1
|
Nangpal P, Nagpal NL, Angrish N, Khare G. Model systems to study Mycobacterium tuberculosis infections: an overview of scientific potential and impediments. Front Cell Infect Microbiol 2025; 15:1572547. [PMID: 40406522 PMCID: PMC12095297 DOI: 10.3389/fcimb.2025.1572547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/04/2025] [Indexed: 05/26/2025] Open
Abstract
Despite years of global efforts to combat tuberculosis (TB), Mycobacterium tuberculosis (Mtb), the causative agent of this disease, continues to haunt the humankind making TB elimination a distant task. To comprehend the pathogenic nuances of this organism, various in vitro, ex vivo and in vivo experimental models have been employed by researchers. This review focuses on the salient features as well as pros and cons of various model systems employed for TB research. In vitro and ex vivo macrophage infection models have been extensively used for studying Mtb physiology. Animal models have provided us with great wealth of information and have immensely contributed to the understanding of TB pathogenesis and host responses during infection. Additionally, they have been used for evaluation of anti-mycobacterial drug therapy as well as for determining the efficacy of potential vaccine candidates. Advancements in various 'omics' based approaches have enhanced our understanding about the host-pathogen interface. Although animal models have been the cornerstone to TB research, none of them is ideal that gives us a complete picture of human infection, disease and progression. Further, the review also discusses about the newer systems including three dimensional (3D)-tissue models, lung-on-chip infection model, in vitro TB granuloma model and their limitations for studying TB. Thus, converging information gained from various in vitro and ex vivo models in tandem with in vivo experiments will ultimately bridge the gap that exists in understanding human TB.
Collapse
Affiliation(s)
| | | | | | - Garima Khare
- Department of Biochemistry, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Li P, Li Y, Wang CC, Xia LG. Comparative transcriptomics reveals common and strain-specific responses of human macrophages to infection with Mycobacterium tuberculosis and Mycobacterium bovis BCG. Microb Pathog 2024; 189:106593. [PMID: 38387847 DOI: 10.1016/j.micpath.2024.106593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Mycobacterium tuberculosis (MTB) and Mycobacterium bovis (M. bovis) are closely related pathogenic mycobacteria known to cause chronic pulmonary infections in both humans and animals. Despite sharing nearly identical genomes and virulence factors, these two bacteria display variations in host tropism, epidemiology, and clinical presentations. M. bovis Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis commonly utilized as a vaccine for tuberculosis (TB). Nevertheless, the molecular underpinnings of these distinctions and the intricacies of host-pathogen interactions remain areas of ongoing research. In this study, a comparative transcriptomic analysis was conducted on human leukemia macrophages (THP-1) infected with either MTB H37Rv or M. bovis BCG (Tokyo strain) to elucidate common and strain-specific responses at the transcriptional level. RNA sequencing was utilized to characterize the transcriptomes of human primary macrophages infected with MTB or BCG at 6 and 24 h post-infection. The findings indicate that both MTB and BCG induce substantial and dynamic alterations in the transcriptomes of THP-1, with a notable overlap in the quantity and extent of differentially expressed genes (DEGs). Moreover, gene ontology (GO) enrichment analysis unveiled shared pathways related to immune response, cytokine signaling, and apoptosis. The immune response of macrophages to bacterial infections at 6 h exhibited significantly greater intensity compared to that at 24 h. Furthermore, distinct gene sets displaying notable variances between MTB and BCG infections were identified. The profound impact of MTB infection on macrophage gene expression, particularly within the initial 6 h, was evident. Additionally, downregulation of pathways such as Focal adhesion, Rap1 signaling pathway, and Regulation of actin cytoskeleton was observed. The pathways associated with inflammation reactions and cell apoptosis exhibited significant differences, with BCG triggering macrophage apoptosis and MTB enhancing the survival of intracellular bacteria. Our findings reveal that MTB and BCG provoke similar yet distinct transcriptional responses in human macrophages, indicating variations in their pathogenesis and ability to adapt to host environments. These results offer novel insights into the molecular mechanisms governing host-pathogen interactions and may contribute to a deeper understanding of TB pathogenesis.
Collapse
Affiliation(s)
- Pei Li
- Division of Gastrointestinal Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Systematic Immunology of Tuberculosis, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Yang Li
- Division of Gastrointestinal Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Cun Chuan Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Li Gang Xia
- Division of Gastrointestinal Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| |
Collapse
|
3
|
Bisht D, Singh R, Sharma D, Sharma D, Gautam S, Gupta MK. Unraveling Major Proteins of Mycobacterium tuberculosis Envelope. CURR PROTEOMICS 2022; 19:372-379. [DOI: 10.2174/1570164619666220908141130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Although treatable, resistant form of tuberculosis (TB) has posed a major impediment to the
effective TB control programme. As the Mycobacterium tuberculosis cell envelope is closely associated
with its virulence and resistance, it is very important to understand the cell envelope for better
treatment of causative pathogens. Cell membrane plays a crucial role in imparting various cell functions.
Proteins being the functional moiety, it is impossible to characterize the functional properties
based on genetic analysis alone. Proteomic based research has indicated mycobacterial envelope as a
good source of antigens/proteins. Envelope/membrane and associated proteins have an anticipated role
in biological processes, which could be of vital importance to the microbe, and hence could qualify as
drug targets. This review provides an overview of the prominent and biologically important cell envelope
and highlights the different functions offered by the proteins associated with it. Selective targeting
of the mycobacterial envelope offers an untapped opportunity to address the problems associated
with the current drug regimen and also will lead to the development of more potent and safer drugs
against all forms of tuberculous infections.
Collapse
Affiliation(s)
- Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Rananjay Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, Bahadur Shah Zafar Marg,
New Delhi-110002, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | | |
Collapse
|
4
|
Martínez-Pérez A, Estévez O, González-Fernández Á. Contribution and Future of High-Throughput Transcriptomics in Battling Tuberculosis. Front Microbiol 2022; 13:835620. [PMID: 35283833 PMCID: PMC8908424 DOI: 10.3389/fmicb.2022.835620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
While Tuberculosis (TB) infection remains a serious challenge worldwide, big data and “omic” approaches have greatly contributed to the understanding of the disease. Transcriptomics have been used to tackle a wide variety of queries including diagnosis, treatment evolution, latency and reactivation, novel target discovery, vaccine response or biomarkers of protection. Although a powerful tool, the elevated cost and difficulties in data interpretation may hinder transcriptomics complete potential. Technology evolution and collaborative efforts among multidisciplinary groups might be key in its exploitation. Here, we discuss the main fields explored in TB using transcriptomics, and identify the challenges that need to be addressed for a real implementation in TB diagnosis, prevention and therapy.
Collapse
Affiliation(s)
- Amparo Martínez-Pérez
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| | - Olivia Estévez
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| | - África González-Fernández
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| |
Collapse
|
5
|
Abo-Kadoum MA, Assad M, Uae M, Nzaou SAE, Gong Z, Moaaz A, Teweldebrhan S, Eltoukhy A, Xuefeng A, Chen Y, Xie J. Mycobacterium tuberculosis RKIP (Rv2140c) dephosphorylates ERK/NF-κB upstream signaling molecules to subvert macrophage innate immune response. INFECTION GENETICS AND EVOLUTION 2021; 94:105019. [PMID: 34333158 DOI: 10.1016/j.meegid.2021.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis (Mtb) survival and virulence largely reside on its ability to manipulate the host immune response. We have previously shown that M. tuberculosis Raf kinase inhibitor protein (RKIP) Rv2140c regulates diverse phosphorylation events in M. smegmatis. However, its role during infection is unknown. In this report, we show that Rv2140c can mimic the mammalian RKIP function. Rv2140c inhibit the activation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) via decreasing the phosphorylation capacity of upstream mediators MEK1, ERK1/2, and IKKα/β, thus leading to a reduction in pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. This effect can be reversed by RKIP inhibitor locostatin. Furthermore Rv2140c mediates apoptosis associated with activation of caspases cascades. This modulation enhances the intracellular survival of M. smegmatis within macrophage. We propose that Rv2140c is a multifunctional virulence factor and a promising novel anti-Tuberculosis drug target.
Collapse
Affiliation(s)
- M A Abo-Kadoum
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch 71524, Egypt
| | - Mohammed Assad
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China; Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University, Khartoum, Sudan
| | - Moure Uae
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Stech A E Nzaou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Asmaa Moaaz
- The state key laboratory of silkworm genome biology, Southwest University, Chongqing 400716, China
| | - Samson Teweldebrhan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Adel Eltoukhy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch 71524, Egypt; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ai Xuefeng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Dadong District, Shenyang City, Liaoning 110044, China.
