1
|
Bao X, Wu J. Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori, Salmonella enterica, Clostridium difficile, and diarrheagenic Escherichia coli. Crit Rev Food Sci Nutr 2024:1-46. [PMID: 39666022 DOI: 10.1080/10408398.2024.2436139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including Helicobacter pylori, Salmonella enterica, Clostridium difficile, and three key diarrheagenic Escherichia coli (i.e., enterotoxigenic E. coli, enteropathogenic E. coli, and enterohemorrhagic E. coli). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Roodsant TJ, van der Ark KC, Schultsz C. Translocation across a human enteroid monolayer by zoonotic Streptococcus suis correlates with the presence of Gb3-positive cells. iScience 2024; 27:109178. [PMID: 38439959 PMCID: PMC10909756 DOI: 10.1016/j.isci.2024.109178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Streptococcus suis is a zoonotic pathogen that can cause meningitis and septicaemia. The consumption of undercooked pig products is an important risk factor for zoonotic infections, suggesting an oral route of infection. In a human enteroid model, we show that the zoonotic CC1 genotype has a 40% higher translocation frequency than the non-zoonotic CC16 genotype. Translocation occurred without increasing the permeability or disrupting the adherens junctions and tight junctions of the epithelial monolayer. The translocation of zoonotic S. suis was correlated with the presence of Gb3-positive cells, a human glycolipid receptor found on Paneth cells and targeted by multiple enteric pathogens. The virulence factors Streptococcal adhesin Protein and suilysin, known to interact with Gb3, were not essential for translocation in our epithelial model. Thus, the ability to translocate across an enteroid monolayer correlates with S. suis core genome composition and the presence of Gb3-positive cells in the intestinal epithelium.
Collapse
Affiliation(s)
- Thomas J. Roodsant
- Amsterdam UMC, Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
| | - Kees C.H. van der Ark
- Amsterdam UMC, Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
| | - Constance Schultsz
- Amsterdam UMC, Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
4
|
Ueda Y, Abe M, Ishiwata T, Ozawa T. Sphingomyelin localization in the intestinal crypt surface. Biochem Biophys Res Commun 2022; 611:14-18. [DOI: 10.1016/j.bbrc.2022.03.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
|
5
|
Luna M, Kamariski M, Principi I, Bocanegra V, Vallés PG. Severely ill pediatric patients with Shiga toxin-associated hemolytic uremic syndrome (STEC-HUS) who suffered from multiple organ involvement in the early stage. Pediatr Nephrol 2021; 36:1499-1509. [PMID: 33205220 DOI: 10.1007/s00467-020-04829-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS) is the main cause of pediatric acute kidney injury (AKI) in Argentina. Endothelial injury is the trigger event in the microangiopathic process. The host inflammatory response to toxin and E. coli lipopolysaccharide (LPS) is involved in disease pathophysiology. METHODS This retrospective study describes pediatric STEC-HUS patients with multiorgan involvement at the initial phase of disease. A retrospective study of critically ill HUS patients with evidence of E. coli infection was conducted through a period of 15 years. RESULTS Forty-four patients 35.4 ± 4.1 months were admitted to the intensive care unit for 21 ± 2 days. Mechanical ventilation was required in 41 patients, early inotropic support in 37, and 28 developed septic shock. Forty-one patients required kidney replacement therapy for 12 ± 1 days. Forty-one patients showed neurological dysfunction. Dilated cardiomyopathy was demonstrated in 3 patients, left ventricular systolic dysfunction in 4, and hypertension in 17. Four patients had pulmonary hemorrhage, and acute respiratory distress syndrome in 2. Colectomy for transmural colonic necrosis was performed in 3 patients. Thirty-seven patients were treated with therapeutic plasma exchange, and 28 patients received methylprednisolone (10 mg/kg for 3 days). Of the surviving 32 patients, neurological sequelae were seen in 11 and chronic kidney failure in 5. CONCLUSIONS Severe clinical outcome at onset suggests an amplified inflammatory response after exposure to Shiga toxin and/or E. coli LPS. STEC-HUS associated with severe neurological involvement, hemodynamic instability, and AKI requires intensive care and focused therapy.
Collapse
Affiliation(s)
- Mariana Luna
- Servicio de Nefrología, Departamento de Pediatría, Hospital Humberto Notti, Mendoza, Argentina
| | - Mariana Kamariski
- Servicio de Nefrología, Departamento de Pediatría, Hospital Humberto Notti, Mendoza, Argentina
| | - Iliana Principi
- Servicio de Nefrología, Departamento de Pediatría, Hospital Humberto Notti, Mendoza, Argentina
| | - Victoria Bocanegra
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Patricia G Vallés
- Servicio de Nefrología, Departamento de Pediatría, Hospital Humberto Notti, Mendoza, Argentina. .,Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
6
|
New opportunities and challenges of venom-based and bacteria-derived molecules for anticancer targeted therapy. Semin Cancer Biol 2020; 80:356-369. [PMID: 32846203 DOI: 10.1016/j.semcancer.2020.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
Due to advances in detection and treatment of cancer, especially the rise in the targeted therapy, the five-year relative survival rate of all cancers has increased significantly. However, according to the analysis of the survival rate of cancer patients in 2019, the survival rate of most cancers is still less than five years. Therefore, to combat complex cancer and further improve the 5-year survival rate of cancer patients, it is necessary to develop some new anticancer drugs. Because of the adaptive evolution of toxic species for millions of years, the venom sac is a "treasure bank", which has millions of biomolecules with high affinity and stability awaiting further development. Complete utilization of venom-based and bacteria-derived drugs in the market is still staggering because of incomplete understanding regarding their mode of action. In this review, we focused on the currently identified targets for anticancer effects based on venomous and bacterial biomolecules, such as ion channels, membrane non-receptor molecules, integrins, and other related target molecules. This review will serve as the key for exploring the molecular mechanisms behind the anticancer potential of venom-based and bacteria-derived drugs and will also lay the path for the development of anticancer targeted therapy.
Collapse
|
7
|
Molecular Biology of Escherichia Coli Shiga Toxins' Effects on Mammalian Cells. Toxins (Basel) 2020; 12:toxins12050345. [PMID: 32456125 PMCID: PMC7290813 DOI: 10.3390/toxins12050345] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Shiga toxins (Stxs), syn. Vero(cyto)toxins, are potent bacterial exotoxins and the principal virulence factor of enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin-producing E. coli (STEC). EHEC strains, e.g., strains of serovars O157:H7 and O104:H4, may cause individual cases as well as large outbreaks of life-threatening diseases in humans. Stxs primarily exert a ribotoxic activity in the eukaryotic target cells of the mammalian host resulting in rapid protein synthesis inhibition and cell death. Damage of endothelial cells in the kidneys and the central nervous system by Stxs is central in the pathogenesis of hemolytic uremic syndrome (HUS) in humans and edema disease in pigs. Probably even more important, the toxins also are capable of modulating a plethora of essential cellular functions, which eventually disturb intercellular communication. The review aims at providing a comprehensive overview of the current knowledge of the time course and the consecutive steps of Stx/cell interactions at the molecular level. Intervention measures deduced from an in-depth understanding of this molecular interplay may foster our basic understanding of cellular biology and microbial pathogenesis and pave the way to the creation of host-directed active compounds to mitigate the pathological conditions of STEC infections in the mammalian body.
