1
|
Badia-Bringué G, Canive M, Blanco-Vázquez C, Torremocha R, Ovalle S, Ramos-Ruiz R, Casais R, Alonso-Hearn M. MicroRNAs modulate immunological and inflammatory responses in Holstein cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Sci Rep 2024; 14:173. [PMID: 38167436 PMCID: PMC10762146 DOI: 10.1038/s41598-023-50251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
MicroRNAs (miRNAs) regulate the post-transcriptional expression of genes by binding to their target mRNAs. In this study, whole miRNA sequencing was used to compare the expression of miRNAs in ileocecal valve (ICV) and peripheral blood (PB) samples of cows with focal or diffuse paratuberculosis (PTB)-associated lesions in gut tissues versus (vs) control cows without lesions. Among the eight miRNAs differentially expressed in the PB samples from cows with diffuse lesions vs controls, three (miR-19a, miR-144, miR32) were also down-regulated in cows with diffuse vs focal lesions. In the ICV samples, we identified a total of 4, 5, and 18 miRNAs differentially expressed in cows with focal lesions vs controls, diffuse lesions vs controls, and diffuse vs focal lesions, respectively. The differential expression of five microRNAs (miR-19a, miR-144, miR-2425-3p, miR-139, miR-101) was confirmed by RT-qPCR. Next, mRNA target prediction was performed for each differentially expressed miRNA. A functional analysis using the predicted gene targets revealed a significant enrichment of the RNA polymerase and MAPK signaling pathways in the comparison of cows with focal vs no lesions and with diffuse vs focal lesions, respectively. The identified miRNAs could be used for the development of novel diagnostic and therapeutical tools for PTB control.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Research and Technology Alliance (BRTA), Derio, Spain
- Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Cristina Blanco-Vázquez
- Center of Animal Biotechnology, SERIDA-Regional Service of Agri-Food Research and Development, Deva, Spain
| | - Rosana Torremocha
- Genomic Unit, Scientific Park of Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Susana Ovalle
- Genomic Unit, Scientific Park of Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Ricardo Ramos-Ruiz
- Genomic Unit, Scientific Park of Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Rosa Casais
- Center of Animal Biotechnology, SERIDA-Regional Service of Agri-Food Research and Development, Deva, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Research and Technology Alliance (BRTA), Derio, Spain.
| |
Collapse
|
2
|
Mallikarjunappa S, Brito LF, Pant SD, Schenkel FS, Meade KG, Karrow NA. Johne's Disease in Dairy Cattle: An Immunogenetic Perspective. Front Vet Sci 2021; 8:718987. [PMID: 34513975 PMCID: PMC8426623 DOI: 10.3389/fvets.2021.718987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a severe production-limiting disease with significant economic and welfare implications for the global cattle industry. Caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), JD manifests as chronic enteritis in infected cattle. In addition to the economic losses and animal welfare issues associated with JD, MAP has attracted public health concerns with potential association with Crohn's disease, a human inflammatory bowel disease. The lack of effective treatment options, such as a vaccine, has hampered JD control resulting in its increasing global prevalence. The disease was first reported in 1895, but in recognition of its growing economic impact, extensive recent research facilitated by a revolution in technological approaches has led to significantly enhanced understanding of the immunological, genetic, and pathogen factors influencing disease pathogenesis. This knowledge has been derived from a variety of diverse models to elucidate host-pathogen interactions including in vivo and in vitro experimental infection models, studies measuring immune parameters in naturally-infected animals, and by studies conducted at the population level to enable the estimation of genetic parameters, and the identification of genetic markers and quantitative trait loci (QTL) putatively associated with susceptibility or resistance to JD. The main objectives of this review are to summarize these recent developments from an immunogenetics perspective and attempt to extract the principal and common findings emerging from this wealth of recent information. Based on these analyses, and in light of emerging technologies such as gene-editing, we conclude by discussing potential future avenues for effectively mitigating JD in cattle.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sameer D Pant