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
6
|
Niskanen M, Myllymäki H, Rämet M. DNA vaccination with the Mycobacterium marinum MMAR_4110 antigen inhibits reactivation of a latent mycobacterial infection in the adult Zebrafish. Vaccine 2020; 38:5685-5694. [PMID: 32624250 DOI: 10.1016/j.vaccine.2020.06.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tuberculosis is a major challenge for health care, as options for its treatment and prevention are limited. Therefore, novel approaches, such as DNA vaccination, to both prevent primary infections and the reactivation of latent infections need to be developed. A Mycobacterium marinum infection in adult zebrafish (Danio rerio) recapitulates features of the human Mycobacterium tuberculosis infection, providing a convenient preclinical animal model for studying tuberculosis. METHODS Hypoxic M. marinum cultures were produced with the Wayne model, and further reaerated to replicate the in vivo reactivation in vitro. Expression levels of M. marinum genes were studied with mRNA sequencing from exponentially growing bacteria, anaerobic cultures and at 2 and 12 h after reaeration. Seven reactivation-associated genes were selected for further studies, where their antigen potentiality as DNA-vaccines to prevent reactivation of a latent mycobacterial infection was investigated in the adult zebrafish model. The Mann-Whitney test was used to evaluate differences in bacterial counts between the groups. RESULTS The mRNA sequencing data showed that, seven M. marinum genes, MMAR_0444, MMAR_0514, MMAR_0552, MMAR_0641, MMAR_1093, MMAR_4110 and MMAR_4524, were upregulated during reactivation when compared to both dormant and logarithmic growing bacteria. Four different MMAR_4110 antigens prevented the reactivation of a latent mycobacterial infection in the adult zebrafish. CONCLUSION This study provides novel information about reactivation-related M. marinum genes. One of the antigens, MMAR_4110, inhibited the reactivation of a latent M. marinum infection in zebrafish, implicating that the characterized genes could be potential targets for further vaccine and drug development against mycobacterial diseases.
Collapse
Affiliation(s)
- Mirja Niskanen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henna Myllymäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; PEDEGO Research Unit and Medical Research Centre, University of Oulu, Finland.
| |
Collapse
|
7
|
Płociński P, Macios M, Houghton J, Niemiec E, Płocińska R, Brzostek A, Słomka M, Dziadek J, Young D, Dziembowski A. Proteomic and transcriptomic experiments reveal an essential role of RNA degradosome complexes in shaping the transcriptome of Mycobacterium tuberculosis. Nucleic Acids Res 2019; 47:5892-5905. [PMID: 30957850 PMCID: PMC6582357 DOI: 10.1093/nar/gkz251] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
The phenotypic adjustments of Mycobacterium tuberculosis are commonly inferred from the analysis of transcript abundance. While mechanisms of transcriptional regulation have been extensively analysed in mycobacteria, little is known about mechanisms that shape the transcriptome by regulating RNA decay rates. The aim of the present study is to identify the core components of the RNA degradosome of M. tuberculosis and to analyse their function in RNA metabolism. Using an approach involving cross-linking to 4-thiouridine-labelled RNA, we mapped the mycobacterial RNA-bound proteome and identified degradosome-related enzymes polynucleotide phosphorylase (PNPase), ATP-dependent RNA helicase (RhlE), ribonuclease E (RNase E) and ribonuclease J (RNase J) as major components. We then carried out affinity purification of eGFP-tagged recombinant constructs to identify protein-protein interactions. This identified further interactions with cold-shock proteins and novel KH-domain proteins. Engineering and transcriptional profiling of strains with a reduced level of expression of core degradosome ribonucleases provided evidence of important pleiotropic roles of the enzymes in mycobacterial RNA metabolism highlighting their potential vulnerability as drug targets.
Collapse
Affiliation(s)
- Przemysław Płociński
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland.,Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.,Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Maria Macios
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| | - Joanna Houghton
- Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Emilia Niemiec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| | - Renata Płocińska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pilarskiego 14/16, Łódź 90-231, Poland
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Douglas Young
- Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland.,Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5A, Warsaw 02-106, Poland
| |
Collapse
|
8
|
Song N, Li Z, Cui Z, Chen L, Cui Y, Dang G, Li Z, Li H, Liu S. The prominent alteration in transcriptome and metabolome of Mycobacterium bovis BCG str. Tokyo 172 induced by vitamin B 1. BMC Microbiol 2019; 19:104. [PMID: 31117936 PMCID: PMC6530141 DOI: 10.1186/s12866-019-1492-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/14/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vitamin B1 (VB1) is a crucial dietary nutrient and essential cofactor for several key enzymes in the regulation of cellular and metabolic processes, and more importantly in the activation of immune system. To date, the precise role of VB1 in Mycobacterium tuberculosis remains to be fully understood. RESULTS In this study, the transcriptional and metabolic profiles of VB1-treated Mycobacterium. bovis BCG were analyzed by RNA-sequencing and LC-MS (Liquid chromatography coupled to mass spectrometry). The selection of BCG strain was based on its common physiological features shared with M. tuberculosis. The results of cell growth assays demonstrated that VB1 inhibited the BCG growth rate in vitro. Transcriptomic analysis revealed that the expression levels of genes related to fatty acid metabolism, cholesterol metabolism, glycolipid catabolism, DNA replication, protein translation, cell division and cell wall formation were significantly downregulated in M. bovis BCG treated with VB1. In addition, the metabolomics LC-MS data indicated that most of the amino acids and adenosine diphosphate (ADP) were decreased in M. bovis BCG strain after VB1 treatment. CONCLUSIONS This study provides the molecular and metabolic bases to understand the impacts of VB1 on M.bovis BCG.
Collapse
Affiliation(s)
- Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoli Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liping Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhe Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Ziklo N, Colorni A, Gao LY, Du SJ, Ucko M. Humoral and Cellular Immune Response of European Seabass Dicentrarchus labrax Vaccinated with Heat-Killed Mycobacterium marinum (iipA::kan Mutant). JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:312-324. [PMID: 30120830 DOI: 10.1002/aah.10042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/12/2018] [Indexed: 05/19/2023]
Abstract
No vaccine is yet commercially available against Mycobacterium marinum, the etiological agent of fish mycobacteriosis (also known as "fish tuberculosis"). The mycobacterial gene responsible for invasion and intracellular persistence, iipA, is known to moderate M. marinum pathology in Zebrafish Danio rerio. Two doses of heat-killed, wild-type, virulent M. marinum and two doses of a heat-killed, avirulent M. marinum iipA::kan mutant strain were used in parallel to vaccinate European Seabass Dicentrarchus labrax. The fish were then challenged with live, virulent M. marinum, and the pathogenesis of the infection was monitored. High specific immunoglobulin M (IgM) response and an increase in cytokine tumor necrosis factor alpha (TNF-α) messenger RNA expression levels were observed in all vaccinated fish. At 1 month postchallenge, TNF-α expression levels increased in spleen tissues of fish vaccinated with the virulent type and in those of unvaccinated fish, whereas in the head kidney, expression was up-regulated only in unvaccinated fish. The expression then decreased, and at 2 months postchallenge, expression appeared similar in all vaccination types. The highest survival rate (75%) was recorded in the group of fish that were vaccinated with a high dose of avirulent iipA::kan mutant. The iipA::kan mutant induced a strong immune response accompanied by only modest tissue disruption. Coupled with an effective program of booster treatments, the iipA::kan mutant vaccine may be developed into a powerful preventive measure against fish mycobacteriosis.
