1
|
Flores C, Rohn JL. Bacterial adhesion strategies and countermeasures in urinary tract infection. Nat Microbiol 2025; 10:627-645. [PMID: 39929975 DOI: 10.1038/s41564-025-01926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/07/2025] [Indexed: 03/06/2025]
Abstract
Urinary tract infections (UTIs) are compounded by antimicrobial resistance, which increases the risk of UTI recurrence and antibiotic treatment failure. This also intensifies the burden of disease upon healthcare systems worldwide, and of morbidity and mortality. Uropathogen adhesion is a critical step in the pathogenic process, as has been mainly shown for Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus agalactiae, Proteus, Enterococcus and Staphylococcus species. Although many bacterial adhesion molecules from these uropathogens have been described, our understanding of their contributions to UTIs is limited. Here we explore knowledge gaps in the UTI field, as we discuss the broader repertoire of uropathogen adhesins, including their role beyond initial attachment and the counter-responses of the host immune system. Finally, we describe the development of therapeutic approaches that target uropathogenic adhesion strategies and provide potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Carlos Flores
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Jennifer L Rohn
- Centre for Urological Biology, Division of Medicine, University College London, London, UK.
| |
Collapse
|
2
|
El Husseini N, Carter JA, Lee VT. Urinary tract infections and catheter-associated urinary tract infections caused by Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2024; 88:e0006622. [PMID: 39431861 DOI: 10.1128/mmbr.00066-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
SUMMARYUrinary tract infection (UTI) is one of the most common infections in otherwise healthy individuals. UTI is also common in healthcare settings where patients often require urinary catheters to alleviate urinary retention. The placement of a urinary catheter often leads to catheter-associated urinary tract infection (CAUTI) caused by a broad range of opportunistic pathogens, commonly referred to as ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter) pathogens. Our understanding of CAUTI is complicated by the differences in pathogens, in initial microbial load, changes that occur due to the duration of catheterization, and the relationship between infection (colonization) and disease symptoms. To advance our understanding of CAUTI, we reviewed UTI and CAUTI caused by Pseudomonas aeruginosa which is unique in that it is not commonly found associated with human microbiomes. For this reason, the ability of P. aeruginosa to cause UTI and CAUTI requires the introduction of the bacteria to the bladder from catheterization. Once in the host, the virulence factors used by P. aeruginosa in these infections remain an area of ongoing research. In this review, we will discuss studies that focus on P. aeruginosa UTI and CAUTI to better understand the infection dynamics and outcome in clinical settings, virulence factors associated with P. aeruginosa isolated from the urinary tract, and animal studies to test which bacterial factors are required for this infection. Understanding how P. aeruginosa can cause UTI and CAUTI can provide an understanding of how these infections initiate and progress and may provide possible strategies to limit these infections.
Collapse
Affiliation(s)
- Nour El Husseini
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Jared A Carter
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
3
|
Mercado-Evans V, Chew C, Serchejian C, Saltzman A, Mejia ME, Zulk JJ, Cornax I, Nizet V, Patras KA. Tamm-Horsfall protein augments neutrophil NETosis during urinary tract infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578501. [PMID: 38370726 PMCID: PMC10871275 DOI: 10.1101/2024.02.01.578501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Urinary neutrophils are a hallmark of urinary tract infection (UTI), yet the mechanisms governing their activation, function, and efficacy in controlling infection remain incompletely understood. Tamm-Horsfall glycoprotein (THP), the most abundant protein in urine, uses terminal sialic acids to bind an inhibitory receptor and dampen neutrophil inflammatory responses. We hypothesized that neutrophil modulation is an integral part of THP-mediated host protection. In a UTI model, THP-deficient mice showed elevated urinary tract bacterial burdens, increased neutrophil recruitment, and more severe tissue histopathological changes compared to WT mice. Furthermore, THP-deficient mice displayed impaired urinary NETosis during UTI. To investigate the impact of THP on NETosis, we coupled in vitro fluorescence-based NET assays, proteomic analyses, and standard and imaging flow cytometry with peripheral human neutrophils. We found that THP increases proteins involved in respiratory chain, neutrophil granules, and chromatin remodeling pathways, enhances NETosis in an ROS-dependent manner, and drives NET-associated morphologic features including nuclear decondensation. These effects were observed only in the presence of a NETosis stimulus and could not be solely replicated with equivalent levels of sialic acid alone. We conclude that THP is a critical regulator of NETosis in the urinary tract, playing a key role in host defense against UTI.
