1 (Legionella autoinducer-1) to regulate virulence, motility, natural competence and expression of a 133 kb genomic "fitness island", including a putative novel regulator. Here, we show that the regulator termed LvbR is an LqsS-regulated transcription factor that binds to the promoter of lpg1056/hnox1 (encoding an inhibitor of the diguanylate cyclase Lpg1057), and thus, regulates proteins involved in c-di-GMP metabolism. LvbR determines biofilm architecture, since L. pneumophila lacking lvbR accumulates less sessile biomass and forms homogeneous mat-like structures, while the parental strain develops more compact bacterial aggregates. Comparative transcriptomics of sessile and planktonic ΔlvbR or ΔlqsR mutant strains revealed concerted (virulence, fitness island, metabolism) and reciprocally (motility) regulated genes in biofilm and broth respectively. Moreover, ΔlvbR is hyper-competent for DNA uptake, defective for phagocyte infection, outcompeted by the parental strain in amoebae co-infections and impaired for cell migration inhibition. Taken together, our results indicate that L. pneumophila LvbR is a novel pleiotropic transcription factor, which links the Lqs and c-di-GMP regulatory networks to control biofilm architecture and pathogen-host cell interactions.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology, Faculty of Medicine, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Aline Kessler
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians University, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | - Tobias Sahr
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 28 Rue du Dr Roux, 75724 Paris, France.,CNRS UMR 3525, 28 Rue du Dr Roux, 75724 Paris, France
| | - Sylvia Simon
- Institute of Medical Microbiology, Faculty of Medicine, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Ursula Schell
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians University, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | - Laura Gomez-Valero
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 28 Rue du Dr Roux, 75724 Paris, France.,CNRS UMR 3525, 28 Rue du Dr Roux, 75724 Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 28 Rue du Dr Roux, 75724 Paris, France.,CNRS UMR 3525, 28 Rue du Dr Roux, 75724 Paris, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, Faculty of Medicine, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| |
Collapse
|
23
|
Legionella feeleii: pneumonia or Pontiac fever? Bacterial virulence traits and host immune response. Med Microbiol Immunol 2018; 208:25-32. [PMID: 30386929 DOI: 10.1007/s00430-018-0571-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/27/2018] [Indexed: 12/19/2022]
Abstract
Gram-negative bacterium Legionella is able to proliferate intracellularly in mammalian host cells and amoeba, which became known in 1976 since they caused a large outbreak of pneumonia. It had been reported that different strains of Legionella pneumophila, Legionella micdadei, Legionella longbeachae, and Legionella feeleii caused human respiratory diseases, which were known as Pontiac fever or Legionnaires' disease. However, the differences of the virulence traits among the strains of the single species and the pathogenesis of the two diseases that were due to the bacterial virulence factors had not been well elucidated. L. feeleii is an important pathogenic organism in Legionellae, which attracted attention due to cause an outbreak of Pontiac fever in 1981 in Canada. In published researches, it has been found that L. feeleii serogroup 2 (ATCC 35849, LfLD) possess mono-polar flagellum, and L. feeleii serogroup 1 (ATCC 35072, WRLf) could secrete some exopolysaccharide (EPS) materials to the surrounding. Although the virulence of the L. feeleii strain was evidenced that could be promoted, the EPS might be dispensable for the bacteria that caused Pontiac fever. Based on the current knowledge, we focused on bacterial infection in human and murine host cells, intracellular growth, cytopathogenicity, stimulatory capacity of cytokines secretion, and pathogenic effects of the EPS of L. feeleii in this review.
Collapse
|
24
|
Sun S, Noorian P, McDougald D. Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Front Microbiol 2018; 9:1017. [PMID: 29867902 PMCID: PMC5967200 DOI: 10.3389/fmicb.2018.01017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most opportunistic pathogens transit in the environment between hosts and the environment plays a significant role in the evolution of protective traits. The coincidental evolution hypothesis suggests that virulence factors arose as a response to other selective pressures rather for virulence per se. This idea is strongly supported by the elucidation of bacterial-protozoal interactions. In response to protozoan predation, bacteria have evolved various defensive mechanisms which may also function as virulence factors. In this review, we summarize the dual role of factors involved in both grazing resistance and human pathogenesis, and compare the traits using model intracellular and extracellular pathogens. Intracellular pathogens rely on active invasion, blocking of the phagosome and lysosome fusion and resistance to phagocytic digestion to successfully invade host cells. In contrast, extracellular pathogens utilize toxin secretion and biofilm formation to avoid internalization by phagocytes. The complexity and diversity of bacterial virulence factors whose evolution is driven by protozoan predation, highlights the importance of protozoa in evolution of opportunistic pathogens.
Collapse
Affiliation(s)
- Shuyang Sun
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane McDougald
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
25
|
Swart AL, Harrison CF, Eichinger L, Steinert M, Hilbi H. Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection. Front Cell Infect Microbiol 2018; 8:61. [PMID: 29552544 PMCID: PMC5840211 DOI: 10.3389/fcimb.2018.00061] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of "effector" proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors.
Collapse
Affiliation(s)
- A Leoni Swart
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Christopher F Harrison
- Max von Pettenkofer Institute, Medical Faculty, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Michael Steinert
- Department of Life Sciences, Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Abstract
Many bacteria, both environmental and pathogenic, exhibit the property of autoaggregation. In autoaggregation (sometimes also called autoagglutination or flocculation), bacteria of the same type form multicellular clumps that eventually settle at the bottom of culture tubes. Autoaggregation is generally mediated by self-recognising surface structures, such as proteins and exopolysaccharides, which we term collectively as autoagglutinins. Although a widespread phenomenon, in most cases the function of autoaggregation is poorly understood, though there is evidence to show that aggregating bacteria are protected from environmental stresses or host responses. Autoaggregation is also often among the first steps in forming biofilms. Here, we review the current knowledge on autoaggregation, the role of autoaggregation in biofilm formation and pathogenesis, and molecular mechanisms leading to aggregation using specific examples.
Collapse
Affiliation(s)
- Thomas Trunk
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hawzeen S Khalil
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|