Collapse
Affiliation(s)
- N Ziklo
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
- Eilat Campus, Marine Biology and Biotechnology Program, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - A Colorni
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| | - L-Y Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - S J Du
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, 21202, USA
| | - M Ucko
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| |
Collapse
|
10
|
Kim WS, Kim JS, Cha SB, Kim H, Kwon KW, Kim SJ, Han SJ, Choi SY, Cho SN, Park JH, Shin SJ. Mycobacterium tuberculosis Rv3628 drives Th1-type T cell immunity via TLR2-mediated activation of dendritic cells and displays vaccine potential against the hyper-virulent Beijing K strain. Oncotarget 2018; 7:24962-82. [PMID: 27097115 PMCID: PMC5041883 DOI: 10.18632/oncotarget.8771] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/06/2016] [Indexed: 12/30/2022] Open
Abstract
Identification of vaccine target antigens (Ags) that induce Ag-specific Th1 immunity is the first step toward the development of a tuberculosis vaccine. Here, we evaluated the Mycobacterium tuberculosis (Mtb) protein Rv3628, a soluble inorganic pyrophosphatase, as a vaccine target and characterized the molecular details of its interaction with dendritic cells (DCs). Rv3628 activated DCs, increasing their expression of cell surface molecules and augmenting their production of TNF-α, IL-1β, IL-6, and IL-12p70. Rv3628 mediated these effects by binding to TLR2 and activating downstream MyD88-, MAPK- and NF-κB-dependent signaling pathways. Rv3628-stimulated DCs induced the expansion of OVA-specific CD4+ and CD8+ T cells, which secreted IFN-γ and IL-2. Rv3628-specific effector/memory T cells expanded to a similar extent as those stimulated with ESAT-6 Ag in samples of lung and spleen cells collected from Mtb-infected mice. Finally, an Rv3628 subunit vaccine adjuvanted with dimethyldioctadecylammonium liposomes containing monophosphoryl lipid-A caused significant reductions in bacterial counts and lung inflammation after challenge with the hyper-virulent Mtb K strain. Importantly, protective efficacy was correlated with the generation of Rv3628-specific CD4+ T cells co-producing IFN-γ, TNF-α and IL-2 and exhibiting an elevated IFN-γ recall response. Thus, Rv3628 polarizes DCs toward a Th1 phenotype and promotes protective immunity against Mtb infection.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Young Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Hwan Park
- Laboratory of Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Oxadiazoles Have Butyrate-Specific Conditional Activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016; 60:3608-16. [PMID: 27044545 DOI: 10.1128/aac.02896-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis is a global pathogen of huge importance which can adapt to several host niche environments in which carbon source availability is likely to vary. We developed and ran a phenotypic screen using butyrate as the sole carbon source to be more reflective of the host lung environment. We screened a library of ∼87,000 small compounds and identified compounds which demonstrated good antitubercular activity against M. tuberculosis grown with butyrate but not with glucose as the carbon source. Among the hits, we identified an oxadiazole series (six compounds) which had specific activity against M. tuberculosis but which lacked cytotoxicity against mammalian cells.
Collapse
|
12
|
Kim JS, Kim WS, Choi HH, Kim HM, Kwon KW, Han SJ, Cha SB, Cho SN, Koh WJ, Shin SJ. Mycobacterium tuberculosis MmsA, a novel immunostimulatory antigen, induces dendritic cell activation and promotes Th1 cell-type immune responses. Cell Immunol 2015; 298:115-25. [PMID: 26507911 DOI: 10.1016/j.cellimm.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 01/22/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is an outstanding pathogen that modulates the host immune response. This inconvenient truth drives the continual identification of antigens that generate protective immunity, including Th1-type T cell immunity. Here, the contribution of methylmalonate semialdehyde dehydrogenase (MmsA, Rv0753c) of Mtb to immune responses was examined in the context of dendritic cell (DC) activation and T cell immunity both in vitro and in vivo. The results showed that MmsA induced DC activation by activating the MAPK and NF-κB signaling pathways. Additionally, MmsA-treated DCs activated naïve T cells, effectively polarized CD4(+) and CD8(+) T cells to secrete IFN-γ and IL-2, and induced T cell proliferation. These results indicate that MmsA is a novel DC maturation-inducing antigen that drives the Th1 immune response. Thus, MmsA was found to potentially regulate immune responses via DC activation toward Th1-type T cell immunity, enhancing our understanding of Mtb pathogenesis.
Collapse
Affiliation(s)
- Jong-Seok Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo Sik Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong Min Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Bin Cha
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nae Cho
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
13
|
Devasundaram S, Khan I, Kumar N, Das S, Raja A. The influence of reduced oxygen availability on gene expression in laboratory (H37Rv) and clinical strains (S7 and S10) of Mycobacterium tuberculosis. J Biotechnol 2015; 210:70-80. [PMID: 26001906 DOI: 10.1016/j.jbiotec.2015.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/16/2015] [Accepted: 04/23/2015] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis has the ability to persist within the host in a dormant stage. One important condition believed to contribute to dormancy is reduced access to oxygen known as hypoxia. However, the response of M. tuberculosis to such hypoxia condition is not fully characterized. Virtually all dormant models against tuberculosis tested in animals used laboratory strain H37Rv or Erdman strain. But major outbreaks of tuberculosis (TB) occur with the strains that have widely different genotypes and phenotypes compared to H37Rv. In this study, we used a custom oligonucleotide microarray to determine the overall transcriptional response of laboratory strain (H37Rv) and most prevalent clinical strains (S7 and S10) of M. tuberculosis from South India to hypoxia. Analysis of microarray results revealed that a total of 1161 genes were differentially regulated (≥1.5 fold change) in H37Rv, among them 659 genes upregulated and 502 genes down regulated. Microarray data of clinical isolates showed that a total of 790 genes were differentially regulated in S7 among which 453 genes were upregulated and 337 down regulated. Interestingly, numerous genes were also differentially regulated in S10 (total 2805 genes) of which 1463 genes upregulated and 1342 genes down regulated during reduced oxygen condition (Wayne's model). One hundred and thirty-four genes were found common and upregulated among all three strains (H37Rv, S7, and S10) and can be targeted for drug/vaccine development against TB.
Collapse
Affiliation(s)
- Santhi Devasundaram
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), No. 1, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, India
| | - Imran Khan
- Department of Molecular Reproduction, Development and Genetics Biological Sciences Building, Indian Institute of Science, Bangalore 560 012, India
| | - Neeraj Kumar
- Department of Molecular Reproduction, Development and Genetics Biological Sciences Building, Indian Institute of Science, Bangalore 560 012, India
| | - Sulochana Das
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), No. 1, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, India
| | - Alamelu Raja
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), No. 1, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, India.
| |
Collapse
|
14
|
Rienksma RA, Suarez-Diez M, Mollenkopf HJ, Dolganov GM, Dorhoi A, Schoolnik GK, Martins Dos Santos VA, Kaufmann SH, Schaap PJ, Gengenbacher M. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics 2015; 16:34. [PMID: 25649146 PMCID: PMC4334782 DOI: 10.1186/s12864-014-1197-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
Background The human pathogen Mycobacterium tuberculosis has the capacity to escape eradication by professional phagocytes. During infection, M. tuberculosis resists the harsh environment of phagosomes and actively manipulates macrophages and dendritic cells to ensure prolonged intracellular survival. In contrast to other intracellular pathogens, it has remained difficult to capture the transcriptome of mycobacteria during infection due to an unfavorable host-to-pathogen ratio. Results We infected the human macrophage-like cell line THP-1 with the attenuated M. tuberculosis surrogate M. bovis Bacillus Calmette–Guérin (M. bovis BCG). Mycobacterial RNA was up to 1000-fold underrepresented in total RNA preparations of infected host cells. We employed microbial enrichment combined with specific ribosomal RNA depletion to simultaneously analyze the transcriptional responses of host and pathogen during infection by dual RNA sequencing. Our results confirm that mycobacterial pathways for cholesterol degradation and iron acquisition are upregulated during infection. In addition, genes involved in the methylcitrate cycle, aspartate metabolism and recycling of mycolic acids were induced. In response to M. bovis BCG infection, host cells upregulated de novo cholesterol biosynthesis presumably to compensate for the loss of this metabolite by bacterial catabolism. Conclusions Dual RNA sequencing allows simultaneous capture of the global transcriptome of host and pathogen, during infection. However, mycobacteria remained problematic due to their relatively low number per host cell resulting in an unfavorable bacterium-to-host RNA ratio. Here, we use a strategy that combines enrichment for bacterial transcripts and dual RNA sequencing to provide the most comprehensive transcriptome of intracellular mycobacteria to date. The knowledge acquired into the pathogen and host pathways regulated during infection may contribute to a solid basis for the deployment of novel intervention strategies to tackle infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1197-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rienk A Rienksma
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands.
| | - Hans-Joachim Mollenkopf
- Core Facility Microarray/Genomics, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Gregory M Dolganov
- Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5124, USA.