Collapse
Affiliation(s)
- Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Claude Chew
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston, Texas, USA
| | - Camille Serchejian
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Marlyd E. Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ingrid Cornax
- Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, UC San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Li L, Li Y, Yang J, Xie X, Chen H. The immune responses to different Uropathogens call individual interventions for bladder infection. Front Immunol 2022; 13:953354. [PMID: 36081496 PMCID: PMC9445553 DOI: 10.3389/fimmu.2022.953354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogens is the most common infectious disease and significantly affects all aspects of the quality of life of the patients. However, uropathogens are increasingly becoming antibiotic-resistant, which threatens the only effective treatment option available-antibiotic, resulting in higher medical costs, prolonged hospital stays, and increased mortality. Currently, people are turning their attention to the immune responses, hoping to find effective immunotherapeutic interventions which can be alternatives to the overuse of antibiotic drugs. Bladder infections are caused by the main nine uropathogens and the bladder executes different immune responses depending on the type of uropathogens. It is essential to understand the immune responses to diverse uropathogens in bladder infection for guiding the design and development of immunotherapeutic interventions. This review firstly sorts out and comparatively analyzes the immune responses to the main nine uropathogens in bladder infection, and summarizes their similarities and differences. Based on these immune responses, we innovatively propose that different microbial bladder infections should adopt corresponding immunomodulatory interventions, and the same immunomodulatory intervention can also be applied to diverse microbial infections if they share the same effective therapeutic targets.
Collapse
Affiliation(s)
- Linlong Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yangyang Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- *Correspondence: Xiang Xie, ; Huan Chen,
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- *Correspondence: Xiang Xie, ; Huan Chen,
| |
Collapse
|
5
|
Bobrov AG, Getnet D, Swierczewski B, Jacobs A, Medina-Rojas M, Tyner S, Watters C, Antonic V. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS 2021; 130:436-457. [PMID: 34132418 DOI: 10.1111/apm.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
Modern combat-related injuries are often associated with acute polytrauma. As a consequence of severe combat-related injuries, a dysregulated immune response results in serious infectious complications. The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that often causes life-threatening bloodstream, lung, bone, urinary tract, and wound infections following combat-related injuries. The rise in the number of multidrug-resistant P. aeruginosa strains has elevated its importance to civilian clinicians and military medicine. Development of novel therapeutics and treatment options for P. aeruginosa infections is urgently needed. During the process of drug discovery and therapeutic testing, in vivo testing in animal models is a critical step in the bench-to-bedside approach, and required for Food and Drug Administration approval. Here, we review current and past literature with a focus on combat injury-relevant animal models often used to understand infection development, the interplay between P. aeruginosa and the host, and evaluation of novel treatments. Specifically, this review focuses on the following animal infection models: wound, burn, bone, lung, urinary tract, foreign body, and sepsis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brett Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anna Jacobs
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Maria Medina-Rojas
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stuart Tyner
- US Army Medical Research and Development Command Military Infectious Diseases Research Program, Frederick, Maryland, USA
| | - Chase Watters
- Naval Medical Research Unit-3, Ghana Detachment, Accra, Ghana
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Exploring the Therapeutic Efficacy of Zingerone Nanoparticles in Treating Biofilm-Associated Pyelonephritis Caused by Pseudomonas aeruginosa in the Murine Model. Inflammation 2020; 43:2344-2356. [DOI: 10.1007/s10753-020-01304-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Tamm-Horsfall Protein Protects the Urinary Tract against Candida albicans. Infect Immun 2018; 86:IAI.00451-18. [PMID: 30297523 DOI: 10.1128/iai.00451-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
Urinary tract infections (UTIs) caused by the human fungal pathogen Candida albicans and related species are prevalent in hospitalized patients, especially those on antibiotic therapy, with indwelling catheters, or with predisposing conditions such as diabetes or immunodeficiency. Understanding of key host defenses against Candida UTI is critical for developing effective treatment strategies. Tamm-Horsfall glycoprotein (THP) is the most abundant urine protein, with multiple roles in renal physiology and bladder protection. THP protects against bacterial UTI by blocking bacterial adherence to the bladder epithelium, but its role in defense against fungal pathogens is not yet described. Here we demonstrate that THP restricts colonization of the urinary tract by C. albicans THP binds to C. albicans hyphae, but not the yeast form, in a manner dependent on fungal expression of the Als3 adhesion glycoprotein. THP directly blocks C. albicans adherence to bladder epithelial cells in vitro, and THP-deficient mice display increased fungal burden in a C. albicans UTI model. This work outlines a previously unknown role for THP as an essential component for host immune defense against fungal urinary tract infection.
