1
|
Abdulrahim AO, Doddapaneni NSP, Salman N, Giridharan A, Thomas J, Sharma K, Abboud E, Rochill K, Shreelakshmi B, Gupta V, Lakkimsetti M, Mowo-Wale A, Ali N. The gut-heart axis: a review of gut microbiota, dysbiosis, and cardiovascular disease development. Ann Med Surg (Lond) 2025; 87:177-191. [PMID: 40109640 PMCID: PMC11918638 DOI: 10.1097/ms9.0000000000002789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/20/2024] [Indexed: 03/22/2025] Open
Abstract
Background Cardiovascular diseases (CVDs) are a major cause of morbidity and mortality worldwide and there are strong links existing between gut health and cardiovascular health. Gut microbial diversity determines gut health. Dysbiosis, described as altered gut microbiota, causes bacterial translocations and abnormal gut byproducts resulting in systemic inflammation. Objective To review the current literature on the relationships between gut microbiota, dysbiosis, and CVD development, and explore therapeutic methods to prevent dysbiosis and support cardiovascular health. Summary Dysbiosis increases levels of pro-inflammatory substances while reducing those of anti-inflammatory substances. This accumulative inflammatory effect negatively modulates the immune system and promotes vascular dysfunction and atherosclerosis. High Firmicutes to Bacteroidetes ratios, high trimethylamine-n-oxide to short-chain fatty acid ratios, high indole sulfate levels, low cardiac output, and polypharmacy are all associated with worse cardiovascular outcomes. Supplementation with prebiotics and probiotics potentially alleviates some CVD risk. Blood and stool samples may be used in clinical practice to quantify and qualify gut bacterial ratios and byproducts, assess patients' risk for adverse cardiovascular outcomes, and track their gut health progress. Further research is required to set population-based cutoffs for normal and abnormal gut microbiota and byproduct ratios.
Collapse
Affiliation(s)
| | | | - Nadhra Salman
- Department of Internal Medicine, Baqai Medical University, Karachi, Pakistan
| | | | | | - Kavya Sharma
- Maharishi Markandeshwar Medical College and Hospital, Himachal Pradesh, India
| | - Elias Abboud
- Faculty of Medicine, University of Saint Joseph, Beirut, Lebanon
| | | | - B Shreelakshmi
- Navodaya Medical College Hospital & Research Centre, Karnataka, India
| | | | | | | | - Noor Ali
- Dubai Medical College, Dubai, United Arab Emirates
| |
Collapse
|
2
|
Szallasi Z, Prosz A, Sztupinszki Z, Moldvay J. Are tumor-associated carbohydrates the missing link between the gut microbiome and response to immune checkpoint inhibitor treatment in cancer? Oncoimmunology 2024; 13:2324493. [PMID: 38445083 PMCID: PMC10913702 DOI: 10.1080/2162402x.2024.2324493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Immune checkpoint inhibitor therapy has dramatically improved survival in a significant subset of patients with several solid tumor types. Increasing the number of patients benefitting from this form of therapy is an important translational research goal. Correlations between the composition of the gut microbiome and response to immune checkpoint inhibitor therapy raised the possibility that direct modulation of the gut microbiome may significantly improve the clinical benefit of this treatment. Several lines of observations suggest that tumor-associated carbohydrates, including those recognized as blood group-related glycolipid antigens, such as the Forssman antigen, may be some of the key factors behind this clinical correlation. Such antigens are expressed in human cancer, humans often produce antibodies against those, and they can induce antibody directed cellular cytotoxicity. Importantly, these antibodies are often induced by antigens present in microbes of the gut. If identified, these antibodies could be boosted by appropriate vaccination techniques and thus enhance anti-tumor immunity with minimal side effects.