Collapse
|
8
|
Joseph A, Cointe A, Mariani Kurkdjian P, Rafat C, Hertig A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins (Basel) 2020; 12:E67. [PMID: 31973203 PMCID: PMC7076748 DOI: 10.3390/toxins12020067] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/28/2023] Open
Abstract
The severity of human infection by one of the many Shiga toxin-producing Escherichia coli (STEC) is determined by a number of factors: the bacterial genome, the capacity of human societies to prevent foodborne epidemics, the medical condition of infected patients (in particular their hydration status, often compromised by severe diarrhea), and by our capacity to devise new therapeutic approaches, most specifically to combat the bacterial virulence factors, as opposed to our current strategies that essentially aim to palliate organ deficiencies. The last major outbreak in 2011 in Germany, which killed more than 50 people in Europe, was evidence that an effective treatment was still lacking. Herein, we review the current knowledge of STEC virulence, how societies organize the prevention of human disease, and how physicians treat (and, hopefully, will treat) its potentially fatal complications. In particular, we focus on STEC-induced hemolytic and uremic syndrome (HUS), where the intrusion of toxins inside endothelial cells results in massive cell death, activation of the coagulation within capillaries, and eventually organ failure.
Collapse
Affiliation(s)
- Adrien Joseph
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Aurélie Cointe
- Department of Microbiology, AP-HP, Hôpital Robert Debré, F-75019 Paris, France; (A.C.); (P.M.K.)
| | | | - Cédric Rafat
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Alexandre Hertig
- Department of Renal Transplantation, Sorbonne Université, AP-HP, Hôpital Pitié Salpêtrière, F-75013 Paris, France
| |
Collapse
|
9
|
Lee MS, Tesh VL. Roles of Shiga Toxins in Immunopathology. Toxins (Basel) 2019; 11:E212. [PMID: 30970547 PMCID: PMC6521259 DOI: 10.3390/toxins11040212] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Shigella species and Shiga toxin-producing Escherichia coli (STEC) are agents of bloody diarrhea that may progress to potentially lethal complications such as diarrhea-associated hemolytic uremic syndrome (D+HUS) and neurological disorders. The bacteria share the ability to produce virulence factors called Shiga toxins (Stxs). Research over the past two decades has identified Stxs as multifunctional toxins capable of inducing cell stress responses in addition to their canonical ribotoxic function inhibiting protein synthesis. Notably, Stxs are not only potent inducers of cell death, but also activate innate immune responses that may lead to inflammation, and these effects may increase the severity of organ injury in patients infected with Stx-producing bacteria. In the intestines, kidneys, and central nervous system, excessive or uncontrolled host innate and cellular immune responses triggered by Stxs may result in sensitization of cells to toxin mediated damage, leading to immunopathology and increased morbidity and mortality in animal models (including primates) and human patients. Here, we review studies describing Stx-induced innate immune responses that may be associated with tissue damage, inflammation, and complement activation. We speculate on how these processes may contribute to immunopathological responses to the toxins.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
10
|
Aas CG, Drabløs F, Haugum K, Afset JE. Comparative Transcriptome Profiling Reveals a Potential Role of Type VI Secretion System and Fimbriae in Virulence of Non-O157 Shiga Toxin-Producing Escherichia coli. Front Microbiol 2018; 9:1416. [PMID: 30008706 PMCID: PMC6033998 DOI: 10.3389/fmicb.2018.01416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause both sporadic infections and outbreaks of enteric disease in humans, with symptoms ranging from asymptomatic carriage to severe disease like haemolytic uremic syndrome (HUS). Bacterial virulence factors like subtypes of the Shiga toxin (Stx) and the locus of enterocyte effacement (LEE) pathogenicity island, as well as host factors like young age, are strongly associated with development of HUS. However, these factors alone do not accurately differentiate between strains that cause HUS and those that do not cause severe disease, which is important in the context of diagnosis, treatment, as well as infection control. We have used RNA sequencing to compare transcriptomes of 30 stx2a and eae positive STEC strains of non-O157 serogroups isolated from children <5 years of age. The strains were from children with HUS (HUS group, n = 15), and children with asymptomatic or mild disease (non-HUS group, n = 15), either induced with mitomycin C or non-induced, to reveal potential differences in gene expression levels between groups. When the HUS and non-HUS group were compared for differential expression of protein-encoding gene families, 399 of 6,119 gene families were differentially expressed (log2 fold change ≥ 1, FDR < 0.05) in the non-induced condition, whereas only one gene family was differentially expressed in the induced condition. Gene ontology and cluster analysis showed that several fimbrial operons, as well as a putative type VI secretion system (T6SS) were more highly expressed in the HUS group than in the non-HUS group, indicating a role of these in the virulence of STEC strains causing severe disease.
Collapse
Affiliation(s)
- Christina G Aas
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan E Afset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
11
|
Microvesicle Involvement in Shiga Toxin-Associated Infection. Toxins (Basel) 2017; 9:toxins9110376. [PMID: 29156596 PMCID: PMC5705991 DOI: 10.3390/toxins9110376] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Shiga toxin is the main virulence factor of enterohemorrhagic Escherichia coli, a non-invasive pathogen that releases virulence factors in the intestine, causing hemorrhagic colitis and, in severe cases, hemolytic uremic syndrome (HUS). HUS manifests with acute renal failure, hemolytic anemia and thrombocytopenia. Shiga toxin induces endothelial cell damage leading to platelet deposition in thrombi within the microvasculature and the development of thrombotic microangiopathy, mostly affecting the kidney. Red blood cells are destroyed in the occlusive capillary lesions. This review focuses on the importance of microvesicles shed from blood cells and their participation in the prothrombotic lesion, in hemolysis and in the transfer of toxin from the circulation into the kidney. Shiga toxin binds to blood cells and may undergo endocytosis and be released within microvesicles. Microvesicles normally contribute to intracellular communication and remove unwanted components from cells. Many microvesicles are prothrombotic as they are tissue factor- and phosphatidylserine-positive. Shiga toxin induces complement-mediated hemolysis and the release of complement-coated red blood cell-derived microvesicles. Toxin was demonstrated within blood cell-derived microvesicles that transported it to renal cells, where microvesicles were taken up and released their contents. Microvesicles are thereby involved in all cardinal aspects of Shiga toxin-associated HUS, thrombosis, hemolysis and renal failure.
Collapse
|
12
|
Abstract
Haemolytic uraemic syndrome (HUS) is defined by the simultaneous occurrence of nonimmune haemolytic anaemia, thrombocytopenia and acute renal failure. This leads to the pathological lesion termed thrombotic microangiopathy, which mainly affects the kidney, as well as other organs. HUS is associated with endothelial cell injury and platelet activation, although the underlying cause may differ. Most cases of HUS are associated with gastrointestinal infection with Shiga toxin-producing enterohaemorrhagic Escherichia coli (EHEC) strains. Atypical HUS (aHUS) is associated with complement dysregulation due to mutations or autoantibodies. In this review, we will describe the causes of HUS. In addition, we will review the clinical, pathological, haematological and biochemical features, epidemiology and pathogenetic mechanisms as well as the biochemical, microbiological, immunological and genetic investigations leading to diagnosis. Understanding the underlying mechanisms of the different subtypes of HUS enables tailoring of appropriate treatment and management. To date, there is no specific treatment for EHEC-associated HUS but patients benefit from supportive care, whereas patients with aHUS are effectively treated with anti-C5 antibody to prevent recurrences, both before and after renal transplantation.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sebastian Loos
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ramesh Tati
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a highly pathogenic bacterial strain capable of causing watery or bloody diarrhea, the latter termed hemorrhagic colitis, and hemolytic-uremic syndrome (HUS). HUS is defined as the simultaneous development of non-immune hemolytic anemia, thrombocytopenia, and acute renal failure. The mechanism by which EHEC bacteria colonize and cause severe colitis, followed by renal failure with activated blood cells, as well as neurological symptoms, involves the interaction of bacterial virulence factors and specific pathogen-associated molecular patterns with host cells as well as the host response. The innate immune host response comprises the release of antimicrobial peptides as well as cytokines and chemokines in addition to activation and/or injury to leukocytes, platelets, and erythrocytes and activation of the complement system. Some of the bacterial interactions with the host may be protective in nature, but, when excessive, contribute to extensive tissue injury, inflammation, and thrombosis, effects that may worsen the clinical outcome of EHEC infection. This article describes aspects of the host response occurring during EHEC infection and their effects on specific organs.