Collapse
|
8
|
Newman JW, Floyd RV, Fothergill JL. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol Lett 2017; 364:3866593. [DOI: 10.1093/femsle/fnx124] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
|
9
|
Vadekeetil A, Saini H, Chhibber S, Harjai K. Exploiting the antivirulence efficacy of an ajoene-ciprofloxacin combination against Pseudomonas aeruginosa biofilm associated murine acute pyelonephritis. BIOFOULING 2016; 32:371-382. [PMID: 26930141 DOI: 10.1080/08927014.2015.1137289] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The study investigated the in vitro, ex vivo and in vivo efficacy of ajoene and ciprofloxacin (CIP) alone and in combination against Pseudomonas aeruginosa biofilms and biofilm-associated murine acute pyelonephritis. The ajoene-CIP combination exhibited significant greater (p < 0.05) antimotility and biofilm inhibitory effects than those obtained when they were applied individually. The combined action of the agents resulted in a significant increase in serum sensitivity and phagocytic uptake and killing of P. aeruginosa (p < 0.001) compared to the untreated control. Mice groups treated with an ajoene (25 mg kg(-1)) and CIP (30 mg kg(-1) or 15 mg kg(-1)) combination showed a significantly (p < 0.001) reduced bacterial load in the kidney and bladder as compared to that of infected controls and mice treated with solo agents on the fifth day post-infection. The decreased levels of biomarkers and photomicrographs of the kidney tissue of the treated mice showed a reduced severity of damage. Hence, the study highlights the antivirulent and therapeutic efficacy of the ajoene-CIP combination at the minimal dosage of CIP.
Collapse
Affiliation(s)
- Anitha Vadekeetil
- a Department of Microbiology , Panjab University , Chandigarh , India
| | - Hina Saini
- a Department of Microbiology , Panjab University , Chandigarh , India
| | - Sanjay Chhibber
- a Department of Microbiology , Panjab University , Chandigarh , India
| | - Kusum Harjai
- a Department of Microbiology , Panjab University , Chandigarh , India
| |
Collapse
|
10
|
Saini H, Chhibber S, Harjai K. Azithromycin and ciprofloxacin: a possible synergistic combination against Pseudomonas aeruginosa biofilm-associated urinary tract infections. Int J Antimicrob Agents 2014; 45:359-67. [PMID: 25604277 DOI: 10.1016/j.ijantimicag.2014.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 11/18/2022]
Abstract
Biofilm formation is becoming a predominant feature in nosocomial infections. Since biofilms are increasingly resistant to antibiotics, making monotherapy ineffective, combination therapy appears to be relevant for their eradication. This study assessed the potential of azithromycin (AZM) and ciprofloxacin (CIP) alone and in combination in vitro and in a mouse model of urinary tract infection (UTI) induced with biofilm cells of Pseudomonas aeruginosa. In vitro antibacterial and antibiofilm activities of antibiotics alone and in combination were assessed using the fractional inhibitory concentration index (FICI), time-kill analysis and confocal laser scanning microscopy (CLSM). In vivo efficacy was evaluated in a UTI model by quantitation of bacterial burden in kidney and bladder tissue, renal histopathology, pathology index factors (MDA and NO), and pro-inflammatory (MIP-2 and IL-6) and anti-inflammatory (IL-10) cytokines. MICs of AZM and CIP for strain PAO1 were 256 and 0.5 μg/mL, respectively; MBECs were 4096 and 1024 μg/mL. Synergistic interaction was observed between AZM and CIP both against planktonic and biofilm bacteria (FICI<0.5). The combination was also able to inhibit biofilm formation (at MIC levels) as observed with CLSM. Oral therapy with AZM (500 mg/kg) and CIP (30 mg/kg) combination in mice for 4 days showed accelerated clearance of bacteria from kidney and bladder tissue, improved renal histopathology, decreased levels of MDA and NO, significant decline in MIP-2 and IL-6, and increased IL-10 in the kidney (P<0.0001). We conclude that AZM+CIP therapy holds promise against biofilm-associated UTIs as it confers antibacterial, immunomodulatory and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hina Saini