Collapse
Affiliation(s)
- Zoltan Szallasi
- Translational Cancer Genomics Group, Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA
| | - Aurel Prosz
- Translational Cancer Genomics Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Zsofia Sztupinszki
- Translational Cancer Genomics Group, Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA
| | - Judit Moldvay
- Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Pulmonology, University of Szeged Albert Szent-Gyorgyi Medical School, Szeged, Hungary
| |
Collapse
|
3
|
Vargas-Alarcón G, Pérez-Méndez O, Posadas-Sánchez R, González-Pacheco H, Arias-Mendoza A, Escobedo G, Juárez-Cedillo T, Arellano-González M, Manuel Fragoso J. ABO gene polymorphisms are associated with acute coronary syndrome and with plasma concentration of HDL-cholesterol and triglycerides. BIOMOLECULES & BIOMEDICINE 2023; 23:1125-1135. [PMID: 37334748 PMCID: PMC10655879 DOI: 10.17305/bb.2023.9244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
The role of ABO gene polymorphisms in acute coronary syndrome (ACS) and lipid metabolism is increasingly recognized. We investigated whether ABO gene polymorphisms are significantly associated with ACS and the plasma lipid profile. Six ABO gene polymorphisms (rs651007 T/C, rs579459 T/C, rs495928 T/C, rs8176746 T/G, rs8176740 A/T, and rs512770 T/C) were determined by 5'exonuclease TaqMan assays in 611 patients with ACS and 676 healthy controls. The results demonstrated that the rs8176746 T allele was associated with a lower risk of ACS under the co-dominant, dominant, recessive, over-dominant, and additive models (P = 0.0004, P = 0.0002, P = 0.039, P = 0.0009, and P = 0.0001, respectively). Furthermore, under co-dominant, dominant, and additive models, the rs8176740 A allele was associated with a lower risk of ACS (P = 0.041, P = 0.022, and P = 0.039, respectively). On the other hand, the rs579459 C allele was associated with a lower risk of ACS under the dominant, over-dominant, and additive models (P = 0.025, P = 0.035, and P = 0.037, respectively). In a subanalysis performed with the control group, rs8176746 T and rs8176740 A alleles were associated with low systolic blood pressure and with both high high-density lipoprotein-cholesterol (HDL-C) and low triglyceride plasma concentrations, respectively. In conclusion, ABO gene polymorphisms were associated with a lower risk of ACS, and lower systolic blood pressure and plasma lipid levels, suggesting a causal relationship between ABO blood groups and the incidence of ACS.
Collapse
Affiliation(s)
- Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Oscar Pérez-Méndez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | | | | | - Galileo Escobedo
- Unidad de Medicina Experimental, Hospital General de Mexico, Dr. Eduardo Liceaga, Mexico City, México
| | - Teresa Juárez-Cedillo
- Unidad de Investigación en Epidemiologia y Servicios de Salud-Área de Envejecimiento. Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social, Mexico City, México
| | - Marva Arellano-González
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - José Manuel Fragoso
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| |
Collapse
|
4
|
Abstract
Background: The presence of microbiome in the blood samples of healthy individuals has been addressed. However, no information can be found on the healthy human blood microbiome of Iranian subjects. The current study is thus aimed to investigate the existence of bacteria or bacterial DNA in healthy individuals. Methods: Blood samples of healthy subjects were incubated in BHI broth at 37 °C for 72 h. The 16S rRNA PCR and sequencing were performed to analyze bacterial isolates. The 16S rRNA PCR was directly carried out on DNA samples extracted from the blood of healthy individuals. NGS was conducted on blood samples with culture-positive results. Results: Fifty blood samples were tested, and six samples were positive by culture as confirmed by Gram staining and microscopy. The obtained 16S rRNA sequences of cultured bacterial isolates revealed the presence of Bacilli and Staphylococcus species by clustering in the GeneBank database (≥97% identity). The 16S rRNA gene sequencing results of one non-cultured blood specimen showed the presence of Burkholderia. NGS results illustrated the presence of Romboutsia, Lactobacillus, Streptococcus, Bacteroides, and Staphylococcus in the blood samples of positive cultures. Conclusion: The dormant blood microbiome of healthy individuals may give the idea that the steady transfer of bacteria into the blood does not necessarily lead to sepsis. However, the origins and identities of blood-associated bacterial rDNA sequences need more evaluation in the healthy population.