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Gary K Schoolnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5124, USA.
| | - Vitor Ap Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands. .,LifeGlimmer GmbH, Markelstrasse 38, 12163, Berlin, Germany.
| | - Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands.
| | - Martin Gengenbacher
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany. .,Present address: Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.
| |
Collapse
|
15
|
Systems Approaches to Study Infectious Diseases. SYSTEMS AND SYNTHETIC BIOLOGY 2015. [DOI: 10.1007/978-94-017-9514-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Novoa-Aponte L, Soto Ospina CY. Mycobacterium tuberculosis P-type ATPases: possible targets for drug or vaccine development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:296986. [PMID: 25110669 PMCID: PMC4119724 DOI: 10.1155/2014/296986] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/23/2014] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) has been the biggest killer in the human history; currently, Mycobacterium tuberculosis (Mtb) kills nearly 2 million people each year worldwide. The high prevalence of TB obligates the identification of new therapeutic targets and the development of anti-TB vaccines that can control multidrug resistance and latent TB infections. Membrane proteins have recently been suggested as key targets for bacterial viability. Current studies have shown that mycobacteria P-type ATPases may play critical roles in ion homeostasis and in the response of mycobacteria to toxic substances in the intraphagosomal environment. In this review, we bring together the genomic, transcriptomic, and structural aspects of the P-type ATPases that are relevant during active and latent Mtb infections, which can be useful in determining the potential of these ATPases as drug targets and in uncovering their possible roles in the development of new anti-TB attenuated vaccines.
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, Cundinamarca 111321, Colombia
| | - Carlos Yesid Soto Ospina
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, Cundinamarca 111321, Colombia
| |
Collapse
|
17
|
Parandhaman DK, Sharma P, Bisht D, Narayanan S. Proteome and phosphoproteome analysis of the serine/threonine protein kinase E mutant of Mycobacterium tuberculosis. Life Sci 2014; 109:116-26. [PMID: 24972353 DOI: 10.1016/j.lfs.2014.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/23/2014] [Accepted: 06/09/2014] [Indexed: 01/04/2023]
Abstract
AIMS Serine/threonine protein kinases (STPKs) have prominent roles in the survival mechanisms of Mycobacterium tuberculosis (M. tuberculosis). Previous studies from our laboratory underscored the role of PknE, an STPK in virulence, adaptation and the suppression of host cell apoptosis. In this study, two-dimensional gel electrophoresis was used to study the proteome and phosphoproteome profiles of wild type M. tuberculosis and its isogenic pknE deletion mutant (ΔpknE) during growth in Middlebrook 7H9 and nitric oxide stress. MAIN METHODS Wild-type M. tuberculosis and its isogenic pknE deletion mutant strain were grown in Middlebrook 7H9 as well as subjected to nitric oxide stress using sodium nitroprusside. Whole cell lysates were prepared and analyzed by 2D-gel electrophoresis. Phosphoproteomes were analyzed using phospho serine and phospho threonine antibodies after subjecting the 2D-gels to western blotting. Proteins of interest were identified using mass spectrometry. KEY FINDINGS Our analysis provides insights into the targets that impose pro-apoptotic as well as altered cellular phenotypes on ΔpknE, revealing novel substrates and functions for PknE. SIGNIFICANCE For the first time, our proteome and phosphoproteome data decipher the function of PknE in cell division, virulence, dormancy, suppression of sigma factor B and its regulated genes, suppression of two-component systems and in the metabolic activity of M. tuberculosis.
Collapse
Affiliation(s)
- Dinesh Kumar Parandhaman
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India; Department of Immunology, International Centre for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, 110067,India
| | - Prashant Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India.
| |
Collapse
|
18
|
Abstract
ABSTRACT
During infection,
Mycobacterium tuberculosis
is exposed to a diverse array of microenvironments in the human host, each with its own unique set of redox conditions. Imbalances in the redox environment of the bacillus or the host environment serve as stimuli, which could regulate virulence. The ability of
M. tuberculosis
to evade the host immune response and cause disease is largely owing to the capacity of the mycobacterium to sense changes in its environment, such as host-generated gases, carbon sources, and pathological conditions, and alter its metabolism and redox balance accordingly for survival. In this article we discuss the redox sensors that are, to date, known to be present in
M. tuberculosis
, such as the Dos dormancy regulon, WhiB family, anti-σ factors, and MosR, in addition to the strategies present in the bacillus to neutralize free radicals, such as superoxide dismutases, catalase-peroxidase, thioredoxins, and methionine sulfoxide reductases, among others.
M. tuberculosis
is peculiar in that it appears to have a hierarchy of redox buffers, namely, mycothiol and ergothioneine. We discuss the current knowledge of their biosynthesis, function, and regulation. Ergothioneine is still an enigma, although it appears to have distinct and overlapping functions with mycothiol, which enable it to protect against a wide range of toxic metabolites and free radicals generated by the host. Developing approaches to quantify the intracellular redox status of the mycobacterium will enable us to determine how the redox balance is altered in response to signals and environments that mimic those encountered in the host.
Collapse
|
19
|
Rex K, Kurthkoti K, Varshney U. Hypersensitivity of hypoxia grown Mycobacterium smegmatis to DNA damaging agents: Implications of the DNA repair deficiencies in attenuation of mycobacteria. Mech Ageing Dev 2013; 134:516-22. [DOI: 10.1016/j.mad.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/07/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
|
20
|
Revealing of Mycobacterium marinum transcriptome by RNA-seq. PLoS One 2013; 8:e75828. [PMID: 24098731 PMCID: PMC3786904 DOI: 10.1371/journal.pone.0075828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
Transcriptome analysis has played an essential role for revealing gene expression and the complexity of regulations at transcriptional level. RNA-seq is a powerful tool for transcriptome profiling, which uses deep-sequencing technologies to directly determine the cDNA sequence. Here, we utilized RNA-seq to explore the transcriptome of Mycobacteriummarinum (M. marinum), which is a useful model to study the pathogenesis of Mycobacterium tuberculosis (Mtb). Two profiles of exponential and early stationary phase cultures were generated after a physical ribosome RNA removal step. We systematically described the transcriptome and analyzed the functions for the differentiated expressed genes between the two phases. Furthermore, we predicted 360 operons throughout the whole genome, and 13 out of 17 randomly selected operons were validated by qRT-PCR. In general, our study has primarily uncovered M. marinum transcriptome, which could help to gain a better understanding of the regulation system in Mtb that underlines disease pathogenesis.
Collapse
|
21
|
Structural and biochemical characterization of Rv2140c, a phosphatidylethanolamine-binding protein fromMycobacterium tuberculosis. FEBS Lett 2013; 587:2936-42. [DOI: 10.1016/j.febslet.2013.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 11/18/2022]
|
22
|
Deng W, Li C, Xie J. The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Cell Signal 2013; 25:1608-13. [PMID: 23602932 DOI: 10.1016/j.cellsig.2013.04.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/31/2013] [Accepted: 04/02/2013] [Indexed: 11/27/2022]
Abstract
Bacteria transcriptional regulators are classified by their functional and sequence similarities. Member of the TetR/AcrR family is two-domain proteins including an N-terminal HTH DNA-binding motif and a C-terminal ligand recognition domain. The C-terminal ligand recognition domain can recognize the very same compounds as their target transporters transferred. TetRs act as chemical sensors to monitor both the cellular environmental dynamics and their regulated genes underlying many events, such as antibiotics production, osmotic stress, efflux pumps, multidrug resistance, metabolic modulation, and pathogenesis. Compounds targeting Mycobacterium tuberculosis ethR represent promising novel antibiotic potentiater. TetR-mediated multidrug efflux pumps regulation might be good target candidate for the discovery of better new antibiotics against drug resistance.