Collapse
|
15
|
Robinson JL, Brynildsen MP. Construction and Experimental Validation of a Quantitative Kinetic Model of Nitric Oxide Stress in Enterohemorrhagic Escherichia coli O157:H7. Bioengineering (Basel) 2016; 3:E9. [PMID: 28952571 PMCID: PMC5597167 DOI: 10.3390/bioengineering3010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are responsible for large outbreaks of hemorrhagic colitis, which can progress to life-threatening hemolytic uremic syndrome (HUS) due to the release of Shiga-like toxins (Stx). The presence of a functional nitric oxide (NO·) reductase (NorV), which protects EHEC from NO· produced by immune cells, was previously found to correlate with high HUS incidence, and it was shown that NorV activity enabled prolonged EHEC survival and increased Stx production within macrophages. To enable quantitative study of EHEC NO· defenses and facilitate the development of NO·-potentiating therapeutics, we translated an existing kinetic model of the E. coli K-12 NO· response to an EHEC O157:H7 strain. To do this, we trained uncertain model parameters on measurements of [NO·] and [O₂] in EHEC cultures, assessed parametric and prediction uncertainty with the use of a Markov chain Monte Carlo approach, and confirmed the predictive accuracy of the model with experimental data from genetic mutants lacking NorV or Hmp (NO· dioxygenase). Collectively, these results establish a methodology for the translation of quantitative models of NO· stress in model organisms to pathogenic sub-species, which is a critical step toward the application of these models for the study of infectious disease.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Activation of the Classical Mitogen-Activated Protein Kinases Is Part of the Shiga Toxin-Induced Ribotoxic Stress Response and May Contribute to Shiga Toxin-Induced Inflammation. Infect Immun 2015; 84:138-48. [PMID: 26483408 DOI: 10.1128/iai.00977-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Infection with enterohemorrhagic Escherichia coli (EHEC) can result in severe disease, including hemorrhagic colitis and the hemolytic uremic syndrome. Shiga toxins (Stx) are the key EHEC virulence determinant contributing to severe disease. Despite inhibiting protein synthesis, Shiga toxins paradoxically induce the expression of proinflammatory cytokines from various cell types in vitro, including intestinal epithelial cells (IECs). This effect is mediated in large part by the ribotoxic stress response (RSR). The Shiga toxin-induced RSR is known to involve the activation of the stress-activated protein kinases (SAPKs) p38 and JNK. In some cell types, Stx also can induce the classical mitogen-activated protein kinases (MAPKs) or ERK1/2, but the mechanism(s) by which this activation occurs is unknown. In this study, we investigated the mechanism by which Stx activates ERK1/2s in IECs and the contribution of ERK1/2 activation to interleukin-8 (IL-8) expression. We demonstrate that Stx1 activates ERK1/2 in a biphasic manner: the first phase occurs in response to StxB1 subunit, while the second phase requires StxA1 subunit activity. We show that the A subunit-dependent ERK1/2 activation is mediated through ZAK-dependent signaling, and inhibition of ERK1/2 activation via the MEK1/2 inhibitors U0126 and PD98059 results in decreased Stx1-mediated IL-8 mRNA. Finally, we demonstrate that ERK1/2 are activated in vivo in the colon of Stx2-intoxicated infant rabbits, a model in which Stx2 induces a primarily neutrophilic inflammatory response. Together, our data support a role for ERK1/2 activation in the development of Stx-mediated intestinal inflammation.
Collapse
|
17
|
Abstract
Shiga toxin-producing Escherichia coli (STEC) is among the common causes of foodborne gastroenteritis. STEC is defined by the production of specific toxins, but within this pathotype there is a diverse group of organisms. This diversity has important consequences for understanding the pathogenesis of the organism, as well as for selecting the optimum strategy for diagnostic testing in the clinical laboratory. This review includes discussions of the mechanisms of pathogenesis, the range of manifestations of infection, and the several different methods of laboratory detection of Shiga toxin-producing E coli.
Collapse
|
18
|
Abstract
Shiga toxin (Stx) is one of the most potent bacterial toxins known. Stx is found in Shigella dysenteriae 1 and in some serogroups of Escherichia coli (called Stx1 in E. coli). In addition to or instead of Stx1, some E. coli strains produce a second type of Stx, Stx2, that has the same mode of action as Stx/Stx1 but is antigenically distinct. Because subtypes of each toxin have been identified, the prototype toxin for each group is now designated Stx1a or Stx2a. The Stxs consist of two major subunits, an A subunit that joins noncovalently to a pentamer of five identical B subunits. The A subunit of the toxin injures the eukaryotic ribosome and halts protein synthesis in target cells. The function of the B pentamer is to bind to the cellular receptor, globotriaosylceramide, Gb3, found primarily on endothelial cells. The Stxs traffic in a retrograde manner within the cell, such that the A subunit of the toxin reaches the cytosol only after the toxin moves from the endosome to the Golgi and then to the endoplasmic reticulum. In humans infected with Stx-producing E. coli, the most serious manifestation of the disease, hemolytic-uremic syndrome, is more often associated with strains that produce Stx2a rather than Stx1a, and that relative toxicity is replicated in mice and baboons. Stx1a and Stx2a also exhibit differences in cytotoxicity to various cell types, bind dissimilarly to receptor analogs or mimics, induce differential chemokine responses, and have several distinctive structural characteristics.
Collapse
Affiliation(s)
- Angela R. Melton-Celsa
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814,
| |
Collapse
|
19
|
Mallick EM, Garber JJ, Vanguri VK, Balasubramanian S, Blood T, Clark S, Vingadassalom D, Louissaint C, McCormick B, Snapper SB, Leong JM. The ability of an attaching and effacing pathogen to trigger localized actin assembly contributes to virulence by promoting mucosal attachment. Cell Microbiol 2014; 16:1405-24. [PMID: 24780054 DOI: 10.1111/cmi.12302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 12/30/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) colonizes the intestine and causes bloody diarrhoea and kidney failure by producing Shiga toxin. Upon binding intestinal cells, EHEC triggers a change in host cell shape, generating actin 'pedestals' beneath bound bacteria. To investigate the importance of pedestal formation to disease, we infected genetically engineered mice incapable of supporting pedestal formation by an EHEC-like mouse pathogen, or wild type mice with a mutant of that pathogen incapable of generating pedestals. We found that pedestal formation promotes attachment of bacteria to the intestinal mucosa and vastly increases the severity of Shiga toxin-mediated disease.
