1
|
Fujiki J, Nakamura T, Kreimeyer H, Llorente C, Fouts DE, Schnabl B. Insertion sequence-mediated phage resistance contributes to attenuated colonization of cytolytic Enterococcus faecalis variants in the gut. Microbiol Spectr 2025:e0330324. [PMID: 40231830 DOI: 10.1128/spectrum.03303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Specific elimination of cytolytic Enterococcus faecalis from the intestinal microbiota by bacteriophages (phages) attenuates ethanol-induced liver disease in pre-clinical studies; however, other clinical phage therapy studies have reported the occurrence of phage-resistant variants. Here, we assessed phage resistance using a cytolytic E. faecalis clinical isolate, EF01. After infecting EF01 with ΦEf2.1 (Myoviridae) or ΦEf2.2 (Podoviridae), four host variants (R-EF01ΦEf2.1-A and R-EF01ΦEf2.1-B from infection with ΦEf2.1, and R-EF01ΦEf2.2-A and R-EF01ΦEf2.2-B from infection with ΦEf2.2) were isolated. Although isolate R-EF01ΦEf2.2 exhibited resistance to both phages, isolate R-EF01ΦEf2.1 demonstrated partial resistance only to ΦEf2.1. Whole-genome sequencing of these four isolates revealed an insertion sequence, IS256, -mediated disruption of xylA in R-EF01ΦEf2.1-A and R-EF01ΦEf2.1-B. In addition, a non-synonymous mutation in epaR, essential for the complete Enterococcus polysaccharide antigen (Epa), was identified in the R-EF01ΦEf2.2-A isolate. Furthermore, R-EF01ΦEf2.2 isolates exhibited IS256-associated chromosomal deletions and lacked galE, a gene involved in Epa biosynthesis. After gavaging mice with EF01 WT, R-EF01ΦEf2.1-A, R-EF01ΦEf2.2-A, and R-EF01ΦEf2.2-B isolates, colonization of R-EF01ΦEf2.2 isolates was significantly attenuated. R-EF01ΦEf2.2 isolates exhibited less resistance to the bile salt sodium deoxycholate and showed reduced adherence to intestinal cell monolayers, suggesting that phage-resistant variants with alterations in bacterial surface molecules, potentially including those involved in Epa biosynthesis, reduced pathogen fitness by attenuating gut colonization. In summary, IS256 is involved in phage resistance of a cytolytic E. faecalis clinical isolate, and certain phage resistance mechanisms could contribute to favorable clinical outcomes by promoting the swift elimination of phage-resistant variants in the treatment of alcohol-associated hepatitis. IMPORTANCE Phage therapy is a promising approach for precise editing of the gut microbiota. Notably, the specific elimination of cytolytic E. faecalis from the intestinal microbiota by phages attenuates ethanol-induced liver disease in pre-clinical studies. Despite the great promise of phage therapy, the occurrence of phage-resistant variants represents a concern for the successful development of phage-based therapies. In this context, we assessed phage resistance using a cytolytic E. faecalis clinical isolate. Isolated phage-resistant variants acquired mutations or deletions of Epa biosynthesis-related genes and exhibited attenuated colonization in the gut. These phage-resistant variants showed less resistance to bile salts and reduced adherence to intestinal cell monolayers. These results suggest that even if phage-resistant variants arise during phage therapy, certain mechanisms of phage resistance may contribute to the rapid elimination of phage-resistant variants promoting favorable clinical outcomes in the treatment of alcohol-associated hepatitis.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Tomohiro Nakamura
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
- Laboratory of Small Animal Surgery, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Derrick E Fouts
- Department of Human Genomic Medicine, J. Craig Venter Institute, Rockville, Maryland, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
2
|