Collapse
|
5
|
Chen Y, Huang Y, Ding X, Yang Z, He L, Ning M, Yang Z, He D, Yang L, Liu Z, Chen Y, Li G. A Multi-Omics Study of Familial Lung Cancer: Microbiome and Host Gene Expression Patterns. Front Immunol 2022; 13:827953. [PMID: 35479075 PMCID: PMC9037597 DOI: 10.3389/fimmu.2022.827953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Inherited susceptibility and environmental carcinogens are crucial players in lung cancer etiology. The lung microbiome is getting rising attention in carcinogenesis. The present work sought to investigate the microbiome in lung cancer patients affected by familial lung cancer (FLC) and indoor air pollution (IAP); and further, to compare host gene expression patterns with their microbiome for potential links. Methods Tissue sample pairs (cancer and adjacent nonmalignant tissue) were used for 16S rRNA (microbiome) and RNA-seq (host gene expression). Subgroup microbiome diversities and their matched gene expression patterns were analyzed. Significantly enriched taxa were screened out, based on different clinicopathologic characteristics. Results Our FLC microbiome seemed to be smaller, low-diversity, and inactive to change; we noted microbiome differences in gender, age, blood type, anatomy site, histology type, TNM stage as well as IAP and smoking conditions. We also found smoking and IAP dramatically decreased specific-OTU biodiversity, especially in normal lung tissue. Intriguingly, enriched microbes were in three categories: opportunistic pathogens, probiotics, and pollutant-detoxication microbes; this third category involved Sphingomonas, Sphingopyxis, etc. which help degrade pollutants, but may also cause epithelial damage and chronic inflammation. RNA-seq highlighted IL17, Ras, MAPK, and Notch pathways, which are associated with carcinogenesis and compromised immune system. Conclusions The lung microbiome can play vital roles in carcinogenesis. FLC and IAP subjects were affected by fragile lung epithelium, vulnerable host-microbes equilibrium, and dysregulated immune surveillance and response. Our findings provided useful information to study the triple interplay among environmental carcinogens, population genetic background, and diversified lung microbiome.
Collapse
Affiliation(s)
- Ying Chen
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Xiaojie Ding
- The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Zhenlin Yang
- National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang He
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Mingjie Ning
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Zhenghong Yang
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Daqian He
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | | | | | - Yan Chen
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Guangjian Li
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| |
Collapse
|
6
|
Lopera-Maya EA, Kurilshikov A, van der Graaf A, Hu S, Andreu-Sánchez S, Chen L, Vila AV, Gacesa R, Sinha T, Collij V, Klaassen MAY, Bolte LA, Gois MFB, Neerincx PBT, Swertz MA, Harmsen HJM, Wijmenga C, Fu J, Weersma RK, Zhernakova A, Sanna S. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat Genet 2022; 54:143-151. [PMID: 35115690 DOI: 10.1038/s41588-021-00992-y] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Host genetics are known to influence the gut microbiome, yet their role remains poorly understood. To robustly characterize these effects, we performed a genome-wide association study of 207 taxa and 205 pathways representing microbial composition and function in 7,738 participants of the Dutch Microbiome Project. Two robust, study-wide significant (P < 1.89 × 10-10) signals near the LCT and ABO genes were found to be associated with multiple microbial taxa and pathways and were replicated in two independent cohorts. The LCT locus associations seemed modulated by lactose intake, whereas those at ABO could be explained by participant secretor status determined by their FUT2 genotype. Twenty-two other loci showed suggestive evidence (P < 5 × 10-8) of association with microbial taxa and pathways. At a more lenient threshold, the number of loci we identified strongly correlated with trait heritability, suggesting that much larger sample sizes are needed to elucidate the remaining effects of host genetics on the gut microbiome.
Collapse
Affiliation(s)
- Esteban A Lopera-Maya
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adriaan van der Graaf
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shixian Hu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lianmin Chen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Trishla Sinha
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Valerie Collij
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marjiolein A Y Klaassen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Laura A Bolte
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Milla F Brandao Gois
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pieter B T Neerincx
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
| | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Serena Sanna
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Cagliari, Italy.