Collapse
Affiliation(s)
- Emily M Mallick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tran SL, Billoud L, Lewis SB, Phillips AD, Schüller S. Shiga toxin production and translocation during microaerobic human colonic infection with Shiga toxin-producing E. coli O157:H7 and O104:H4. Cell Microbiol 2014; 16:1255-66. [PMID: 24612002 PMCID: PMC4231982 DOI: 10.1111/cmi.12281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 12/30/2022]
Abstract
Haemolytic uraemic syndrome caused by Shiga toxin-producing E. coli (STEC) is dependent on release of Shiga toxins (Stxs) during intestinal infection and subsequent absorption into the bloodstream. An understanding of Stx-related events in the human gut is limited due to lack of suitable experimental models. In this study, we have used a vertical diffusion chamber system with polarized human colon carcinoma cells to simulate the microaerobic (MA) environment in the human intestine and investigate its influence on Stx release and translocation during STEC O157:H7 and O104:H4 infection. Stx2 was the major toxin type released during infection. Whereas microaerobiosis significantly reduced bacterial growth as well as Stx production and release into the medium, Stx translocation across the epithelial monolayer was enhanced under MA versus aerobic conditions. Increased Stx transport was dependent on STEC infection and occurred via a transcellular pathway other than macropinocytosis. While MA conditions had a similar general effect on Stx release and absorption during infection with STEC O157:H7 and O104:H4, both serotypes showed considerable differences in colonization, Stx production, and Stx translocation which suggest alternative virulence strategies. Taken together, our study suggests that the MA environment in the human colon may modulate Stx-related events and enhance Stx absorption during STEC infection.
Collapse
Affiliation(s)
- Seav-Ly Tran
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK; Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| | | | | | | | | |
Collapse
|
21
|
Enterohemorrhagic Escherichia coli (EHEC). Emerg Infect Dis 2014. [DOI: 10.1016/b978-0-12-416975-3.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
22
|
Fründt T, Höpker WW, Hagel C, Sperhake J, Isenberg A, Lüth S, Lohse A, Sauter G, Glatzel M, Püschel K. EHEC-O104:H4-Ausbruch im Sommer 2011. Rechtsmedizin (Berl) 2013. [DOI: 10.1007/s00194-013-0910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
In J, Lukyanenko V, Foulke-Abel J, Hubbard AL, Delannoy M, Hansen AM, Kaper JB, Boisen N, Nataro JP, Zhu C, Boedeker EC, Girón JA, Kovbasnjuk O. Serine protease EspP from enterohemorrhagic Escherichia coli is sufficient to induce shiga toxin macropinocytosis in intestinal epithelium. PLoS One 2013; 8:e69196. [PMID: 23874912 PMCID: PMC3715455 DOI: 10.1371/journal.pone.0069196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/05/2013] [Indexed: 12/14/2022] Open
Abstract
Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC attachment to enterocytes is mediated by the type 3 secretion system which functions as a molecular syringe to translocate bacterial effector proteins directly into host cells. Actin-dependent EHEC attachment also requires the outer membrane protein intimin, a major EHEC adhesin. Here, we investigate the role of type 3 secretion in actin turnover occurring during toxin macropinocytosis. Toxin macropinocytosis is independent of EHEC type 3 secretion and intimin attachment. EHEC soluble factors are sufficient to stimulate macropinocytosis and deliver toxin into enterocytes in vitro and in vivo; intact bacteria are not required. Intimin-negative enteroaggregative Escherichia coli (EAEC) O104:H4 robustly stimulate Shiga toxin macropinocytosis into intestinal epithelial cells. The apical macropinosomes formed in intestinal epithelial cells move through the cells and release their cargo at these cells' basolateral sides. Further analysis of EHEC secreted proteins shows that a serine protease EspP alone is able to stimulate host actin remodeling and toxin macropinocytosis. The observation that soluble factors, possibly serine proteases including EspP, from each of two genetically distinct toxin-producing strains, can stimulate Shiga toxin macropinocytosis and transcellular transcytosis alters current ideas concerning mechanisms whereby Shiga toxin interacts with human enterocytes. Mechanisms important for this macropinocytic pathway could suggest new potential therapeutic targets for Shiga toxin-induced disease.
Collapse
Affiliation(s)
- Julie In
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valeriy Lukyanenko
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer Foulke-Abel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ann L. Hubbard
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anne-Marie Hansen
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James B. Kaper
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nadia Boisen
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Chengru Zhu
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Edgar C. Boedeker
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Jorge A. Girón
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Olga Kovbasnjuk
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
24
|
Fang SB, Schüller S, Phillips AD. Human Intestinal In Vitro Organ Culture as a Model for Investigation of Bacteria–Host Interactions. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jecm.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Karpman D. Management of Shiga toxin-associated Escherichia coli-induced haemolytic uraemic syndrome: randomized clinical trials are needed. Nephrol Dial Transplant 2013; 27:3669-74. [PMID: 23114892 PMCID: PMC3484732 DOI: 10.1093/ndt/gfs456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Diana Karpman
- Correspondence and offprint requests to: Diana Karpman; E-mail:
| |
Collapse
|
26
|
Stone SM, Thorpe CM, Ahluwalia A, Rogers AB, Obata F, Vozenilek A, Kolling GL, Kane AV, Magun BE, Jandhyala DM. Shiga toxin 2-induced intestinal pathology in infant rabbits is A-subunit dependent and responsive to the tyrosine kinase and potential ZAK inhibitor imatinib. Front Cell Infect Microbiol 2012; 2:135. [PMID: 23162799 PMCID: PMC3492723 DOI: 10.3389/fcimb.2012.00135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/15/2012] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin producing Escherichia coli (STEC) are a major cause of food-borne illness worldwide. However, a consensus regarding the role Shiga toxins play in the onset of diarrhea and hemorrhagic colitis (HC) is lacking. One of the obstacles to understanding the role of Shiga toxins to STEC-mediated intestinal pathology is a deficit in small animal models that perfectly mimic human disease. Infant rabbits have been previously used to study STEC and/or Shiga toxin-mediated intestinal inflammation and diarrhea. We demonstrate using infant rabbits that Shiga toxin-mediated intestinal damage requires A-subunit activity, and like the human colon, that of the infant rabbit expresses the Shiga toxin receptor Gb(3). We also demonstrate that Shiga toxin treatment of the infant rabbit results in apoptosis and activation of p38 within colonic tissues. Finally we demonstrate that the infant rabbit model may be used to test candidate therapeutics against Shiga toxin-mediated intestinal damage. While the p38 inhibitor SB203580 and the ZAK inhibitor DHP-2 were ineffective at preventing Shiga toxin-mediated damage to the colon, pretreatment of infant rabbits with the drug imatinib resulted in a decrease of Shiga toxin-mediated heterophil infiltration of the colon. Therefore, we propose that this model may be useful in elucidating mechanisms by which Shiga toxins could contribute to intestinal damage in the human.
Collapse
Affiliation(s)
- Samuel M Stone
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, and Tufts University School of Medicine Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang XH, He KW, Zhao PD, Ye Q, Luan XT, Yu ZY, Wen LB, Ni YX, Li B, Wang XM, Guo RL, Zhou JM, Mao AH. Intranasal immunisation with Stx2B-Tir-Stx1B-Zot protein leads to decreased shedding in goats after challenge with Escherichia coli
O157:H7. Vet Rec 2012; 170:178. [DOI: 10.1136/vr.100325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - A-H. Mao
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry; Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; National Center for Engineering Research of Veterinary Bio-products; Zhongling St 50# Nanjing 210014 China
| |
Collapse
|
28
|
Engedal N, Skotland T, Torgersen ML, Sandvig K. Shiga toxin and its use in targeted cancer therapy and imaging. Microb Biotechnol 2012; 4:32-46. [PMID: 21255370 PMCID: PMC3023029 DOI: 10.1111/j.1751-7915.2010.00180.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Shiga and the Shiga‐like toxins are related protein toxins produced by Shigella dysenteriae and certain strains of Escherichia coli. These toxins are composed of two non‐covalently attached, modular parts: the A moiety (StxA) containing the enzymatically active A1 fragment, and the non‐toxic, pentameric binding moiety (StxB). Stx binds specifically to the glycosphingolipid globotriaosylceramide (Gb3) at the surface of target cells and is then internalized by endocytosis. Subsequently, in toxin‐sensitive cells, the Stx/Gb3 complex is transported in a retrograde manner via the Golgi apparatus to the endoplasmic reticulum, where the enzymatically active part of Stx is translocated to the cytosol, enabling it to irreversibly inhibit protein synthesis via modification of ribosomal 28S RNA. Whereas Gb3 shows a relatively restricted expression in normal human tissues, it has been reported to be highly expressed in many types of cancers. This review gives a brief introduction to Stx and its intracellular transport. Furthermore, after a description of Gb3 and the methods that are currently used to detect its cellular expression, we provide an updated overview of the published reports on Gb3 overexpression in human cancers. Finally, we discuss the possibility of utilizing Stx or StxB coupled to therapeutic compounds or contrast agents in targeted cancer therapy and imaging.