Coleman HJ, Yang Q, Robert A, Padgette H, Funke HH, Catalano CE, Randolph TW. Formulation of three tailed bacteriophages by spray-drying and atomic layer deposition for thermal stability and controlled release. J Pharm Sci 2024; 113:3238-3245. [PMID: 39173744 DOI: 10.1016/j.xphs.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Deep infection is the second most common complication of arthroplasty following loosening of the implant. Antibiotic-loaded bone cements (ALBCs) and high concentrations of systemic broad-spectrum antibiotics are commonly used to prevent infections following injury and surgery. However, clinical data fails to show that ALBCs are effective against deep infection, and negative side effects can result following prolonged administration of antibiotics. Additionally, the rise of multidrug resistant (MDR) bacteria provides an urgent need for alternatives to broad-spectrum antibiotics. Phage therapy, or the use of bacteriophages (viruses that infect bacteria) to target pathogenic bacteria, might offer a safe alternative to combat MDR bacteria. Application of phage therapy in the setting of deep infections requires formulation strategies that would stabilize bacteriophage against chemical and thermal stress during bone-cement polymerization, that maintain bacteriophage activity for weeks or months at physiological temperatures, and that allow for sustained release of phage to combat slow-growing, persistent bacteria. Here, we demonstrate the formulation of three phages that target diverse bacterial pathogens, which includes spray-drying of the particles for enhanced thermal stability at 37 °C and above. Additionally, we use atomic layer deposition (ALD) to coat spray-dried powders with alumina to allow for delayed release of phage from the dry formulations, and potentially protect phage against chemical damage during bone cement polymerization. Together, these findings present a strategy to formulate phages that possess thermal stability and sustained release properties for use in deep infections.
Collapse
Affiliation(s)
- Holly J Coleman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80303, USA
| | - Qin Yang
- Department of Pharmaceutical Chemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amanda Robert
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80303, USA
| | - Hannah Padgette
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80303, USA
| | - Hans H Funke
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80303, USA
| | - Carlos E Catalano
- Department of Pharmaceutical Chemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80303, USA.
| |
Collapse
|
3
|
Khazani Asforooshani M, Elikaei A, Abed S, Shafiei M, Barzi SM, Solgi H, Badmasti F, Sohrabi A. A novel Enterococcus faecium phage EF-M80: unveiling the effects of hydrogel-encapsulated phage on wound infection healing. Front Microbiol 2024; 15:1416971. [PMID: 39006751 PMCID: PMC11239553 DOI: 10.3389/fmicb.2024.1416971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Background Enterococcus faecium is one of the members of ESKAPE pathogens. Due to its resistance to antimicrobial agents, treating this bacterium has become challenging. The development of innovative approaches to combat antibiotic resistance is necessary. Phage therapy has emerged as a promising method for curing antibiotic-resistant bacteria. Methods In this study, E. faecium phages were isolated from wastewater. Phage properties were characterized through in vitro assays (e.g. morphological studies, and physicochemical properties). In addition, whole genome sequencing was performed. A hydrogel-based encapsulated phage was obtained and its structure characteristics were evaluated. Wound healing activity of the hydrogel-based phage was assessed in a wound mice model. Results The purified phage showed remarkable properties including broad host range, tolerance to high temperature and pH and biofilm degradation feature as a stable and reliable therapeutic agent. Whole genome sequencing revealed that the genome of the EF-M80 phage had a length of 40,434 bp and harbored 65 open reading frames (ORFs) with a GC content of 34.9% (GenBank accession number is OR767211). Hydrogel-based encapsulated phage represented an optimized structure. Phage-loaded hydrogel-treated mice showed that the counting of neutrophils, fibroblasts, blood vessels, hair follicles and percentage of collagen growth were in favor of the wound healing process in the mice model. Conclusion These findings collectively suggest the promising capability of this phage-based therapeutic strategy for the treatment of infections associated with the antibiotic-resistant E. faecium. In the near future, we hope to expect the presence of bacteriophages in the list of antibacterial compounds used in the clinical settings.