Collapse
Affiliation(s)
- Wanyan Deng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | | | | |
Collapse
|
23
|
Commandeur S, van Meijgaarden KE, Prins C, Pichugin AV, Dijkman K, van den Eeden SJF, Friggen AH, Franken KLMC, Dolganov G, Kramnik I, Schoolnik GK, Oftung F, Korsvold GE, Geluk A, Ottenhoff THM. An unbiased genome-wide Mycobacterium tuberculosis gene expression approach to discover antigens targeted by human T cells expressed during pulmonary infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:1659-71. [PMID: 23319735 DOI: 10.4049/jimmunol.1201593] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis is responsible for almost 2 million deaths annually. Mycobacterium bovis bacillus Calmette-Guérin, the only vaccine available against tuberculosis (TB), induces highly variable protection against TB, and better TB vaccines are urgently needed. A prerequisite for candidate vaccine Ags is that they are immunogenic and expressed by M. tuberculosis during infection of the primary target organ, that is, the lungs of susceptible individuals. In search of new TB vaccine candidate Ags, we have used a genome-wide, unbiased Ag discovery approach to investigate the in vivo expression of 2170 M. tuberculosis genes during M. tuberculosis infection in the lungs of mice. Four genetically related but distinct mouse strains were studied, representing a spectrum of TB susceptibility controlled by the supersusceptibility to TB 1 locus. We used stringent selection approaches to select in vivo-expressed M. tuberculosis (IVE-TB) genes and analyzed their expression patterns in distinct disease phenotypes such as necrosis and granuloma formation. To study the vaccine potential of these proteins, we analyzed their immunogenicity. Several M. tuberculosis proteins were recognized by immune cells from tuberculin skin test-positive, ESAT6/CFP10-responsive individuals, indicating that these Ags are presented during natural M. tuberculosis infection. Furthermore, TB patients also showed responses toward IVE-TB Ags, albeit lower than tuberculin skin test-positive, ESAT6/CFP10-responsive individuals. Finally, IVE-TB Ags induced strong IFN-γ(+)/TNF-α(+) CD8(+) and TNF-α(+)/IL-2(+) CD154(+)/CD4(+) T cell responses in PBMC from long-term latently M. tuberculosis-infected individuals. In conclusion, these IVE-TB Ags are expressed during pulmonary infection in vivo, are immunogenic, induce strong T cell responses in long-term latently M. tuberculosis-infected individuals, and may therefore represent attractive Ags for new TB vaccines.
Collapse
Affiliation(s)
- Susanna Commandeur
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Skvortsov TA, Azhikina TL. [Adaptive changes of Mycobacterium tuberculosis gene expression during the infectious process]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012. [PMID: 23189553 DOI: 10.1134/s1068162012040139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mycobacterium tuberculosis causes an infection in humans with clinical manifestations varying from asymptomatic carriage of bacteria to rapidly progressing tuberculosis. Infection outcomes depend on complex and still not fully understood interactions between the pathogenic bacteria and their host organism. Gene expression changes in response to host defense mechanisms are needed for M. tuberculosis survival and functioning. This review focuses on the analysis of dynamic changes in the M. tuberculosis transcriptome taking place during infection processes in host tissues. Presently available data on mycobacterial transcriptome changes obtained from different infection models are discussed. A major part of this review is devoted to the description of biochemical changes occurring in M. tuberculosis infection process, from the primary through latent infection to pathogen reactivation. At each stage of the infection, gene expression changes and induced bacterial metabolic variations are discussed.
Collapse
|
25
|
Chawla M, Parikh P, Saxena A, Munshi M, Mehta M, Mai D, Srivastava AK, Narasimhulu KV, Redding KE, Vashi N, Kumar D, Steyn AJC, Singh A. Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol 2012; 85:1148-65. [PMID: 22780904 PMCID: PMC3438311 DOI: 10.1111/j.1365-2958.2012.08165.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Host-generated oxidative stress is considered one of the main mechanisms constraining Mycobacterium tuberculosis (Mtb) growth. The redox-sensing mechanisms in Mtb are not completely understood. Here we show that WhiB4 responds to oxygen (O2) and nitric oxide (NO) via its 4Fe-4S cluster and controls the oxidative stress response in Mtb. The WhiB4 mutant (MtbΔwhiB4) displayed an altered redox balance and a reduced membrane potential. Microarray analysis demonstrated that MtbΔwhiB4 overexpresses the antioxidant systems including alkyl hydroperoxidase (ahpC-ahpD) and rubredoxins (rubA-rubB). DNA binding assays showed that WhiB4 [4Fe-4S] cluster is dispensable for DNA binding. However, oxidation of the apo-WhiB4 Cys thiols induced disulphide-linked oligomerization, DNA binding and transcriptional repression, whereas reduction reversed the effect. Furthermore, WhiB4 binds DNA with a preference for GC-rich sequences. Expression analysis showed that oxidative stress repressed whiB4 and induced antioxidants in Mtb, while their hyper-induction was observed in MtbΔwhiB4. MtbΔwhiB4 showed increased resistance to oxidative stress in vitro and enhanced survival inside the macrophages. Lastly, MtbΔwhiB4 displayed hypervirulence in the lungs of guinea pigs, but showed a defect in dissemination to their spleen. These findings suggest that WhiB4 systematically calibrates the activation of oxidative stress response in Mtb to maintain redox balance, and to modulate virulence.
Collapse
Affiliation(s)
- Manbeena Chawla
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
van der Woude AD, Sarkar D, Bhatt A, Sparrius M, Raadsen SA, Boon L, Geurtsen J, van der Sar AM, Luirink J, Houben ENG, Besra GS, Bitter W. Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J Biol Chem 2012; 287:20417-29. [PMID: 22505711 DOI: 10.1074/jbc.m111.336461] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mycobacterial cell envelope is characterized by the presence of a highly impermeable second membrane, which is composed of mycolic acids intercalated with different unusual free lipids, such as lipooligosaccharides (LOS). Transport across this cell envelope requires a dedicated secretion system for extracellular proteins, such as PE_PGRS proteins, which are specific mycobacterial proteins with polymorphic GC-rich sequence (PGRS). In this study, we set out to identify novel components involved in the secretion of PE_PGRS proteins by screening Mycobacterium marinum transposon mutants for secretion defects. Interestingly, most mutants were not affected in secretion but in the release of PE_PGRS proteins from the cell surface. These mutants had insertions in a gene cluster associated with LOS biosynthesis. Lipid analysis of these mutants revealed a role at different stages of LOS biosynthesis for 10 novel genes. Furthermore, we show that regulatory protein WhiB4 is involved in LOS biosynthesis. The absence of the most extended LOS molecule, i.e. LOS-IV, and a concomitant accumulation of LOS-III was already sufficient to reduce the release of PE_PGRS proteins from the mycobacterial cell surface. A similar effect was observed for major surface protein EspE. These results show that the attachment of surface proteins is strongly influenced by the glycolipid composition of the mycobacterial cell envelope. Finally, we tested the virulence of a LOS-IV-deficient mutant in our zebrafish embryo infection model. This mutant showed a marked increase in virulence as compared with the wild-type strain, suggesting that LOS-IV plays a role in the modulation of mycobacterial virulence.
Collapse
Affiliation(s)
- Aniek D van der Woude
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 2011; 36:463-85. [PMID: 22092372 DOI: 10.1111/j.1574-6976.2011.00302.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/31/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Attempts to control this disease have proved difficult owing to our poor understanding of the pathobiology of Mycobacterium tuberculosis and the emergence of strains that are resistant to multiple drugs currently available for treatment. Genome-wide expression profiling has provided new insight into the transcriptome signatures of the bacterium during infection, notably of macrophages and dendritic cells. These data indicate that M. tuberculosis expresses numerous genes to evade the host immune responses, to suit its intracellular life style, and to respond to various antibiotic drugs. Among the intracellularly induced genes, several have functions in lipid metabolism, cell wall synthesis, iron uptake, oxidative stress resistance, protein secretion, or inhibition of apoptosis. Herein we review these findings and discuss possible ways to exploit the data to understand the complex etiology of TB and to find new effective drug targets.
Collapse
Affiliation(s)
- Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India.
| | | | | |
Collapse
|
28
|
Mukhopadhyay S, Balaji KN. The PE and PPE proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2011; 91:441-7. [DOI: 10.1016/j.tube.2011.04.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/09/2011] [Accepted: 04/10/2011] [Indexed: 11/30/2022]
|
29
|
Nickel J, Irzik K, van Ooyen J, Eggeling L. The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate. Mol Microbiol 2011; 78:253-65. [PMID: 20923423 DOI: 10.1111/j.1365-2958.2010.07337.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The addition of fatty acids to either Escherichia coli or Bacillus subtilis elicits an elaborate cellular response of the lipid metabolism. We found that in Corynebacterium glutamicum the expression of accD1 encoding the β-subunit of the essential acetyl-CoA carboxylase is repressed in acetate-grown cells without the addition of fatty acids. The TetR-type transcriptional regulator NCgl2404, termed FasR, was identified and deleted. During growth on acetate, but not on glucose, 17 genes are differentially expressed in the deletion mutant, among them accD1, and fasA and fasB both encoding fatty acid synthases, which were upregulated. Determination of the 5' ends of accD1, fasA, fasB and accBC together with the use of isolated FasR protein identified the FasR binding site, fasO, which is located within the accD1 and fasA transcript initiation site thus blocking transcription by RNA polymerase binding directly. The identified fasO motif is present in C. efficiens or C. diphtheriae, too, and it is actually similarly positioned in these bacteria within the 5' ends of the accD1 and fasA transcripts, and a fasR orthologue is also present. The identification of the FasR-fasO system in Corynebacteriaceae might indicate a conserved transcriptional control of the unique lipid synthesis in these mycolic acid-containing bacteria.