- Department of Microbiology, Basic Medical Sciences Block-I, South Campus, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences Block-I, South Campus, Panjab University, Chandigarh 160014, India
| | - Kusum Harjai
- Department of Microbiology, Basic Medical Sciences Block-I, South Campus, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
11
|
Pseudomonas quinolone signalling system: a component of quorum sensing cascade is a crucial player in the acute urinary tract infection caused by Pseudomonas aeruginosa. Int J Med Microbiol 2014; 304:1199-208. [PMID: 25240873 DOI: 10.1016/j.ijmm.2014.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which employs quorum sensing system to regulate several genes required for its survival and pathogenicity within the host. Besides acylhomoserine lactone (AHL) mediated las and rhl systems, this organism possesses Pseudomonas quinolone signalling (PQS) system based on alkyl quinolone signal molecules. The quinolone system represents another layer of sophistication in the complex quorum sensing cascade. Therefore, in the present study, we evaluated the contribution of the PQS system in the establishment of acute urinary tract infection (UTI) in the mouse model. For this, wild-type parent strain of P. aeruginosa MPAO1 and its isogenic single transposon mutant strains pqsH and pqsA were employed to induce UTI in mice. PQS molecules in the tissue homogenates of mice were detected by high performance thin layer chromatography (HP-TLC) method. Virulence of strains was assessed in terms of bacteriological count, histopathological lesions in the renal and bladder tissue and generation of pathological index markers like reactive nitrogen intermediates and malondialdehyde. HP-TLC analysis showed presence of PQS molecules in the renal and bladder tissue of mice infected with MPAO1 while no PQS was detected in case of pqsH and pqsA mutant strains. Results indicated that MPAO1 possessing fully functional PQS biosynthetic genes was highly virulent and caused acute pyelonephritis with severe inflammation and tissue destruction. On the contrary, significant reduction in the log count, mild tissue damage and declined levels of pathological markers were observed in mice infected with mutant strains as compared to MPAO1. Further among mutants, all these parameters were maximally impaired in the pqsA mutant in which synthesis of alkyl quinolones was completely abolished due to the transposon mutation in respective gene. Virulence of the pqsH mutant strain was lesser than that of the MPAO1 but higher than pqsA mutant. In addition, the levels of locally generated pro- and anti-inflammatory cytokines were also found to be low in the renal homogenates of mice infected with the mutant strains. Further, supplementation of strains with PQS resulted in significant enhancement in the virulence as indicated by increased bacterial load, severe histopathological damage and enhanced levels of pro-inflammatory cytokines. These findings provide a new insight into the relevant importance of the Pseudomonas quinolone signalling system in the acute UTI caused by P. aeruginosa. This system can be a potential target for futuristic anti-infective approach against this organism.
Collapse
|
12
|
Tong Y, Sun M, Wang C. Multidrug-resistant Pseudomonas aeruginosa: a case of pyelonephritis and herbal therapy. J Altern Complement Med 2014; 20:142-4. [PMID: 23869971 DOI: 10.1089/acm.2012.0864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa, which was only susceptible to colistin, was isolated from the urine of a patient with pyelonephritis. The isolates were confirmed as class A Extended-spectrum-β-lactamase-producing isolates. A blaBEL allele was detected by multiplex polymerase chain reaction. The organisms were identified as ST235, serotype O11. Chinese herbal decoction was orally administered. The patient returned 8 days later with relief of symptoms. No P. aeruginosa was isolated from two urine samples taken after 1 week and 2 weeks from the end of herbal therapy. The case supports the notion that these Chinese herbs are useful in treating pyelonephritis caused by multidrug-resistant P. aeruginosa. Chinese herbal medicine has allowed another choice of treatment.