Collapse
Affiliation(s)
- Mahshid Khazani Asforooshani
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Aria Sohrabi
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Fujiki J, Schnabl B. Phage therapy: Targeting intestinal bacterial microbiota for the treatment of liver diseases. JHEP Rep 2023; 5:100909. [PMID: 37965159 PMCID: PMC10641246 DOI: 10.1016/j.jhepr.2023.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 11/16/2023] Open
Abstract
Phage therapy has been overshadowed by antibiotics for decades. However, it is being revisited as a powerful approach against antimicrobial-resistant bacteria. As bacterial microbiota have been mechanistically linked to gastrointestinal and liver diseases, precise editing of the gut microbiota via the selective bactericidal action of phages has prompted renewed interest in phage therapy. In this review, we summarise the basic virological properties of phages and the latest findings on the composition of the intestinal phageome and the changes associated with liver diseases. We also review preclinical and clinical studies assessing phage therapy for the treatment of gastrointestinal and liver diseases, as well as future prospects and challenges.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
5
|
Fujiki J, Nakamura K, Nakamura T, Iwano H. Fitness Trade-Offs between Phage and Antibiotic Sensitivity in Phage-Resistant Variants: Molecular Action and Insights into Clinical Applications for Phage Therapy. Int J Mol Sci 2023; 24:15628. [PMID: 37958612 PMCID: PMC10650657 DOI: 10.3390/ijms242115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In recent decades, phage therapy has been overshadowed by the widespread use of antibiotics in Western countries. However, it has been revitalized as a powerful approach due to the increasing prevalence of antimicrobial-resistant bacteria. Although bacterial resistance to phages has been reported in clinical cases, recent studies on the fitness trade-offs between phage and antibiotic resistance have revealed new avenues in the field of phage therapy. This strategy aims to restore the antibiotic susceptibility of antimicrobial-resistant bacteria, even if phage-resistant variants develop. Here, we summarize the basic virological properties of phages and their applications within the context of antimicrobial resistance. In addition, we review the occurrence of phage resistance in clinical cases, and examine fitness trade-offs between phage and antibiotic sensitivity, exploring the potential of an evolutionary fitness cost as a countermeasure against phage resistance in therapy. Finally, we discuss future strategies and directions for phage-based therapy from the aspect of fitness trade-offs. This approach is expected to provide robust options when combined with antibiotics in this era of phage 're'-discovery.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keisuke Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Tomohiro Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Phage Therapy Institute, Waseda University, Tokyo 169-8050, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
- Department of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Phage Therapy Institute, Waseda University, Tokyo 169-8050, Japan
| |
Collapse
|
6
|
Rodríguez-Lucas C, Ladero V. Enterococcal Phages: Food and Health Applications. Antibiotics (Basel) 2023; 12:antibiotics12050842. [PMID: 37237745 DOI: 10.3390/antibiotics12050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Enterococcus is a diverse genus of Gram-positive bacteria belonging to the lactic acid bacteria (LAB) group. It is found in many environments, including the human gut and fermented foods. This microbial genus is at a crossroad between its beneficial effects and the concerns regarding its safety. It plays an important role in the production of fermented foods, and some strains have even been proposed as probiotics. However, they have been identified as responsible for the accumulation of toxic compounds-biogenic amines-in foods, and over the last 20 years, they have emerged as important hospital-acquired pathogens through the acquisition of antimicrobial resistance (AMR). In food, there is a need for targeted measures to prevent their growth without disturbing other LAB members that participate in the fermentation process. Furthermore, the increase in AMR has resulted in the need for the development of new therapeutic options to treat AMR enterococcal infections. Bacteriophages have re-emerged in recent years as a precision tool for the control of bacterial populations, including the treatment of AMR microorganism infections, being a promising weapon as new antimicrobials. In this review, we focus on the problems caused by Enterococcus faecium and Enterococcus faecalis in food and health and on the recent advances in the discovery and applications of enterococcus-infecting bacteriophages against these bacteria, with special attention paid to applications against AMR enterococci.