Collapse
Affiliation(s)
- Nikolai Engedal
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway
| | | | | | | |
Collapse
|
29
|
Intestinal damage in enterohemorrhagic Escherichia coli infection. Pediatr Nephrol 2011; 26:2059-71. [PMID: 20809220 DOI: 10.1007/s00467-010-1616-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 06/11/2010] [Accepted: 06/22/2010] [Indexed: 12/11/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) infection leads to marked intestinal injury. Sigmoid colon obtained from two children during EHEC infection exhibited abundant TUNEL-positive cells. To define which bacterial virulence factors contribute to intestinal injury the presence of Shiga toxin-2 (Stx2), intimin and the type III secretion system were correlated with symptoms and intestinal damage. C3H/HeN mice were inoculated with Stx2-producing (86-24) and non-producing (87-23) E. coli O157:H7 strains and 86-24 mutants lacking eae, encoding intimin (strain UMD619) or escN regulating the expression of type III secretion effectors (strain CVD451). Severe symptoms developed in mice inoculated with 86-24 and 87-23. Few mice inoculated with the mutant strains developed severe symptoms. Strain 86-24 exhibited higher fecal bacterial counts, followed by 87-23, whereas strains UMD619 and CVD451 showed minimal fecal counts. More TUNEL-positive cells were found in proximal and distal colons of mice inoculated with strain 86-24 compared with strains 87-23 and CVD451 (p ≤ 0.01) or UMD619 (p < 0.05, proximal colon, p < 0.01, distal colon). The results show that strains 86-24 and 87-23 exhibited better colonic persistence and more symptoms, presumably due to the presence of intimin and type III secretion effectors. Extensive intestinal mucosal cell death was related to the presence of Stx2.
Collapse
|
30
|
Maak M, Nitsche U, Keller L, Wolf P, Sarr M, Thiebaud M, Rosenberg R, Langer R, Kleeff J, Friess H, Johannes L, Janssen KP. Tumor-specific targeting of pancreatic cancer with Shiga toxin B-subunit. Mol Cancer Ther 2011; 10:1918-28. [PMID: 21788400 DOI: 10.1158/1535-7163.mct-11-0006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic carcinoma is one of the most aggressive tumor entities, and standard chemotherapy provides only modest benefit. Therefore, specific targeting of pancreatic cancer for early diagnosis and therapeutic intervention is of great interest. We have previously shown that the cellular receptor for Shiga toxin B (STxB), the glycosphingolipid globotriaosylceramide (Gb(3) or CD77) is strongly increased in colorectal adenocarcinoma and their metastases. Here, we report an upregulation of Gb(3) in pancreatic adenocarcinoma (21 of 27 cases) as compared with matched normal tissue (n = 27). The mean expression was highly significantly increased from 30 ± 16 ng Gb(3)/mg tissue in normal pancreas to 61 ± 41 ng Gb(3)/mg tissue (mean ± SD, P = 0.0006), as evidenced by thin layer chromatography. Upregulation of Gb(3) levels did not depend on tumor stage or grading and showed no correlation with clinical outcome. Tumor cells and endothelial cells were identified as the source of increased Gb(3) expression by immunocytochemistry. Pancreatic cancer cell lines showed rapid intracellular uptake of STxB to the Golgi apparatus, following the retrograde pathway. The therapeutic application of STxB was tested by specific delivery of covalently coupled SN38, an active metabolite of the topoisomerase I inhibitor irinotecan. The cytotoxic effect of the STxB-SN38 compound in pancreatic cancer cell lines was increased more than 100-fold compared with irinotecan. Moreover, this effect was effectively blocked by competing incubation with nonlabeled STxB, showing the specificity of the targeting. Thus, STxB constitutes a promising new tool for specific targeting of pancreatic cancer.
Collapse
Affiliation(s)
- Matthias Maak
- Department of Surgery, Klinikum Rechts der Isar, TU München, Ismaninger Str. 22, 81675 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shiga toxin interaction with human intestinal epithelium. Toxins (Basel) 2011; 3:626-39. [PMID: 22069729 PMCID: PMC3202847 DOI: 10.3390/toxins3060626] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 02/03/2023] Open
Abstract
After ingestion via contaminated food or water, enterohaemorrhagic E. coli colonises the intestinal mucosa and produces Shiga toxins (Stx). No Stx-specific secretion system has been described so far, and it is assumed that Stx are released into the gut lumen after bacterial lysis. Human intestinal epithelium does not express the Stx receptor Gb3 or other Stx binding sites, and it remains unknown how Stx cross the intestinal epithelial barrier and gain access to the systemic circulation. This review summarises current knowledge about the influence of the intestinal environment on Stx production and release, Stx interaction with intestinal epithelial cells and intracellular uptake, and toxin translocation into underlying tissues. Furthermore, it highlights gaps in understanding that need to be addressed by future research.
Collapse
|
32
|
Zhang XH, He KW, Zhang SX, Lu WC, Zhao PD, Luan XT, Ye Q, Wen LB, Li B, Guo RL, Wang XM, Lv LX, Zhou JM, Yu ZY, Mao AH. Subcutaneous and intranasal immunization with Stx2B-Tir-Stx1B-Zot reduces colonization and shedding of Escherichia coli O157:H7 in mice. Vaccine 2011; 29:3923-9. [PMID: 21338683 DOI: 10.1016/j.vaccine.2011.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/13/2011] [Accepted: 02/06/2011] [Indexed: 11/28/2022]
Abstract
The type III secretion system of Escherichia coli O157:H7 is involved in colonization of mammalian hosts by the organism. The translocated intimin receptor (Tir) is inserted into the mammalian host cell plasma membrane in a hairpin loop topology with the central loop of the molecule exposed to the host cell surface and accessible for interaction with an LEE-encoded bacterial outer membrane adhesin called intimin. Shiga toxin type 1 and 2 produced by E. coli O157:H7 are responsible for hemolytic uremic syndrome and able to promote intestinal colonization. Zonula occludens toxin (Zot) is a single polypeptide chain encoded by the filamentous bacteriophage CTXφ of Vibrio cholerae. Zot binds a receptor on intestinal epithelial cells and increases mucosal permeability by affecting the structure of epithelial tight junctions. Because of these properties, Zot is a promising tool for mucosal drug and antigen (Ag) delivery. In the current study, we constructed a novel fusion protein carrying both of the immunogenic B subunits derived from the two toxins, Tir and Zot, designated Stx2B-Tir-Stx1B-Zot, expressed in the E. coli BL21 and harvested the purified protein by a simple GST·Bind Resin chromatography method. We used a streptomycin-treated mouse model to evaluate the efficacy of subcutaneous vs. intranasal administration of the vaccine. Following immunization, mice were infected with E. coli O157:H7 and feces were monitored for shedding. Immune responses against Stx2B-Tir-Stx1B-Zot, Stx2B-Tir-Stx1B and control agent (GST/PBS) were also monitored. Subcutaneous immunization of mice with Stx2B-Tir-Stx1B-Zot induced significant Stx2B-Tir-Stx1B-Zot-specific serum IgG antibodies but did not significantly induce any antigen-specific IgA in feces, whereas intranasal immunization elicited significant Stx2B-Tir-Stx1B-Zot-specific serum IgG antibodies with some animals developing antigen-specific IgA in feces. Mice that were immunized intranasally with Stx2B-Tir-Stx1B-Zot showed dramatically decreased E. coli O157:H7 shedding compared to those of Stx2B-Tir-Stx1B and control agent following experimental infection. Mice immunized subcutaneously with Stx2B-Tir-Stx1B-Zot or Stx2B-Tir-Stx1B both showed reduced shedding in feces, moreover, Stx2B-Tir-Stx1B-Zot did better. These results demonstrate the perspective for the use of Stx2B-Tir-Stx1B-Zot to prevent colonization and shedding of E. coli O157:H7.