| |
Collapse
|
7
|
Qin Y, Havulinna AS, Liu Y, Jousilahti P, Ritchie SC, Tokolyi A, Sanders JG, Valsta L, Brożyńska M, Zhu Q, Tripathi A, Vázquez-Baeza Y, Loomba R, Cheng S, Jain M, Niiranen T, Lahti L, Knight R, Salomaa V, Inouye M, Méric G. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet 2022; 54:134-142. [PMID: 35115689 PMCID: PMC9883041 DOI: 10.1038/s41588-021-00991-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/19/2021] [Indexed: 01/31/2023]
Abstract
Human genetic variation affects the gut microbiota through a complex combination of environmental and host factors. Here we characterize genetic variations associated with microbial abundances in a single large-scale population-based cohort of 5,959 genotyped individuals with matched gut microbial metagenomes, and dietary and health records (prevalent and follow-up). We identified 567 independent SNP-taxon associations. Variants at the LCT locus associated with Bifidobacterium and other taxa, but they differed according to dairy intake. Furthermore, levels of Faecalicatena lactaris associated with ABO, and suggested preferential utilization of secreted blood antigens as energy source in the gut. Enterococcus faecalis levels associated with variants in the MED13L locus, which has been linked to colorectal cancer. Mendelian randomization analysis indicated a potential causal effect of Morganella on major depressive disorder, consistent with observational incident disease analysis. Overall, we identify and characterize the intricate nature of host-microbiota interactions and their association with disease.
Collapse
Affiliation(s)
- Youwen Qin
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Yang Liu
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Alex Tokolyi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Cornell Institute for Host-Microbe Interaction and Disease, Cornell University, Ithaca, NY, USA
| | - Liisa Valsta
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Marta Brożyńska
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Qiyun Zhu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anupriya Tripathi
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohit Jain
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia.
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus & University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Sarkar A, Harty S, Moeller AH, Klein SL, Erdman SE, Friston KJ, Carmody RN. The gut microbiome as a biomarker of differential susceptibility to SARS-CoV-2. Trends Mol Med 2021; 27:1115-1134. [PMID: 34756546 PMCID: PMC8492747 DOI: 10.1016/j.molmed.2021.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to exact a devastating global toll. Ascertaining the factors underlying differential susceptibility and prognosis following viral exposure is critical to improving public health responses. We propose that gut microbes may contribute to variation in COVID-19 outcomes. We synthesise evidence for gut microbial contributions to immunity and inflammation, and associations with demographic factors affecting disease severity. We suggest mechanisms potentially underlying microbially mediated differential susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These include gut microbiome-mediated priming of host inflammatory responses and regulation of endocrine signalling, with consequences for the cellular features exploited by SARS-CoV-2 virions. We argue that considering gut microbiome-mediated mechanisms may offer a lens for appreciating differential susceptibility to SARS-CoV-2, potentially contributing to clinical and epidemiological approaches to understanding and managing COVID-19.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Siobhán Harty
- Tandy Court, Spitalfields, Dublin 8, D08 RP20, Ireland
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Yáñez F, Soler Z, Oliero M, Xie Z, Oyarzun I, Serrano-Gómez G, Manichanh C. Integrating Dietary Data into Microbiome Studies: A Step Forward for Nutri-Metaomics. Nutrients 2021; 13:2978. [PMID: 34578856 PMCID: PMC8468122 DOI: 10.3390/nu13092978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Diet is recognised as the main driver of changes in gut microbiota. However, linking habitual dietary intake to microbiome composition and activity remains a challenge, leaving most microbiome studies with little or no dietary information. To fill this knowledge gap, we conducted two consecutive studies (n = 84: a first pilot study (n = 40) to build a web-based, semi-quantitative simplified FFQ (sFFQ) based on three 24-h dietary recalls (24HRs); a second study (n = 44) served to validate the newly developed sFFQ using three 24HRs as reference method and to relate gut microbiome profiling (16S rRNA gene) with the extracted dietary and lifestyle data. Relative validation analysis provided acceptable classification and agreement for 13 out of 24 (54%) food groups and 20 out of 29 nutrients (69%) based on intraclass correlation coefficient, cross-classification, Spearman's correlation, Wilcoxon test, and Bland-Altman. Microbiome analysis showed that higher diversity was positively associated with age, vaginal birth, and intake of fruit. In contrast, microbial diversity was negatively associated with BMI, processed meats, ready-to-eat meals, sodium, and saturated fat. Our analysis also revealed a correlation between food groups or nutrients and microbial composition. Overall, we provide the first dietary assessment tool to be validated and correlated with microbiome data for population studies.
Collapse
Affiliation(s)
- Francisca Yáñez
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Zaida Soler
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Manon Oliero
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Iñigo Oyarzun
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Gerard Serrano-Gómez
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Gut Microbiome Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|