Collapse
Affiliation(s)
- Carlos Rodríguez-Lucas
- Microbiology Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Translational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA CSIC, 33300 Villaviciosa, Spain
- Molecular Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
7
|
Shen J, Zhang J, Mo L, Li Y, Li Y, Li C, Kuang X, Tao Z, Qu Z, Wu L, Chen J, Liu S, Zeng L, He Z, Chen Z, Deng Y, Zhang T, Li B, Dai L, Ma Y. Large-scale phage cultivation for commensal human gut bacteria. Cell Host Microbe 2023; 31:665-677.e7. [PMID: 37054680 DOI: 10.1016/j.chom.2023.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 04/15/2023]
Abstract
Phages are highly abundant in the human gut, yet most of them remain uncultured. Here, we present a gut phage isolate collection (GPIC) containing 209 phages for 42 commensal human gut bacterial species. Genome analysis of the phages identified 34 undescribed genera. We discovered 22 phages from the Salasmaviridae family that have small genomes (∼10-20 kbp) and infect Gram-positive bacteria. Two phages from a candidate family, Paboviridae, with high prevalence in the human gut were also identified. Infection assays showed that Bacteroides and Parabacteroides phages are specific to a bacterial species, and strains of the same species also exhibit substantial variations in phage susceptibility. A cocktail of 8 phages with a broad host range for Bacteroides fragilis strains effectively reduced their abundance in complex host-derived communities in vitro. Our study expands the diversity of cultured human gut bacterial phages and provides a valuable resource for human microbiome engineering.
Collapse
Affiliation(s)
- Juntao Shen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jieqiong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Luofei Mo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanchen Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yake Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cun Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoxian Kuang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zining Tao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zepeng Qu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lu Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junyu Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shiying Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Linfang Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zexi He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zuohong Chen
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingfei Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
9
|
Xu HM, Xu WM, Zhang L. Current Status of Phage Therapy against Infectious Diseases and Potential Application beyond Infectious Diseases. Int J Clin Pract 2022; 2022:4913146. [PMID: 36263241 PMCID: PMC9550513 DOI: 10.1155/2022/4913146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal microbiota plays a key role in regulating the pathogenesis of human disease and maintaining health. Many diseases, mainly induced by bacteria, are on the rise due to the emergence of antibiotic-resistant strains. Intestinal microorganisms include organisms such as bacteria, viruses, and fungi. They play an important role in maintaining human health. Among these microorganisms, phages are the main members of intestinal viromes. In particular, the viral fraction, composed essentially of phages, affects homeostasis by exerting selective pressure on bacterial communities living in the intestinal tract. In recent years, with the widespread use and even abuse of antibacterial drugs, more and more drug-resistant bacteria have been found, and they show a trend of high drug resistance and multidrug resistance. Therefore, it has also become increasingly difficult to treat serious bacterial infections. Phages, a natural antibacterial agent with strong specificity and rapid proliferation, have come back to the field of vision of clinicians and scholars. In this study, the current state of research on intestinal phages was discussed, with an exploration of the impact of phage therapy against infectious diseases, as well as potential application beyond infectious diseases.
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Wen-Min Xu
- Department of Endoscopy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510091, China
| | - Long Zhang
- Department of Endoscopy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510091, China
| |
Collapse
|
10
|
Krause AL, Stinear TP, Monk IR. Barriers to genetic manipulation of Enterococci: Current Approaches and Future Directions. FEMS Microbiol Rev 2022; 46:6650352. [PMID: 35883217 PMCID: PMC9779914 DOI: 10.1093/femsre/fuac036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are Gram-positive commensal gut bacteria that can also cause fatal infections. To study clinically relevant multi-drug resistant E. faecalis and E. faecium strains, methods are needed to overcome physical (thick cell wall) and enzymatic barriers that limit the transfer of foreign DNA and thus prevent facile genetic manipulation. Enzymatic barriers to DNA uptake identified in E. faecalis and E. faecium include type I, II and IV restriction modification systems and CRISPR-Cas. This review examines E. faecalis and E. faecium DNA defence systems and the methods with potential to overcome these barriers. DNA defence system bypass will allow the application of innovative genetic techniques to expedite molecular-level understanding of these important, but somewhat neglected, pathogens.