Collapse
Affiliation(s)
- Xue-Han Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Tongwei Road 6#, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Shiga toxins and ricin are ribosome-inactivating proteins which share the property of inhibiting protein synthesis by catalytic inactivation of eukaryotic ribosomes. There is now abundant evidence that Shiga toxins and ricin induce apoptosis in epithelial, endothelial, lymphoid and myeloid cells in vitro, and in multiple organs in animals when administered these toxins. Many studies suggest that protein synthesis inhibition and apoptosis induction mediated by Shiga toxins and ricin may be dissociated. In some cells, non-enzymatic toxin components (Shiga toxin B-subunits, ricin B-chain) appear capable of inducing apoptosis. The toxins appear capable of activating components of both the extrinsic or death receptor-mediated and intrinsic or mitochondrial-mediated pathways of apoptosis induction. Although the toxins have been shown to be capable of activating several cell stress response pathways, the precise signaling mechanisms by which Shiga toxins and ricin induce apoptosis remain to be fully characterized. This chapter provides an overview of studies describing Shiga toxin- and ricin-induced apoptosis and reviews evidence that signaling through the ribotoxic stress response and the unfolded protein response may be involved in apoptosis induction in some cell types.
Collapse
|
34
|
Biochemical, pathological and oncological relevance of Gb3Cer receptor. Med Oncol 2010; 28 Suppl 1:S675-84. [PMID: 21069478 DOI: 10.1007/s12032-010-9732-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
Glycosphingolipids are amphipathic molecules composed of hydrophilic oligosaccharide chain and a hydrophobic ceramide part, located primarily in the membrane microdomains of animal cells. Their oligosaccharide chains make them excellent candidates for the cell surface recognition molecules. Natural glycosphingolipid, globotriaosylceramide (Gal α1-4, Gal β1-4, Glc β1-1, ceramide), is also called CD77 and its expression was previously associated with proliferating centroblasts undergoing somatic hypermutation, but it has been demonstrate that globotriaosylceramide is not a reliable marker to discriminate human centroblasts from centrocytes. Globotriaosylceramide constitutes rare P k blood group antigen on erythrocytes, and it is also known as Burkitt's lymphoma antigen. On endothelial cells, globotriaosylceramide plays as the receptor for bacterial toxins of the Shiga family, also called verotoxins. Precise biological function and significance of globotriaosylceramide expression on endothelial cells remains to be the subject of many studies and it is believed globotriaosylceramide represents an example of a glycolipid antigen able to transduce a signal leading to apoptosis. In past decade, cancer researches put a great afford in determining new therapeutic agents such as bacterial toxins against tumor malignancies. Reports have demonstrated that verotoxin-1 induces apoptosis in solid tumor cell lines expressing globotriaosylceramide such as astrocytoma, renal cell carcinoma, colon cancer and breast cancer due to verotoxin-1 high specificity and apoptosis-inducing properties, and therefore, it is suggested to be an anticancer agent. Verotoxins have been investigated weather they could reduce treatment side-effects and toxicity to normal tissues and become a new oncological tool in cancer labeling.
Collapse
|
35
|
Torgersen ML, Engedal N, Pedersen AMG, Husebye H, Espevik T, Sandvig K. Toll-like receptor 4 facilitates binding of Shiga toxin to colon carcinoma and primary umbilical vein endothelial cells. ACTA ACUST UNITED AC 2010; 61:63-75. [DOI: 10.1111/j.1574-695x.2010.00749.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Human intestinal tissue and cultured colonic cells contain globotriaosylceramide synthase mRNA and the alternate Shiga toxin receptor globotetraosylceramide. Infect Immun 2010; 78:4488-99. [PMID: 20732996 DOI: 10.1128/iai.00620-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 and other Shiga toxin (Stx)-producing E. coli (STEC) bacteria are not enteroinvasive but can cause hemorrhagic colitis. In some STEC-infected individuals, a life-threatening sequela of infection called the hemolytic uremic syndrome may develop that can lead to kidney failure. This syndrome is linked to the production of Stx by the infecting organism. For Stx to reach the kidney, the toxin must first penetrate the colonic epithelial barrier. However, the Stx receptor, globotriaosylceramide (Gb3), has been thought to be absent from human intestinal epithelial cells. Thus, the mechanisms by which the toxin associates with and traverses through the intestine en route to the kidneys have been puzzling aspects of STEC pathogenesis. In this study, we initially determined that both types of Stx made by STEC, Stx1 and Stx2, do in fact bind to colonic epithelia in fresh tissue sections and to a colonic epithelial cell line (HCT-8). We also discovered that globotetraosylceramide (Gb4), a lower-affinity toxin receptor derived from Gb3, is readily detectable on the surfaces of human colonic tissue sections and HCT-8 cells. Furthermore, we found that Gb3 is present on a fraction of HCT-8 cells, where it presumably functions to bind and internalize Stx1 and Stx2. In addition, we established by quantitative real-time PCR (qRT-PCR) that both fresh colonic epithelial sections and HCT-8 cells express Gb3 synthase mRNA. Taken together, our data suggest that Gb3 may be present in small quantities in human colonic epithelia, where it may compete for Stx binding with the more abundantly expressed glycosphingolipid Gb4.
Collapse
|
37
|
Liu B, Yin X, Feng Y, Chambers JR, Guo A, Gong J, Zhu J, Gyles CL. Verotoxin 2 enhances adherence of enterohemorrhagic Escherichia coli O157:H7 to intestinal epithelial cells and expression of {beta}1-integrin by IPEC-J2 cells. Appl Environ Microbiol 2010; 76:4461-8. [PMID: 20453145 PMCID: PMC2897442 DOI: 10.1128/aem.00182-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/26/2010] [Indexed: 11/20/2022] Open
Abstract
Verotoxin (VT) has been implicated in the promotion of adherence to and colonization of intestinal epithelial cells by enterohemorrhagic Escherichia coli (EHEC) O157:H7. The present study investigated the effect of VT2 on the adherence of EHEC O157:H7 strain 86-24 to porcine jejunal (IPEC-J2), human colon (CaCo-2), and human laryngeal carcinoma (HEp-2) cell lines and on the expression in IPEC-J2 cells of synthases for beta1-integrin and nucleolin, both of which are implicated in bacterial adherence. The effect on expression of globotriaosylceramide (Gb3) synthase, the receptor for VT, was also examined. Data were obtained by adherence assays and quantitative reverse transcriptase PCR, using EHEC O157 strain 86-24, a vt2 deletion mutant, a vt2 phage-negative strain, and complemented mutants in which the vt2 gene was restored. Compared with the adherence of the parent and complemented mutant strains, the vt2-negative strains adhered significantly less to all three types of cells. Adherence of the wild-type EHEC strain to IPEC-J2 cells was accompanied by increased expression of beta1-integrin, nucleolin, and Gb3 synthase. IPEC-J2 cells in association with wild-type EHEC O157:H7 or the complemented mutants expressed higher levels of beta1-integrin than did cells in association with the vt2-negative strains or with no bacteria. Expression of nucleolin was decreased by association with the vt2-negative mutant, but complementation failed to restore wild-type expression. The data indicate that VT2 plays a role in the adherence of EHEC O157:H7 to intestinal epithelial cells, possibly by increasing the expression of the host receptor beta1-integrin.