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Mitogen-activated protein kinases (MAPKs) are modulated during in vitro and in vivo infection with the intracellular bacterium Burkholderia pseudomallei. Eur J Clin Microbiol Infect Dis 2017; 36:2147-2154. [PMID: 28856457 PMCID: PMC5653709 DOI: 10.1007/s10096-017-3038-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/04/2017] [Indexed: 11/23/2022]
Abstract
Burkholderia pseudomallei is a Gram-negative intracellular bacterium that causes the disease melioidosis. The disease can be fatal if left untreated or when antibiotic therapy is delayed and total clearance of the pathogen from the host is often not accomplished with current therapies. Thus, new therapeutic approaches for the treatment of infections caused by B. pseudomallei are required. To better understand host responses to B. pseudomallei infection, the activation of key proteins involved in the TLR inflammatory cascade was measured by western blotting. Activation of the mitogen-activated protein kinases (MAPKs) p38 and ERK were both significantly altered during both in vitro and in vivo infection. In considering an approach for therapy of B. pseudomallei infection the inhibition of ERK was achieved in vitro using the inhibitor PD0325901, along with decreased TNF-α production. However, the reduction in phosphorylated ERK and TNF-α release did not correspond with decreased bacterial replication or enhance clearance from infected macrophages. Despite this apparent lack of effect on the intracellular growth of B. pseudomallei in vitro, it is not clear what effect inhibition of ERK activation might have on outcome of disease in vivo. It may be that decreasing the levels of TNF-α in vivo could aid in reducing the overactive immune response that is known to ensue following B. pseudomallei infection, thereby increasing host survival.
Collapse
|
4
|
Khare S, Drake KL, Lawhon SD, Nunes JES, Figueiredo JF, Rossetti CA, Gull T, Everts RE, Lewin HA, Adams LG. Systems Analysis of Early Host Gene Expression Provides Clues for Transient Mycobacterium avium ssp avium vs. Persistent Mycobacterium avium ssp paratuberculosis Intestinal Infections. PLoS One 2016; 11:e0161946. [PMID: 27653506 PMCID: PMC5031438 DOI: 10.1371/journal.pone.0161946] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer’s patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum, inhibition of Ca signaling associated with decreased phagosome-lysosome fusion as well as phagocytosis inhibition, bias toward Th2 cell immune response accompanied by cell recruitment, cell proliferation and cell differentiation; leading to persistent infection. Contrarily, MAA infection was related to cellular responses associated with activation of molecular pathways that release chemicals and cytokines involved with containment of infection and a strong bias toward Th1 immune response, resulting in a transient infection.
Collapse
Affiliation(s)
- Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, 72079, United States of America
- * E-mail: (SK); (LGA)
| | | | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
| | - Jairo E. S. Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
| | - Josely F. Figueiredo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
| | - Carlos A. Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Harris. A. Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Leslie Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, United States of America
- * E-mail: (SK); (LGA)
| |
Collapse
|
5
|
Souza CD. Blocking the mitogen activated protein kinase-p38 pathway is associated with increase expression of nitric oxide synthase and higher production of nitric oxide by bovine macrophages infected with Mycobacterium avium subsp paratuberculosis. Vet Immunol Immunopathol 2015; 164:1-9. [DOI: 10.1016/j.vetimm.2015.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/19/2014] [Accepted: 01/26/2015] [Indexed: 01/04/2023]
|
6
|