Collapse
Affiliation(s)
- Alexandra L Krause
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Ian R Monk
- Corresponding author: Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia. E-mail:
| |
Collapse
|
11
|
Liu J, Zhu Y, Li Y, Lu Y, Xiong K, Zhong Q, Wang J. Bacteriophage-Resistant Mutant of Enterococcus faecalis Is Impaired in Biofilm Formation. Front Microbiol 2022; 13:913023. [PMID: 35756031 PMCID: PMC9218719 DOI: 10.3389/fmicb.2022.913023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterococcus faecalis is a common gram-positive non-spore-forming bacterium in nature and is found in the upper respiratory tract, intestine, and mouth of healthy people. E. faecalis is also one of the common pathogens causing nosocomial infections and is resistant to several antibiotics commonly used in practice. Thus, treating drug-resistant E. faecalis with antibiotics is challenging, and new approaches are needed. In this study, we isolated a bacteriophage named EFap02 that targets E. faecalis strain EFa02 from sewage at Southwest Hospital. Phage EFap02 belongs to the Siphoviridae family with a long tail of approximately 210 nm, and EFap02 can tolerate a strong acid and alkali environment and high temperature. Its receptor was identified as the capsular polysaccharide. Phage-resistant mutants had loss-of-function mutations in glycosyltransferase (gtr2), which is responsible for capsular polysaccharide biosynthesis, and this caused the loss of capsular polysaccharide and interruption of phage adsorption. Although phage-resistant mutants against EFap02 can be selected, such mutants are impaired in biofilm formation due to the loss of capsular polysaccharide, which compromises its virulence. Therefore, this study provided a detailed description of the E. faecalis EFap02 phage with the potential for treating E. faecalis infection.
Collapse
Affiliation(s)
- Jiazhen Liu
- Department of Clinical Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yanpeng Zhu
- Department of Microbiology, Army Medical University, Chongqing, China.,Department of Oral and Maxillofacial Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yang Li
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuwen Lu
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Kun Xiong
- Department of Frigidzone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Clinical Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Römling U. The power of unbiased phenotypic screens - cellulose as a first receptor for the Schitoviridae phage S6 of Erwinia amylovora. Environ Microbiol 2022; 24:3316-3321. [PMID: 35415924 PMCID: PMC9544554 DOI: 10.1111/1462-2920.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/30/2022]
Abstract
Bacteriophages, host‐dependent replicative non‐cellular entities which significantly shape the microbial genomes and consequently physiological and ecological properties of the microbial populations are exploited to restrict plant, animal and human pathogens. Unravelling of phage characteristics aids the understanding of the basic molecular mechanisms of phage infections which can subsequently lead to the development of rationalized strategies to combat microbial pathogens. In an unbiased screen to investigate the molecular basis of infectivity of the fire blight pathogen Erwinia amylovora by the lytic Schitoviridae phage S6, the biofilm extracellular matrix component cellulose has been identified as a cyclic di‐GMP dependent first receptor required for infection with the phage to possess beta‐1,4‐glucosidases to degrade the exopolysaccharide. This absolute receptor dependency allows maintenance of a phage‐microbe equilibrium with a low bacterial density.