Collapse
Affiliation(s)
- Bianfang Liu
- College of Life Science, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China, Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang Campus, Minhang 200240, Shanghai, People's Republic of China, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Xianhua Yin
- College of Life Science, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China, Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang Campus, Minhang 200240, Shanghai, People's Republic of China, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Yanni Feng
- College of Life Science, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China, Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang Campus, Minhang 200240, Shanghai, People's Republic of China, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - James R. Chambers
- College of Life Science, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China, Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang Campus, Minhang 200240, Shanghai, People's Republic of China, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Aiguang Guo
- College of Life Science, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China, Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang Campus, Minhang 200240, Shanghai, People's Republic of China, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Joshua Gong
- College of Life Science, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China, Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang Campus, Minhang 200240, Shanghai, People's Republic of China, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Jing Zhu
- College of Life Science, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China, Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang Campus, Minhang 200240, Shanghai, People's Republic of China, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Carlton L. Gyles
- College of Life Science, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China, Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang Campus, Minhang 200240, Shanghai, People's Republic of China, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
38
|
Abstract
Shiga toxins comprise a family of structurally and functionally related protein toxins expressed by Shigella dysenteriae serotype 1 and multiple serotypes of Escherichia coli. While the capacity of Shiga toxins to inhibit protein synthesis by catalytic inactivation of eukaryotic ribosomes has been well described, it is also apparent that Shiga toxins trigger apoptosis in many cell types. This review presents evidence that Shiga toxins induce apoptosis of epithelial, endothelial, leukocytic, lymphoid and neuronal cells. Apoptotic signaling pathways activated by the toxins are reviewed with an emphasis on signaling mechanisms that are shared among different cell types. Data suggesting that Shiga toxins induce apoptosis through the endoplasmic reticulum stress response and clinical evidence demonstrating apoptosis in humans infected with Shiga toxin-producing bacteria are briefly discussed. The potential for use of Shiga toxins to induce apoptosis in cancer cells is briefly reviewed.
Collapse
Affiliation(s)
- Vernon L Tesh
- Department of Microbial & Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| |
Collapse
|
39
|
Hodges K, Gill R. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes 2010; 1:4-21. [PMID: 21327112 PMCID: PMC3035144 DOI: 10.4161/gmic.1.1.11036] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/15/2009] [Accepted: 12/28/2009] [Indexed: 02/03/2023] Open
Abstract
Diarrhea caused by enteric infections is a major factor in morbidity and mortality worldwide. An estimated 2-4 billion episodes of infectious diarrhea occur each year and are especially prevalent in infants. This review highlights the cellular and molecular mechanisms underlying diarrhea associated with the three classes of infectious agents, i.e., bacteria, viruses and parasites. Several bacterial pathogens have been chosen as model organisms, including Vibrio cholerae as a classical example of secretory diarrhea, Clostridium difficile and Shigella species as agents of inflammatory diarrhea and selected strains of pathogenic Escherichia coli (E. coli) to discuss the recent advances in alteration of epithelial ion absorption. Many of the recent studies addressing epithelial ion transport and barrier function have been carried out using viruses and parasites. Here, we focus on the rapidly developing field of viral diarrhea including rotavirus, norovirus and astrovirus infections. Finally we discuss Giardia lamblia and Entamoeba histolytica as examples of parasitic diarrhea. Parasites have a greater complexity than the other pathogens and are capable of creating molecules similar to those produced by the host, such as serotonin and PGE(2). The underlying mechanisms of infectious diarrhea discussed include alterations in ion transport and tight junctions as well as the virulence factors, which alter these processes either through direct effects or indirectly through inflammation and neurotransmitters.
Collapse
|
40
|
Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 2009; 8:26-38. [DOI: 10.1038/nrmicro2265] [Citation(s) in RCA: 668] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Bellmeyer A, Cotton C, Kanteti R, Koutsouris A, Viswanathan VK, Hecht G. Enterohemorrhagic Escherichia coli suppresses inflammatory response to cytokines and its own toxin. Am J Physiol Gastrointest Liver Physiol 2009; 297:G576-81. [PMID: 19556613 PMCID: PMC2739818 DOI: 10.1152/ajpgi.00050.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Infection with the enteric pathogen enterohemorrhagic Escherichia coli (EHEC) causes a variety of symptoms ranging from nonbloody diarrhea to more severe sequelae including hemorrhagic colitis, altered sensorium and seizures, and even life-threatening complications, such as hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. The more severe consequences of EHEC infection are attributable to the production of Shiga toxin (Stx) and its subsequent effects on the vasculature, which expresses high levels of the Stx receptor, Gb3. Interestingly, the intestinal epithelium does not express Gb3. Despite the lack of Gb3 receptor expression, intestinal epithelial cells translocate Stx. The effect of Stx on intestinal epithelial cells is controversial with some studies demonstrating induction of inflammation and others not. This may be difficult to resolve because EHEC expresses both proinflammatory molecules, such as flagellin, and factor(s) that dampen the inflammatory response of epithelial cells. The goal of our study was to define the effect of Stx on the inflammatory response of intestinal epithelial cells and to determine whether infection by EHEC modulates this response. Here we show that Stx is a potent inducer of the inflammatory response in intestinal epithelial cells and confirm that EHEC attenuates the induction of IL-8 by host-derived proinflammatory cytokines. More importantly, however, we show that infection with EHEC attenuates the inflammatory response by intestinal epithelial cells to its own toxin. We speculate that the ability of EHEC to dampen epithelial cell inflammatory responses to Stx and cytokines facilitates intestinal colonization.
Collapse
Affiliation(s)
- Amy Bellmeyer
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Cynthia Cotton
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Rajani Kanteti
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Athanasia Koutsouris
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - V. K. Viswanathan
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Gail Hecht
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
42
|
Adherence of Escherichia coli O157:H7 mutants in vitro and in ligated pig intestines. Appl Environ Microbiol 2009; 75:4975-83. [PMID: 19525268 DOI: 10.1128/aem.00297-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are contradictory literature reports on the role of verotoxin (VT) in adherence of enterohemorrhagic Escherichia coli O157:H7 (O157 EHEC) to intestinal epithelium. There are reports that putative virulence genes of O island 7 (OI-7), OI-15, and OI-48 of this pathogen may also affect adherence in vitro. Therefore, mutants of vt2 and segments of OI-7 and genes aidA(15) (gene from OI-15) and aidA(48) (gene from OI-48) were generated and evaluated for adherence in vitro to cultured human HEp-2 and porcine jejunal epithelial (IPEC-J2) cells and in vivo to enterocytes in pig ileal loops. VT2-negative mutants showed significant decreases in adherence to both HEp-2 and IPEC-J2 cells and to enterocytes in pig ileal loops; complementation only partially restored VT2 production but fully restored the adherence to the wild-type level on cultured cells. Deletion of OI-7 and aidA(48) had no effect on adherence, whereas deletion of aidA(15) resulted in a significant decrease in adherence in pig ileal loops but not to the cultured cells. This investigation supports the findings that VT2 plays a role in adherence, shows that results obtained in adherence of E. coli O157:H7 in vivo may differ from those obtained in vitro, and identified AIDA-15 as having a role in adherence of E. coli O157:H7.
