1
|
Sousa M, Magalhães R, Ferreira V, Teixeira P. Current methodologies available to evaluate the virulence potential among Listeria monocytogenes clonal complexes. Front Microbiol 2024; 15:1425437. [PMID: 39493856 PMCID: PMC11528214 DOI: 10.3389/fmicb.2024.1425437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans, the severity of which depends on multiple factors, including intrinsic characteristics of the affected individuals and the pathogen itself. Additionally, emerging evidence suggests that epigenetic modifications may also modulate host susceptibility to infection. Therefore, different clinical outcomes can be expected, ranging from self-limiting gastroenteritis to severe central nervous system and maternal-neonatal infections, and bacteremia. Furthermore, L. monocytogenes is a genetically and phenotypically diverse species, resulting in a large variation in virulence potential between strains. Multilocus sequence typing (MLST) has been widely used to categorize the clonal structure of bacterial species and to define clonal complexes (CCs) of genetically related isolates. The combination of MLST and epidemiological data allows to distinguish hypervirulent CCs, which are notably more prevalent in clinical cases and typically associated with severe forms of the disease. Conversely, other CCs, termed hypovirulent, are predominantly isolated from food and food processing environments and are associated with the occurrence of listeriosis in immunosuppressed individuals. Reports of genetic traits associated with this diversity have been described. The Food and Agriculture Organization (FAO) is encouraging the search for virulence biomarkers to rapidly identify the main strains of concern to reduce food waste and economical losses. The aim of this review is to comprehensively collect, describe and discuss the methodologies used to discriminate the virulence potential of L. monocytogenes CCs. From the exploration of in vitro and in vivo models to the study of expression of virulence genes, each approach is critically explored to better understand its applicability and efficiency in distinguishing the virulence potential of the pathogen.
Collapse
Affiliation(s)
| | | | | | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| |
Collapse
|
2
|
Haritan N, Bouman EA, Nandi I, Shtuhin-Rahav R, Zlotkin-Rivkin E, Danieli T, Melamed-Book N, Nir-Keren Y, Aroeti B. Topology and function of translocated EspZ. mBio 2023; 14:e0075223. [PMID: 37341483 PMCID: PMC10470495 DOI: 10.1128/mbio.00752-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023] Open
Abstract
EspZ and Tir are essential virulence effectors of enteropathogenic Escherichia coli (EPEC). EspZ, the second translocated effector, has been suggested to antagonize host cell death induced by the first translocated effector, Tir (translocated intimin receptor). Another characteristic of EspZ is its localization to host mitochondria. However, studies that explored the mitochondrial localization of EspZ have examined the ectopically expressed effector and not the more physiologically relevant translocated effector. Here, we confirmed the membrane topology of translocated EspZ at infection sites and the involvement of Tir in confining its localization to these sites. Unlike the ectopically expressed EspZ, the translocated EspZ did not colocalize with mitochondrial markers. Moreover, no correlation has been found between the capacity of ectopically expressed EspZ to target mitochondria and the ability of translocated EspZ to protect against cell death. Translocated EspZ may have to some extent diminished F-actin pedestal formation induced by Tir but has a marked effect on protecting against host cell death and on promoting host colonization by the bacteria. Taken together, our results suggest that EspZ plays an essential role in facilitating bacterial colonization, likely by antagonizing cell death mediated by Tir at the onset of bacterial infection. This activity of EspZ, which occurs by targeting host membrane components at infection sites, and not mitochondria, may contribute to successful bacterial colonization of the infected intestine. IMPORTANCE EPEC is an important human pathogen that causes acute infantile diarrhea. EspZ is an essential virulence effector protein translocated from the bacterium into the host cells. Detailed knowledge of its mechanisms of action is, therefore, critical for better understanding the EPEC disease. We show that Tir, the first translocated effector, confines the localization of EspZ, the second translocated effector, to infection sites. This activity is important for antagonizing the pro-cell death activity conferred by Tir. Moreover, we show that translocated EspZ leads to effective bacterial colonization of the host. Hence, our data suggest that translocated EspZ is essential because it confers host cell survival to allow bacterial colonization at an early stage of bacterial infection. It performs these activities by targeting host membrane components at infection sites. Identifying these targets is critical for elucidating the molecular mechanism underlying the EspZ activity and the EPEC disease.