Collapse
Affiliation(s)
- Jens Nickel
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | | | |
Collapse
|
30
|
Ward SK, Abomoelak B, Marcus SA, Talaat AM. Transcriptional profiling of mycobacterium tuberculosis during infection: lessons learned. Front Microbiol 2010; 1:121. [PMID: 21738523 PMCID: PMC3125582 DOI: 10.3389/fmicb.2010.00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/12/2010] [Indexed: 12/12/2022] Open
Abstract
Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, is considered one of the biggest infectious disease killers worldwide. A significant amount of attention has been directed toward revealing genes involved in the virulence and pathogenesis of this air-born pathogen. With the advances in technologies for transcriptional profiling, several groups, including ours, took advantage of DNA microarrays to identify transcriptional units differentially regulated by M. tuberculosis within a host. The main idea behind this approach is that pathogens tend to regulate their gene expression levels depending on the host microenvironment, and preferentially express those needed for survival. Identifying this class of genes will improve our understanding of pathogenesis. In our case, we identified an in vivo expressed genomic island that was preferentially active in murine lungs during early infection, as well as groups of genes active during chronic tuberculosis. Other studies have identified additional gene groups that are active during macrophage infection and even in human lungs. Despite all of these findings, one of the lingering questions remaining was whether in vivo expressed transcripts are relevant to the virulence, pathogenesis, and persistence of the organism. The work of our group and others addressed this question by examining the contribution of in vivo expressed genes using a strategy based on gene deletions followed by animal infections. Overall, the analysis of most of the in vivo expressed genes supported a role of these genes in M. tuberculosis pathogenesis. Further, these data suggest that in vivo transcriptional profiling is a valid approach to identify genes required for bacterial pathogenesis.
Collapse
Affiliation(s)
- Sarah K Ward
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA
| | | | | | | |
Collapse
|
31
|
Kumar M, Khan FG, Sharma S, Kumar R, Faujdar J, Sharma R, Chauhan DS, Singh R, Magotra SK, Khan IA. Identification of Mycobacterium tuberculosis genes preferentially expressed during human infection. Microb Pathog 2010; 50:31-8. [PMID: 21035536 DOI: 10.1016/j.micpath.2010.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
The identification of Mycobacterium tuberculosis genes, specifically expressed during infection is a key step in understanding molecular mechanism of mycobacterial pathogenesis. Such genes likely encode proteins required for mycobacterium's survival and progressive infection within the host. In this study, we applied in-vivo-induced antigen technology (IVIAT) to M. tuberculosis and identified 11 putative in-vivo induced genes encoding for immunogenic proteins of diverse functions; these included transcriptional regulators (Rv1460 and Rv2565), biosynthesis and macromolecule metabolism (leuD, guaB1, plcC, hupB and glyS), polyketide synthases (pks6 and pks9), cell processes (ctpA) and one with unknown function (Rv3701c). Quantitative real time-PCR analysis of these genes in the specimens obtained from TB patients demonstrated induced expression of eight genes as compared with bacteria grown in-vitro. In addition, distribution of these genes in different strains of M. tuberculosis was analyzed using PCR and their nucleotide sequence alignments and they were found to be widely distributed among M. tuberculosis isolates including multiple-drug resistant (MDR) and extensively-drug resistant (XDR). This study identified several antigenic determinants of M. tuberculosis expressed during infection, which might help pathogens adapt to or counter hostile environments and suggesting their role during disease process.
Collapse
Affiliation(s)
- Manoj Kumar
- Clinical Microbiology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi 180001, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nairz M, Schroll A, Sonnweber T, Weiss G. The struggle for iron - a metal at the host-pathogen interface. Cell Microbiol 2010; 12:1691-702. [DOI: 10.1111/j.1462-5822.2010.01529.x] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Skvortsov TA, Azhikina TL. A review of the transcriptome analysis of bacterial pathogens in vivo: Problems and solutions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:596-606. [DOI: 10.1134/s106816201005002x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci (Lond) 2010; 119:187-202. [PMID: 20522025 DOI: 10.1042/cs20100041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mycobacteria, including most of all MTB (Mycobacterium tuberculosis), cause pathogenic infections in humans and, during the infectious process, are exposed to a range of environmental insults, including the host's immune response. From the moment MTB is exhaled by infected individuals, through an active and latent phase in the body of the new host, until the time they reach the reactivation stage, MTB is exposed to many types of DNA-damaging agents. Like all cellular organisms, MTB has efficient DNA repair systems, and these are believed to play essential roles in mycobacterial pathogenesis. As different stages of infection have great variation in the conditions in which mycobacteria reside, it is possible that different repair systems are essential for progression to specific phases of infection. MTB possesses homologues of DNA repair systems that are found widely in other species of bacteria, such as nucleotide excision repair, base excision repair and repair by homologous recombination. MTB also possesses a system for non-homologous end-joining of DNA breaks, which appears to be widespread in prokaryotes, although its presence is sporadic within different species within a genus. However, MTB does not possess homologues of the typical mismatch repair system that is found in most bacteria. Recent studies have demonstrated that DNA repair genes are expressed differentially at each stage of infection. In the present review, we focus on different DNA repair systems from mycobacteria and identify questions that remain in our understanding of how these systems have an impact upon the infection processes of these important pathogens.
Collapse
|
35
|
Abstract
Transcriptional profiling has revealed that Mycobacterium tuberculosis adapts both its metabolic and respiratory states during infection, utilising lipids as a carbon source and switching to alternative electron acceptors. These global gene expression datasets may be exploited to identify virulence determinants and to screen for new targets for rational drug design. Characterising the changing physiological predicament of distinct M. tb populations during infection will help expose the fundamental biology of M. tb highlighting mechanisms that influence tuberculosis pathogenicity.
Collapse
|
36
|
Doherty TM, Wallis RS, Zumla A. Biomarkers of disease activity, cure, and relapse in tuberculosis. Clin Chest Med 2010; 30:783-96, x. [PMID: 19925967 DOI: 10.1016/j.ccm.2009.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The changing face of tuberculosis, with epidemics fueled by HIV and urbanization in much of the world and a relative increase in the importance of latent tuberculosis as a source of cases in the more economically developed countries, has led to a demand for more robust, clinically applicable diagnostic tools. As a result, research aiming to identify biomarkers of Mycobacterium tuberculosis infection and disease has flourished. This article discusses the most recent findings of that work.
Collapse
Affiliation(s)
- T Mark Doherty
- Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, 2300 København S, Denmark.
| | | | | |
Collapse
|
37
|
Stokes RW, Waddell SJ. Adjusting to a new home: Mycobacterium tuberculosis gene expression in response to an intracellular lifestyle. Future Microbiol 2010; 4:1317-35. [PMID: 19995191 DOI: 10.2217/fmb.09.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis remains the most significant single species of bacteria causing disease in mankind. The ability of M. tuberculosis to survive and replicate within host macrophages is a pivotal step in its pathogenesis. Understanding the microenvironments that M. tuberculosis encounters within the macrophage and the adaptations that the bacterium undergoes to facilitate its survival will lead to insights into possible therapeutic targets for improved treatment of tuberculosis. This is urgently needed with the emergence of multi- and extensively drug resistant strains of M. tuberculosis. Significant advances have been made in understanding the macrophage response on encountering M. tuberculosis. Complementary information is also accumulating regarding the counter responses of M. tuberculosis during the various stages of its interactions with the host. As such, a picture is emerging delineating the gene expression of intracellular M. tuberculosis at different stages of the interaction with macrophages.