de Souza AP, Vale VLC, Silva MDC, Araújo IBDO, Trindade SC, de Moura-Costa LF, Rodrigues GC, Sales TS, dos Santos HA, de Carvalho-Filho PC, de Oliveira-Neto MG, Schaer RE, Meyer R. MAPK involvement in cytokine production in response to Corynebacterium pseudotuberculosis infection. BMC Microbiol 2014; 14:230. [PMID: 25179342 PMCID: PMC4167526 DOI: 10.1186/s12866-014-0230-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/19/2014] [Indexed: 01/29/2023] Open
Abstract
Background Caseous lymphadenitis (CL) is a contagious infectious disease of small ruminants caused by Corynebacterium pseudotuberculosis. Is characterized by the formation of abscesses in the lymph nodes and intestines of infected animals, induced by inflammatory cytokines. The production of cytokines, such as IL-10, TNF-α, IL-4 and IFN-γ, is regulated by mitogen-activated protein kinase (MAPK) pathway activation. The present study investigated the involvement of MAPK pathways (MAPK p38, ERK 1 and ERK 2) with respect to the production of cytokines induced by antigens secreted by C. pseudotuberculosis over a 60-day course of infection. CBA mice (n = 25) were divided into three groups and infected with 102 colony forming units (CFU) of attenuated strain T1, 102 CFU of virulent strain VD57 or sterile saline solution and euthanized after 30 or 60 days. Murine splenocytes were treated with specific inhibitors (MAPK p38 inhibitor, ERK 1/2 inhibitor or ERK 2 inhibitor) and cultured with secreted antigens obtained from pathogenic bacteria (SeT1 or SeVD57). Results The MAPK pathways evaluated were observed to be involved in the production of IL-10, under stimulation by secreted antigens, while the MAPK p38 and ERK 1 pathways were shown to be primarily involved in TNF-α production. By contrast, no involvement of the MAPK p38 and ERK 1 and 2 pathways was observed in IFN-γ production, while the ERK 2 pathway demonstrated involvement in IL-4 production only in the mouse splenocytes infected with VD57 under stimulation by SeT1. Conclusion The authors hypothesize that MAPK p38 and ERK 1 pathways with respect to TNF-α production, as well as the MAPK p38 and ERK 1 and 2 pathways in relation to IL-10 production under infection by C. pseudotuberculosis are important regulators of cellular response. Additionally, the lack of the MAPK p38 and ERK 1/2 pathways in IFN-γ production in infected CBA murine cells stimulated with the two secreted/excreted antigens, in IL-4 production showing involvement only via the ERK 2 pathway under stimulation by SeT1 antigen during 60-day infection period with the virulent strain, suggests that these pathways regulated the production of pro-inflammatory and regulatory cytokines in the splenic cells of CBA mice.
Collapse
Affiliation(s)
- Andréia Pacheco de Souza
- Biointeraction Department - Immunology and Molecular Biology Laboratory - Health Sciences Institute (ICS), Federal University of Bahia (UFBA), Av, Reitor Miguel Calmon, s/n; Vale do Canela, Salvador CEP 40040-040, Bahia, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lamont EA, Xu WW, Sreevatsan S. Host-Mycobacterium avium subsp. paratuberculosis interactome reveals a novel iron assimilation mechanism linked to nitric oxide stress during early infection. BMC Genomics 2013; 14:694. [PMID: 24112552 PMCID: PMC3832399 DOI: 10.1186/1471-2164-14-694] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/02/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The initial interaction between host cell and pathogen sets the stage for the ensuing infection and ultimately determine the course of disease. However, there is limited knowledge of the transcripts utilized by host and pathogen and how they may impact one another during this critical step. The purpose of this study was to create a host-Mycobacterium avium subsp. paratuberculosis (MAP) interactome for early infection in an epithelium-macrophage co-culture system using RNA-seq. RESULTS Establishment of the host-MAP interactome revealed a novel iron assimilation system for carboxymycobactin. Iron assimilation is linked to nitric oxide synthase-2 production by the host and subsequent nitric oxide buildup. Iron limitation as well as nitric oxide is a prompt for MAP to enter into an iron sequestration program. This new iron sequestration program provides an explanation for mycobactin independence in some MAP strains grown in vitro as well as during infection within the host cell. Utilization of such a pathway is likely to aid MAP establishment and long-term survival within the host. CONCLUSIONS The host-MAP interactome identified a number of metabolic, DNA repair and virulence genes worthy for consideration as novel drug targets as well as future pathogenesis studies. Reported interactome data may also be utilized to conduct focused, hypothesis-driven research. Co-culture of uninfected bovine epithelial cells (MAC-T) and primary bovine macrophages creates a tolerant genotype as demonstrated by downregulation of inflammatory pathways. This co-culture system may serve as a model to investigate other bovine enteric pathogens.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| | - Wayne W Xu