Collapse
Affiliation(s)
- YanQing Tong
- Department of Nephrology, The First Affiliated Hospital to Changchun University of Chinese Medicine , Changchun City, Jilin Province, China
| | | | | |
Collapse
|
13
|
Evaluation of tumour necrosis factor-alpha and interleukin-1beta in an experimental pyelonephritis model induced with planktonic and biofilms cells of Pseudomonas aeruginosa. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2011; 20:e35-42. [PMID: 20808454 DOI: 10.1155/2009/810791] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urinary tract infections may induce severe inflammation, transient impairment in renal function and scar formation, ranging in severity from acute symptomatic pyelonephritis to chronic pyelonephritis, and have the potential to lead to renal failure and death. In the present study, the relationship between production of tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), neutrophil recruitment, bacterial colonization and tissue damage was investigated using a mouse model of acute ascending pyelonephritis induced with planktonic and biofilm cells of Pseudomonas aeruginosa. Neutrophil influx correlated with rise in TNF-alpha and IL-1beta, indicating an association between these cytokines and neutrophil infiltration. However, biofilm cells of P aeruginosa induced higher levels of TNF-alpha and IL-1beta leading to higher neutrophil infiltration causing tissue damage, assessed in terms of malondialdehyde, lactate dehydrogenase and glutathione content, which may have contributed to bacterial persistence compared with their planktonic counterparts. The results of the present investigation suggest that exaggerated cytokine production during P aeruginosa-induced pyelonephritis causes tissue damage operative through neutrophil recruitment leading to bacterial persistence in host tissues. The findings of the present study may be relevant for the better understanding of disease pathophysiology and for the future developments of preventive strategies against pyelonephritis based on anti-inflammatory intervention.
Collapse
|
14
|
Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Contribution of macrophage secretory products to urovirulence of Pseudomonas aeruginosa. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 57:156-64. [PMID: 19735298 DOI: 10.1111/j.1574-695x.2009.00591.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrophages form one of the first lines of defense on mucosal surfaces like urinary tract, providing protection against pathogens. These cells pour their secretory products, which include a cocktail of biomolecules, at the site of infection. In the present investigation, the effect of macrophage secretory products (MSPs) obtained after interaction of macrophages with Pseudomonas aeruginosa on the virulence of this organism in planktonic and biofilm cell mode was assessed employing a mouse model of ascending pyelonephritis. When urinary tract infection (UTI) was established with P. aeruginosa grown in the presence of 30% MSPs, the extent of pyelonephritis was enhanced. Of the two cell forms, biofilm cells had an edge over the planktonic cells with respect to in vivo virulence. The enhanced virulence of MSP-grown P. aeruginosa may be attributed to increased production of quorum-sensing systems as well as increased adherence to uroepithelial cells and evasion of phagocytosis. The results of the present study reveal that macrophages can play a key role during the course of UTI, not only through their phagocytic activity, but also through effects mediated by their secretory products. Utilization of MSPs by P. aeruginosa can have far-reaching consequences, including chronicity and recurrence of infections caused by this pathogen.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | | | | | | | | |
Collapse
|
15
|
Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health 2009; 2:101-11. [PMID: 20701869 DOI: 10.1016/j.jiph.2009.08.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are a serious health problem affecting millions of people each year. Infections of the urinary tract are the second most common type of infection in the body. Catheterization of the urinary tract is the most common factor, which predisposes the host to these infections. Catheter-associated UTI (CAUTI) is responsible for 40% of nosocomial infections, making it the most common cause of nosocomial infection. CAUTI accounts for more than 1 million cases in hospitals and nursing homes annually and often involve uropathogens other than Escherichia coli. While the epidemiology and pathogenic mechanisms of uropathogenic Escherichia coli have been extensively studied, little is known about the pathogenesis of UTIs caused by other organisms like Pseudomonas aeruginosa. Scanty available information regarding pathogenesis of UTIs caused by P. aeruginosa is an important bottleneck in developing effective preventive approaches. The aim of this review is to summarize some of the advances made in the field of P. aeruginosa induced UTIs and draws attention of the workers that more basic research at the level of pathogenesis is needed so that novel strategies can be designed.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | | | | | | | | |
Collapse
|
16
|
Quorum sensing is necessary for the virulence of Pseudomonas aeruginosa during urinary tract infection. Kidney Int 2009; 76:286-92. [PMID: 19494801 DOI: 10.1038/ki.2009.183] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quorum sensing is a signaling pathway used by bacteria to monitor their population density by detecting small diffusible molecules. To understand the role of quorum sensing in pathogenesis of urinary tract infections, wild type Pseudomonas aeruginosa, having both functional las and rhl quorum sensing systems, and its isogenic single and double mutants were used in a mouse model of ascending urinary tract infection. Mice were evaluated on the basis of bacteriological and histopathological examinations, detection of acyl homoserine lactone, and the pathologic index factors of renal and bladder tissue. Single as well as double mutant strains were able to reach renal tissue, but they were not able to multiply and cause tissue damage. Reduced rates of infection, mild histopathologic lesions, and decreased production of pathologic index factors like myeloperoxidase, malondialdehyde, and reactive nitrogen intermediates were found in these groups of mice as compared to mice infected with a standard strain (PAO1) possessing both functional sensing systems. Loss of any one of the quorum-sensing components significantly reduced the in vivo virulence of P. aeruginosa in this mouse model of ascending urinary tract infection. Our results suggests that quorum-sensing signals may act as virulence factors and are essential for P. aeruginosa multiplication and virulence during the course of urinary tract infection.
Collapse
|
17
|
Mittal R, Sharma S, Chhibber S, Harjai K. Contribution of free radicals to Pseudomonas aeruginosa induced acute pyelonephritis. Microb Pathog 2008; 45:323-30. [DOI: 10.1016/j.micpath.2008.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 07/04/2008] [Accepted: 08/06/2008] [Indexed: 01/30/2023]
|
18
|
Mittal R, Sharma S, Chhibber S, Harjai K. Iron dictates the virulence of Pseudomonas aeruginosa in urinary tract infections. J Biomed Sci 2008; 15:731-41. [DOI: 10.1007/s11373-008-9274-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Accepted: 07/25/2008] [Indexed: 11/21/2022] Open
|
19
|
Mittal R, Sharma S, Chhibber S, Harjai K. Alteration in virulence characteristics of biofilm cells of Pseudomonas aeruginosa in presence of Tamm-Horsfall protein. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9135-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Mittal R, Sharma S, Chhibber S, Harjai K. Effect of macrophage secretory products on elaboration of virulence factors by planktonic and biofilm cells of Pseudomonas aeruginosa. Comp Immunol Microbiol Infect Dis 2006; 29:12-26. [PMID: 16427697 DOI: 10.1016/j.cimid.2005.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2005] [Indexed: 11/21/2022]
Abstract
Macrophages, which constitute the first line of defense, pour their secretions in the mileu following stimulation with pathogens. These secretory products, referred to as macrophage secretory products (MSPs), can influence ultimate outcome of an infection. In the present investigation, it was observed that different strains of Pseudomonas aeruginosa vary in their ability to stimulate macrophages leading to variability in generation of macrophage secretory products. Cytokine levels, reactive nitrogen intermediates and protein content of macrophage secretory products generated with biofilm cells of P. aeruginosa was found to be more as compared to their planktonic counterparts. The effect of macrophage secretory products produced in response to interaction of macrophages with P. aeruginosa on elaboration of virulence factors produced by planktonic and biofilm cell forms of this pathogen was assessed. Significant enhancement in growth and elaboration of all the virulence determinants by both the cell forms was observed when P. aeruginosa was grown in presence of supernatants with macrophage secretory products. Implications of these findings in relation to urinary tract infections induced by P. aeruginosa have been discussed.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Microbiology, Panjab University, BAMS Block, Chandigarh 160014, India.
| | | | | | | |
Collapse
|