Collapse
Affiliation(s)
- Richard W Stokes
- Department of Paediatrics, University of British Columbia, British Columbia, Canada.
| | | |
Collapse
|
38
|
Gupta V, Gupta RK, Khare G, Salunke DM, Tyagi AK. Crystal structure of Bfr A from Mycobacterium tuberculosis: incorporation of selenomethionine results in cleavage and demetallation of haem. PLoS One 2009; 4:e8028. [PMID: 19946376 PMCID: PMC2777505 DOI: 10.1371/journal.pone.0008028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 11/04/2009] [Indexed: 11/19/2022] Open
Abstract
Emergence of tuberculosis as a global health threat has necessitated an urgent search for new antitubercular drugs entailing determination of 3-dimensional structures of a large number of mycobacterial proteins for structure-based drug design. The essential requirement of ferritins/bacterioferritins (proteins involved in iron storage and homeostasis) for the survival of several prokaryotic pathogens makes these proteins very attractive targets for structure determination and inhibitor design. Bacterioferritins (Bfrs) differ from ferritins in that they have additional noncovalently bound haem groups. The physiological role of haem in Bfrs is not very clear but studies indicate that the haem group is involved in mediating release of iron from Bfr by facilitating reduction of the iron core. To further enhance our understanding, we have determined the crystal structure of the selenomethionyl analog of bacterioferritin A (SeMet-BfrA) from Mycobacterium tuberculosis (Mtb). Unexpectedly, electron density observed in the crystals of SeMet-BfrA analogous to haem location in bacterioferritins, shows a demetallated and degraded product of haem. This unanticipated observation is a consequence of the altered spatial electronic environment around the axial ligands of haem (in lieu of Met52 modification to SeMet52). Furthermore, the structure of Mtb SeMet-BfrA displays a possible lost protein interaction with haem propionates due to formation of a salt bridge between Arg53-Glu57, which appears to be unique to Mtb BfrA, resulting in slight modulation of haem binding pocket in this organism. The crystal structure of Mtb SeMet-BfrA provides novel leads to physiological function of haem in Bfrs. If validated as a drug target, it may also serve as a scaffold for designing specific inhibitors. In addition, this study provides evidence against the general belief that a selenium derivative of a protein represents its true physiological native structure.
Collapse
Affiliation(s)
- Vibha Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Rakesh K. Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Dinakar M. Salunke
- National Institute of Immunology, New Delhi, India
- * E-mail: (DMS); (AKT)
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail: (DMS); (AKT)
| |
Collapse
|
39
|
The transcriptional regulator Rv0485 modulates the expression of a pe and ppe gene pair and is required for Mycobacterium tuberculosis virulence. Infect Immun 2009; 77:4654-67. [PMID: 19651861 DOI: 10.1128/iai.01495-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pe and ppe genes are unique to mycobacteria and are widely speculated to play a role in tuberculosis pathogenesis. However, little is known about how expression of these genes is controlled. Elucidating the regulatory control of genes found exclusively in mycobacteria, such as the pe and ppe gene families, may be key to understanding the success of this pathogen. In this study, we used a transposon mutagenesis approach to elucidate pe and ppe regulation. This resulted in the identification of Rv0485, a previously uncharacterized transcriptional regulator. Microarray and quantitative real-time PCR analysis confirmed that disruption of Rv0485 reduced the expression of the pe13 and ppe18 gene pair (Rv1195 and Rv1196), defined the Rv0485 regulon, and emphasized the lack of global regulation of pe and ppe genes. The in vivo phenotype of the Rv0485 transposon mutant strain (Rv0485::Tn) was investigated in the mouse model, where it was demonstrated that the mutation has minimal effect on bacterial organ burden. Despite this, disruption of Rv0485 allowed mice to survive for significantly longer, with substantially reduced lung pathology in comparison with mice infected with wild-type Mycobacterium tuberculosis. Infection of immune-deficient SCID mice with the Rv0485::Tn strain also resulted in extended survival times, suggesting that Rv0485 plays a role in modulation of innate immune responses. This is further supported by the finding that disruption of Rv0485 resulted in reduced secretion of proinflammatory cytokines by infected murine macrophages. In summary, we have demonstrated that disruption of a previously uncharacterized transcriptional regulator, Rv0485, results in reduced expression of pe13 and ppe18 and attenuation of M. tuberculosis virulence.
Collapse
|
40
|
Blanco FC, Nunez-García J, García-Pelayo C, Soria M, Bianco MV, Zumárraga M, Golby P, Cataldi AA, Gordon SV, Bigi F. Differential transcriptome profiles of attenuated and hypervirulent strains of Mycobacterium bovis. Microbes Infect 2009; 11:956-63. [PMID: 19591956 DOI: 10.1016/j.micinf.2009.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/23/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
Abstract
The identification of factors involved in the interaction of Mycobacterium bovis with the hosts will lead to new strategies to control bovine tuberculosis. In this study we compared the transcriptional profile of an attenuated M. bovis strain and a virulent M. bovis strain as a means to elucidate the molecular basis for their differential phenotype. Microarray and RT-qPCR results demonstrated that the expression of mce4D, Mb2607/Mb2608 and Mb3706c were up-regulated in the virulent strain whereas alkB, Mb3277c and Mb1077c were expressed at higher levels in the attenuated strain. These differential expression profiles were confirmed for Mb2607/Mb2608, mce4D, Mb1077c, alkB and Mb3277c during the replication of bacteria inside macrophages.
Collapse
Affiliation(s)
- Federico C Blanco
- Instituto de Biotecnología, CICVyA-INTA Castelar, N. Repetto and De los Reseros, B1686WAA Hurlingham, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Design of immunogenic peptides from Mycobacterium tuberculosis genes expressed during macrophage infection. Tuberculosis (Edinb) 2009; 89:210-7. [DOI: 10.1016/j.tube.2009.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/21/2022]
|
42
|
Janowski R, Panjikar S, Eddine AN, Kaufmann SHE, Weiss MS. Structural analysis reveals DNA binding properties of Rv2827c, a hypothetical protein from Mycobacterium tuberculosis. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2009; 10:137-50. [PMID: 19184528 PMCID: PMC2758359 DOI: 10.1007/s10969-009-9060-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 01/14/2009] [Indexed: 01/07/2023]
Abstract
Tuberculosis (TB) is a major global health threat caused by Mycobacterium tuberculosis (Mtb). It is further fueled by the HIV pandemic and by increasing incidences of multidrug resistant Mtb-strains. Rv2827c, a hypothetical protein from Mtb, has been implicated in the survival of Mtb in the macrophages of the host. The three-dimensional structure of Rv2827c has been determined by the three-wavelength anomalous diffraction technique using bromide-derivatized crystals and refined to a resolution of 1.93 A. The asymmetric unit of the orthorhombic crystals contains two independent protein molecules related by a non-crystallographic translation. The tertiary structure of Rv2827c comprises two domains: an N-terminal domain displaying a winged helix topology and a C-terminal domain, which appears to constitute a new and unique fold. Based on structural homology considerations and additional biochemical evidence, it could be established that Rv2827c is a DNA-binding protein. Once the understanding of the structure-function relationship of Rv2827c extends to the function of Rv2827c in vivo, new clues for the rational design of novel intervention strategies may be obtained.
Collapse
Affiliation(s)
- Robert Janowski
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
- IBMB (CSIC), Parc Científic de Barcelona, Baldiri Riexac 10–12, 08028 Barcelona, Spain
| | - Santosh Panjikar
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
| | - Ali Nasser Eddine
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Manfred S. Weiss
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
| |
Collapse
|
43
|
Cui T, Zhang L, Wang X, He ZG. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics 2009; 10:118. [PMID: 19298676 PMCID: PMC2671525 DOI: 10.1186/1471-2164-10-118] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 03/19/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Analysis of the pathogen interactome is a powerful approach for dissecting potential signal transduction and virulence pathways. It also offers opportunities for exploring new drug targets. RESULTS In this study, a protein-protein interaction (PPI) network of Mycobacterium tuberculosis H37Rv was constructed using a homogenous protein mapping method, which has shown molecular chaperones, ribosomal proteins and ABC transporters to be highly interconnected proteins. A further analysis of this network unraveled the function of hypothetical proteins as well as a potential signaling pathway. A hypothetical protein, Rv2752c, which was linked to a metal cation-transporting ATPase, was characterized as a metal-beta-lactamase, through domain analysis in combination with an in vitro activity experiment. A second hypothetical protein, Rv1354c, and an unknown protein kinase, PknK, interacted with a similar group of inner membrane-associated ABC transporters in the PPI network. The interactions of Rv1354 with these proteins were also confirmed by a further bacterial two-hybrid analysis. According to protein domain structures, the unique M. tuberculosis Rv1354c gene was proposed, for the first time, to be responsible for the turnover of cyclic-di-GMP, a second messenger molecule in this bacterium. A further structure-based inhibitors screening for Rv1354c was also performed in silicon. CONCLUSION We constructed a comprehensive protein-protein interaction network for M. tuberculosis consisting of 738 proteins and 5639 interaction pairs. Our analysis unraveled the function of hypothetical proteins as well as a potential signaling pathway. The group of ABC transporters, PknK, and Rv1354c were proposed to constitute a potential membrane-associated signaling pathway that cooperatively responds to environmental stresses in M. tuberculosis. The study therefore provides valuable clues in exploring new signaling proteins, virulence pathways, and drug targets.