Collapse
|
43
|
Malyukova I, Murray KF, Zhu C, Boedeker E, Kane A, Patterson K, Peterson JR, Donowitz M, Kovbasnjuk O. Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis. Am J Physiol Gastrointest Liver Physiol 2009; 296:G78-92. [PMID: 18974311 PMCID: PMC2636932 DOI: 10.1152/ajpgi.90347.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Shiga toxin 1 and 2 production is a cardinal virulence trait of enterohemorrhagic Escherichia coli infection that causes a spectrum of intestinal and systemic pathology. However, intestinal sites of enterohemorrhagic E. coli colonization during the human infection and how the Shiga toxins are taken up and cross the globotriaosylceramide (Gb3) receptor-negative intestinal epithelial cells remain largely uncharacterized. We used samples of human intestinal tissue from patients with E. coli O157:H7 infection to detect the intestinal sites of bacterial colonization and characterize the distribution of Shiga toxins. We further used a model of largely Gb3-negative T84 intestinal epithelial monolayers treated with B-subunit of Shiga toxin 1 to determine the mechanisms of non-receptor-mediated toxin uptake. We now report that E. coli O157:H7 were found at the apical surface of epithelial cells only in the ileocecal valve area and that both toxins were present in large amounts inside surface and crypt epithelial cells in all tested intestinal samples. Our in vitro data suggest that macropinocytosis mediated through Src activation significantly increases toxin endocytosis by intestinal epithelial cells and also stimulates toxin transcellular transcytosis. We conclude that Shiga toxin is taken up by human intestinal epithelial cells during E. coli O157:H7 infection regardless of the presence of bacterial colonies. Macropinocytosis might be responsible for toxin uptake by Gb3-free intestinal epithelial cells and transcytosis. These observations provide new insights into the understanding of Shiga toxin contribution to enterohemorrhagic E. coli-related intestinal and systemic diseases.
Collapse
Affiliation(s)
- Irina Malyukova
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Karen F. Murray
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Chengru Zhu
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Edgar Boedeker
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anne Kane
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathleen Patterson
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jeffrey R. Peterson
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Falguières T, Maak M, von Weyhern C, Sarr M, Sastre X, Poupon MF, Robine S, Johannes L, Janssen KP. Human colorectal tumors and metastases express Gb3 and can be targeted by an intestinal pathogen-based delivery tool. Mol Cancer Ther 2008; 7:2498-508. [PMID: 18687997 DOI: 10.1158/1535-7163.mct-08-0430] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The targeting of solid tumors requires delivery tools that resist intracellular and extracellular inactivation, and that are taken up specifically by tumor cells. We have shown previously that the recombinant nontoxic B-subunit of Shiga toxin (STxB) can serve as a delivery tool to target digestive tumors in animal models. The aim of this study was to expand these experiments to human colorectal cancer. Tissue samples of normal colon, benign adenomas, colorectal carcinomas, and liver metastases from 111 patients were obtained for the quantification of the expression of the cellular STxB receptor, the glycosphingolipid globotriaosyl ceramide (Gb(3) or CD77). We found that compared with normal tissue, the expression of Gb(3) was strongly increased in colorectal adenocarcinomas and their metastases, but not in benign adenomas. Short-term primary cultures were prepared from samples of 43 patients, and STxB uptake was studied by immunofluorescence microscopy. Of a given tumor sample, on average, 80% of the cells could visibly bind STxB, and upon incubation at 37 degrees C, STxB was transported to the Golgi apparatus, following the retrograde route. This STxB-specific intracellular targeting allows the molecule to avoid recycling and degradation, and STxB could consequently be detected on tumor cells even 5 days after initial uptake. In conclusion, the targeting properties of STxB could be diverted for the delivery of contrast agents to human colorectal tumors and their metastases, whose early detection and specific targeting remains one of the principal challenges in oncology.
Collapse
Affiliation(s)
- Thomas Falguières
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mark Taylor C. Enterohaemorrhagic Escherichia coli and Shigella dysenteriae type 1-induced haemolytic uraemic syndrome. Pediatr Nephrol 2008; 23:1425-31. [PMID: 18493800 PMCID: PMC2459235 DOI: 10.1007/s00467-008-0820-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 02/28/2008] [Accepted: 02/28/2008] [Indexed: 11/30/2022]
Abstract
Haemolytic uraemic syndrome (HUS) can be classified according to the aetiology of the different disorders from which it is composed. The most prevalent form is that induced by shigatoxin producing Escherichia coli (STEC) and, in some tropical regions, by Shigella dysenteriae type 1. STEC cause a zoonosis, are widely distributed in nature, enter the food chain in different ways, and show regional differences. Not all STEC are human pathogens. Enterohaemorrhagic E. coli usually cause attachment and effacing lesions in the intestine. This is not essential, but production of a shigatoxin (Stx) is. Because Stx are encoded by a bacteriophage, this property is transferable to naïve strains. Laboratory methods have improved by identifying STEC either via the toxin or its bacteriophage. Shigella dysenteriae type 1 produces shigatoxin, identical to Stx-1, but also has entero-invasive properties that enterohaemorrhagic Escherichia coli (EHEC) do not. Shigella patients risk bacteremia and benefit from early antibiotic treatment, unlike those with EHEC.
Collapse
Affiliation(s)
- C. Mark Taylor
- Department of Nephrology, Birmingham Children’s Hospital, Birmingham, B4 6NH UK
| |
Collapse
|
46
|
Gobert AP, Vareille M, Glasser AL, Hindré T, de Sablet T, Martin C. Shiga toxin produced by enterohemorrhagic Escherichia coli inhibits PI3K/NF-kappaB signaling pathway in globotriaosylceramide-3-negative human intestinal epithelial cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:8168-74. [PMID: 17548655 DOI: 10.4049/jimmunol.178.12.8168] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Shiga toxin (Stx) produced by enterohemorrhagic Escherichia coli (EHEC) binds to endothelial cells expressing globotriaosylceramide-3 (Gb-3) and induces cell death by inhibiting translation. Nonetheless, the effects of Stx on human enterocytes, which lacks receptor Gb-3, remain less known. In this study, we questioned whether EHEC-derived Stx may modulate cellular signalization in the Gb-3-negative human epithelial cell line T84. Stx produced by EHEC was fixed and internalized by the cells. A weak activation of NF-kappaB was observed in T84 cells after EHEC infection. Cells infected with an isogenic mutant lacking stx1 and stx2, the genes encoding Stx, displayed an increased NF-kappaB DNA-binding activity. Consequently, the NF-kappaB-dependent CCL20 and IL-8 gene transcription and chemokine production were enhanced in T84 cells infected with the Stx mutant in comparison to the wild-type strain. Investigating the mechanism by which Stx modulates NF-kappaB activation, we showed that the PI3K/Akt signaling pathway was not induced by EHEC but was enhanced by the strain lacking Stx. Pharmacological inhibition of the PI3K/Akt signalization in EHEC DeltaStx-infected T84 cells yielded to a complete decrease of NF-kappaB activation and CCL20 and IL-8 mRNA expression. This demonstrates that the induction of the PI3K/Akt/NF-kappaB pathway is potentially induced by EHEC, but is inhibited by Stx in Gb-3-negative epithelial cells. Thus, Stx is an unrecognized modulator of the innate immune response of human enterocytes.
Collapse
Affiliation(s)
- Alain P Gobert
- Institut National de la Recherche Agronomique, UR454 Unité de Microbiologie, Centre de Theix, 63122 Saint-Genès-Champanelle, France.
| | | | | | | | | | | |
Collapse
|