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Nepal R, Houtak G, Shaghayegh G, Bouras G, Shearwin K, Psaltis AJ, Wormald PJ, Vreugde S. Prophages encoding human immune evasion cluster genes are enriched in Staphylococcus aureus isolated from chronic rhinosinusitis patients with nasal polyps. Microb Genom 2021; 7:000726. [PMID: 34907894 PMCID: PMC8767322 DOI: 10.1099/mgen.0.000726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Prophages affect bacterial fitness on multiple levels. These include bacterial infectivity, toxin secretion, virulence regulation, surface modification, immune stimulation and evasion and microbiome competition. Lysogenic conversion arms bacteria with novel accessory functions thereby increasing bacterial fitness, host adaptation and persistence, and antibiotic resistance. These properties allow the bacteria to occupy a niche long term and can contribute to chronic infections and inflammation such as chronic rhinosinusitis (CRS). In this study, we aimed to identify and characterize prophages present in Staphylococcus aureus from patients suffering from CRS in relation to CRS disease phenotype and severity. Prophage regions were identified using PHASTER. Various in silico tools like ResFinder and VF Analyzer were used to detect virulence genes and antibiotic resistance genes respectively. Progressive MAUVE and maximum likelihood were used for multiple sequence alignment and phylogenetics of prophages respectively. Disease severity of CRS patients was measured using computed tomography Lund-Mackay scores. Fifty-eight S. aureus clinical isolates (CIs) were obtained from 28 CRS patients without nasal polyp (CRSsNP) and 30 CRS patients with nasal polyp (CRSwNP). All CIs carried at least one prophage (average=3.6) and prophages contributed up to 7.7 % of the bacterial genome. Phage integrase genes were found in 55/58 (~95 %) S. aureus strains and 97/211 (~46 %) prophages. Prophages belonging to Sa3int integrase group (phiNM3, JS01, phiN315) (39/97, 40%) and Sa2int (phi2958PVL) (14/97, 14%) were the most prevalent prophages and harboured multiple virulence genes such as sak, scn, chp, lukE/D, sea. Intact prophages were more frequently identified in CRSwNP than in CRSsNP (P=0.0021). Intact prophages belonging to the Sa3int group were more frequent in CRSwNP than in CRSsNP (P=0.0008) and intact phiNM3 were exclusively found in CRSwNP patients (P=0.007). Our results expand the knowledge of prophages in S. aureus isolated from CRS patients and their possible role in disease development. These findings provide a platform for future investigations into potential tripartite associations between bacteria-prophage-human immune system, S. aureus evolution and CRS disease pathophysiology.
Collapse
Affiliation(s)
- Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Keith Shearwin
- School of Biological Sciences, Faculty of Sciences, The University of Adelaide, Adelaide, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Huss P, Meger A, Leander M, Nishikawa K, Raman S. Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning. eLife 2021; 10:e63775. [PMID: 33687327 PMCID: PMC8043750 DOI: 10.7554/elife.63775] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
The interaction between a bacteriophage and its host is mediated by the phage's receptor binding protein (RBP). Despite its fundamental role in governing phage activity and host range, molecular rules of RBP function remain a mystery. Here, we systematically dissect the functional role of every residue in the tip domain of T7 phage RBP (1660 variants) by developing a high-throughput, locus-specific, phage engineering method. This rich dataset allowed us to cross compare functional profiles across hosts to precisely identify regions of functional importance, many of which were previously unknown. Substitution patterns showed host-specific differences in position and physicochemical properties of mutations, revealing molecular adaptation to individual hosts. We discovered gain-of-function variants against resistant hosts and host-constricting variants that eliminated certain hosts. To demonstrate therapeutic utility, we engineered highly active T7 variants against a urinary tract pathogen. Our approach presents a generalized framework for characterizing sequence-function relationships in many phage-bacterial systems.
Collapse
Affiliation(s)
- Phil Huss
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
- Department of Bacteriology, University of Wisconsin-MadisonMadisonUnited States
| | - Anthony Meger
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Megan Leander
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Kyle Nishikawa
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
- Department of Bacteriology, University of Wisconsin-MadisonMadisonUnited States
- Department of Chemical and Biological Engineering, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|