Collapse
Affiliation(s)
- Tao Cui
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | | | | | | |
Collapse
|
44
|
|
45
|
Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect Immun 2007; 76:717-25. [PMID: 18070897 DOI: 10.1128/iai.00974-07] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lung infection, Mycobacterium tuberculosis resides in macrophages and subverts the bactericidal mechanisms of these professional phagocytes. Comprehension of this host-pathogen relationship is fundamental for the development of new therapies to cure and prevent tuberculosis. In this work, we analyzed the transcriptional profile of M. tuberculosis infecting human macrophage-like THP-1 cells in order to identify putative bacterial pathogenic factors that can be relevant for the intracellular survival of M. tuberculosis. We compared the gene expression profile of M. tuberculosis H37Rv after 4 h and 24 h of infection of human macrophage-like THP-1 cells with the gene expression profile of the strain growing exponentially in broth cultures. We found 585 genes expressed differentially by intracellular M. tuberculosis. An analysis of the gene expression profile of M. tuberculosis inside THP-1 cells suggests the perturbation of the cell envelope as a major intracellular stress inside THP-1 macrophages.
Collapse
|
46
|
Murphy DJ, Brown JR. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect Dis 2007; 7:84. [PMID: 17655757 PMCID: PMC1950094 DOI: 10.1186/1471-2334-7-84] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 07/26/2007] [Indexed: 12/30/2022] Open
Abstract
Background Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects approximately 2 billion people worldwide and is the leading cause of mortality due to infectious disease. Current TB therapy involves a regimen of four antibiotics taken over a six month period. Patient compliance, cost of drugs and increasing incidence of drug resistant M. tuberculosis strains have added urgency to the development of novel TB therapies. Eradication of TB is affected by the ability of the bacterium to survive up to decades in a dormant state primarily in hypoxic granulomas in the lung and to cause recurrent infections. Methods The availability of M. tuberculosis genome-wide DNA microarrays has lead to the publication of several gene expression studies under simulated dormancy conditions. However, no single model best replicates the conditions of human pathogenicity. In order to identify novel TB drug targets, we performed a meta-analysis of multiple published datasets from gene expression DNA microarray experiments that modeled infection leading to and including the dormant state, along with data from genome-wide insertional mutagenesis that examined gene essentiality. Results Based on the analysis of these data sets following normalization, several genome wide trends were identified and used to guide the selection of targets for therapeutic development. The trends included the significant up-regulation of genes controlled by devR, down-regulation of protein and ATP synthesis, and the adaptation of two-carbon metabolism to the hypoxic and nutrient limited environment of the granuloma. Promising targets for drug discovery were several regulatory elements (devR/devS, relA, mprAB), enzymes involved in redox balance and respiration, sulfur transport and fixation, pantothenate, isoprene, and NAD biosynthesis. The advantages and liabilities of each target are discussed in the context of enzymology, bacterial pathways, target tractability, and drug development. Conclusion Based on our bioinformatics analysis and additional discussion of in-depth biological rationale, several novel anti-TB targets have been proposed as potential opportunities to improve present therapeutic treatments for this disease.
Collapse
Affiliation(s)
- Dennis J Murphy
- Informatics, Molecular Discovery Research, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, PO Box 5089, Collegeville, PA 19426-0989, USA
- Department of Biochemistry, UW2523, Cardiovascular and Urogenital CEDD, GlaxoSmithKline, 709 Swedeland Road, Box 1539, King of Prussia, PA 19406, USA
| | - James R Brown
- Informatics, Molecular Discovery Research, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, PO Box 5089, Collegeville, PA 19426-0989, USA
| |
Collapse
|
47
|
Rauert W, Eddine AN, Kaufmann SHE, Weiss MS, Janowski R. Reductive methylation to improve crystallization of the putative oxidoreductase Rv0765c from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:507-11. [PMID: 17554174 PMCID: PMC2335070 DOI: 10.1107/s1744309107022506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 05/07/2007] [Indexed: 11/10/2022]
Abstract
Rv0765c from Mycobacterium tuberculosis was cloned and heterologously expressed in Escherichia coli. It was purified using affinity and size-exclusion chromatographic techniques and crystallized. The native protein crystallized in a hexagonal crystal form which diffracted to 7 A resolution. In an attempt to improve the quality of the Rv0765c crystals, the protein was modified by reductive methylation using dimethylaminoborane and formaldehyde. The modified protein crystallized under different conditions in a tetragonal crystal form, from which diffraction data could be collected to a resolution of 3.2 A. In both crystal forms of Rv0765c, the asymmetric unit contained two copies of the protein molecule.
Collapse
Affiliation(s)
- Wilko Rauert
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Ali Nasser Eddine
- Max-Planck-Institute for Infection Biology, Schumannstrasse 21/22, D-10117 Berlin, Germany
| | - Stefan H. E. Kaufmann
- Max-Planck-Institute for Infection Biology, Schumannstrasse 21/22, D-10117 Berlin, Germany
| | - Manfred S. Weiss
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Robert Janowski
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| |
Collapse
|
48
|
Abstract
The usefulness of rapid pathogen genotyping is widely recognized, but its effective interpretation and application requires integration into clinical and public health decision-making. How can pathogen genotyping data best be translated to inform disease management and surveillance? Pathogen profiling integrates microbial genomics data into communicable disease control by consolidating phenotypic identity-based methods with DNA microarrays, proteomics, metabolomics and sequence-based typing. Sharing data on pathogen profiles should facilitate our understanding of transmission patterns and the dynamics of epidemics.
Collapse
Affiliation(s)
- Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Western Clinical School, The University of Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
49
|
Abstract
Analysis of the changing mRNA expression profile of Mycobacterium tuberculosis though the course of infection promises to advance our understanding of how mycobacteria are able to survive the host immune response. The difficulties of sample extraction from distinct mycobacterial populations, and of measuring mRNA expression profiles of multiple genes has limited the impact of gene expression studies on our interpretation of this dynamic infection process. The development of whole genome microarray technology together with advances in sample collection have allowed the expression pattern of the whole M. tuberculosis genome to be compared across a number of different in vitro conditions, murine and human tissue culture models and in vivo infection samples. This review attempts to produce a summative model of the M. tuberculosis response to infection derived from or reflected in these gene expression datasets. The mycobacterial response to the intracellular environment is characterised by the utilisation of lipids as a carbon source and the switch from aerobic/microaerophilic to anaerobic respiratory pathways. Other genes induced in the macrophage phagosome include those likely to be involved in the maintenance of the cell wall and genes related to DNA damage, heat shock, iron sequestration and nutrient limitation. The comparison of transcriptional data from in vitro models of infection with complex in vivo samples, together with the use of bacterial RNA amplification strategies to sample defined populations of bacilli, should allow us to make conclusions about M. tuberculosis physiology and host microenvironments during natural infection.
Collapse
Affiliation(s)
- Simon J Waddell
- Medical Microbiology, Division of Cellular & Molecular Medicine, St. George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| | | |
Collapse
|
50
|
Rachman H, Kaufmann SHE. Exploring functional genomics for the development of novel intervention strategies against tuberculosis. Int J Med Microbiol 2007; 297:559-67. [PMID: 17467338 DOI: 10.1016/j.ijmm.2007.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis (TB) remains a serious threat to humankind, and humans have encountered the causative agent of TB, Mycobacterium tuberculosis (MTB), for more than 10,000 years. Despite rapid advances in technology, efforts to besiege this robust pathogen seem to fail. The availability of genome sequences of several MTB complex strains open a new era of MTB research, the functional genomics, which will provide guidelines for novel control measures. In recent years, a series of methods have been developed to explore the mechanisms employed by MTB to persist and cause disease in the host. DNA array technology enables us to perform comparative genomics of different MTB strains and to examine the gene expression profiles of MTB growing under diverse living conditions. The generated transcriptome data can be exploited for design of new drugs, especially against multidrug-resistant (MDR) strains, development of more efficient vaccines, and identification of biomarkers for better diagnosis.
Collapse
Affiliation(s)
- Helmy Rachman
- Department of Immunology, Max Planck Institute for Infection Biology, Schumannstr. 21/22, D-10117 Berlin, Germany
| | | |
Collapse
|