Collapse
Affiliation(s)
- Nir Haritan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raisa Shtuhin-Rahav
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Melamed-Book
- Bioimaging Unit, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Harishankar A, Viswanathan VK. Attaching and effacing pathogens modulate host mitochondrial structure and function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 377:65-86. [PMID: 37268351 PMCID: PMC11321239 DOI: 10.1016/bs.ircmb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are human enteric pathogens that contribute significantly to morbidity and mortality worldwide. These extracellular pathogens attach intimately to intestinal epithelial cells and cause signature lesions by effacing the brush border microvilli, a property they share with other "attaching and effacing" (A/E) bacteria, including the murine pathogen Citrobacter rodentium. A/E pathogens use a specialized apparatus called a type III secretion system (T3SS) to deliver specific proteins directly into the host cytosol and modify host cell behavior. The T3SS is essential for colonization and pathogenesis, and mutants lacking this apparatus fail to cause disease. Thus, deciphering effector-induced host cell modifications is critical for understanding A/E bacterial pathogenesis. Several of the ∼20-45 effector proteins delivered into the host cell modify disparate mitochondrial properties, some via direct interactions with the mitochondria and/or mitochondrial proteins. In vitro studies have uncovered the mechanistic basis for the actions of some of these effectors, including their mitochondrial targeting, interaction partners, and consequent impacts on mitochondrial morphology, oxidative phosphorylation and ROS production, disruption of membrane potential, and intrinsic apoptosis. In vivo studies, mostly relying on the C. rodentium/mouse model, have been used to validate a subset of the in vitro observations; additionally, animal studies reveal broad changes to intestinal physiology that are likely accompanied by mitochondrial alterations, but the mechanistic underpinnings remain undefined. This chapter provides an overview of A/E pathogen-induced host alterations and pathogenesis, specifically focusing on mitochondria-targeted effects.
Collapse
Affiliation(s)
- Anusha Harishankar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States; The BIO5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States; Department of Immunobiology, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
4
|
Vogt SL, Serapio-Palacios A, Woodward SE, Santos AS, de Vries SP, Daigneault MC, Brandmeier LV, Grant AJ, Maskell DJ, Allen-Vercoe E, Finlay BB. Enterohemorrhagic Escherichia coli responds to gut microbiota metabolites by altering metabolism and activating stress responses. Gut Microbes 2023; 15:2190303. [PMID: 36951510 PMCID: PMC10038027 DOI: 10.1080/19490976.2023.2190303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major cause of severe bloody diarrhea, with potentially lethal complications, such as hemolytic uremic syndrome. In humans, EHEC colonizes the colon, which is also home to a diverse community of trillions of microbes known as the gut microbiota. Although these microbes and the metabolites that they produce represent an important component of EHEC's ecological niche, little is known about how EHEC senses and responds to the presence of gut microbiota metabolites. In this study, we used a combined RNA-Seq and Tn-Seq approach to characterize EHEC's response to metabolites from an in vitro culture of 33 human gut microbiota isolates (MET-1), previously demonstrated to effectively resolve recurrent Clostridioides difficile infection in human patients. Collectively, the results revealed that EHEC adjusts to growth in the presence of microbiota metabolites in two major ways: by altering its metabolism and by activating stress responses. Metabolic adaptations to the presence of microbiota metabolites included increased expression of systems for maintaining redox balance and decreased expression of biotin biosynthesis genes, reflecting the high levels of biotin released by the microbiota into the culture medium. In addition, numerous genes related to envelope and oxidative stress responses (including cpxP, spy, soxS, yhcN, and bhsA) were upregulated during EHEC growth in a medium containing microbiota metabolites. Together, these results provide insight into the molecular mechanisms by which pathogens adapt to the presence of competing microbes in the host environment, which ultimately may enable the development of therapies to enhance colonization resistance and prevent infection.
Collapse
Affiliation(s)
- Stefanie L. Vogt
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sarah E. Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew S. Santos
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan P.W. de Vries
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Michelle C. Daigneault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lisa V. Brandmeier
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J. Maskell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Ramachandran RP, Nandi I, Haritan N, Zlotkin-Rivkin E, Keren Y, Danieli T, Lebendiker M, Melamed-Book N, Breuer W, Reichmann D, Aroeti B. EspH interacts with the host active Bcr related (ABR) protein to suppress RhoGTPases. Gut Microbes 2022; 14:2130657. [PMID: 36219160 PMCID: PMC9559323 DOI: 10.1080/19490976.2022.2130657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enteropathogenic Escherichia coli are bacterial pathogens that colonize the gut and cause severe diarrhea in humans. Upon intimate attachment to the intestinal epithelium, these pathogens translocate via a type III secretion system virulent proteins, termed effectors, into the host cells. These effectors manipulate diverse host cell organelles and functions for the pathogen's benefit. However, the precise mechanisms underlying their activities are not fully understood despite intensive research. EspH, a critical effector protein, has been previously reported to disrupt the host cell actin cytoskeleton by suppressing RhoGTPase guanine exchange factors. However, native host proteins targeted by EspH to mediate these activities remained unknown. Here, we identified the active Bcr related (ABR), a protein previously characterized to possess dual Rho guanine nucleotide exchange factor and GTPase activating protein (GAP) domains, as a native EspH interacting partner. These interactions are mediated by the effector protein's C-terminal 38 amino acid segment. The effector primarily targets the GAP domain of ABR to suppress Rac1 and Cdc42, host cell cytotoxicity, bacterial invasion, and filopodium formation at infection sites. Knockdown of ABR expression abolished the ability of EspH to suppress Rac1, Cdc42. Our studies unravel a novel mechanism by which host RhoGTPases are hijacked by bacterial effectors.
Collapse
Affiliation(s)
- Rachana Pattani Ramachandran
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ipsita Nandi
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Haritan
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mario Lebendiker
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Melamed-Book
- Bioimaging Unit, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - William Breuer
- Proteomics and Mass Spectrometry Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Reichmann
- Proteomics and Mass Spectrometry Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel,CONTACT Benjamin Aroeti Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| |
Collapse
|