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
- Department of Veterinary Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
8
|
Mannosylated lipoarabinomannans from Mycobacterium avium subsp. paratuberculosis alters the inflammatory response by bovine macrophages and suppresses killing of Mycobacterium avium subsp. avium organisms. PLoS One 2013; 8:e75924. [PMID: 24098744 PMCID: PMC3786972 DOI: 10.1371/journal.pone.0075924] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022] Open
Abstract
Analysis of the mechanisms through which pathogenic mycobacteria interfere with macrophage activation and phagosome maturation have shown that engagement of specific membrane receptors with bacterial ligands is the initiating event. Mannosylated lipoarabinomannan (Man-LAM) has been identified as one of the ligands that modulates macrophage function. We evaluated the effects of Man-LAM derived from Mycobacterium avium subsp. paratuberculosis (MAP) on bovine macrophages. Man-LAM induced a rapid and prolonged expression of IL-10 message as well as transient expression of TNF-α. Preincubation with Man-LAM for up to 16 h did not suppress expression of IL-12 in response to interferon-γ. Evaluation of the effect of Man-LAM on phagosome acidification, phagosome maturation, and killing of Mycobacterium avium subsp. avium (MAA) showed that preincubation of macrophages with Man-LAM before addition of MAA inhibited phagosome acidification, phagolysosome fusion, and reduced killing. Analysis of signaling pathways provided indirect evidence that inhibition of killing was associated with activation of the MAPK-p38 signaling pathway but not the pathway involved in regulation of expression of IL-10. These results support the hypothesis that MAP Man-LAM is one of the virulence factors facilitating survival of MAP in macrophages.
Collapse
|
9
|
Impaired stimulation of p38α-MAPK/Vps41-HOPS by LPS from pathogenic Coxiella burnetii prevents trafficking to microbicidal phagolysosomes. Cell Host Microbe 2013; 12:751-63. [PMID: 23245320 DOI: 10.1016/j.chom.2012.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/07/2012] [Accepted: 10/15/2012] [Indexed: 01/29/2023]
Abstract
Variations in lipopolysaccharide (LPS), a bacterial outer membrane component, determine virulence of the obligate intracellular bacterium Coxiella burnetii, but the underlying mechanisms are unknown. We find that while avirulent C. burnetii LPS (avLPS) stimulates host p38α-MAPK signaling required for proper trafficking of bacteria containing compartments to lysosomes for destruction, pathogenic C. burnetii LPS (vLPS) does not. The defect in vLPS and pathogenic C. burnetii targeting to degradative compartments involves an antagonistic engagement of TLR4 by vLPS, lack of p38α-MAPK-driven phosphorylation, and block in recruitment of the homotypic fusion and protein-sorting complex component Vps41 to vLPS-containing vesicles. An upstream activator of p38α-MAPK or phosphomimetic mutant Vps41-S796E expression overrides the inhibition, allowing vLPS and pathogenic C. burnetii targeting to phagolysosomes. Thus, p38α-MAPK and its crosstalk with Vps41 play a central role in trafficking bacteria to phagolysosomes. Pathogenic C. burnetii has evolved LPS variations to evade this host response and thrive intracellularly.
Collapse
|
10
|
Babesia bovis:lipids from virulent S2P and attenuated R1A strains trigger differential signalling and inflammatory responses in bovine macrophages. Parasitology 2013; 140:530-40. [DOI: 10.1017/s003118201200193x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SUMMARYThe intra-erythrocytic protozoanBabesia bovisis an economically important pathogen that causes an acute and often fatal infection in adult cattle. Babesiosis limitation depends on the early activation of macrophages, essential cells of the host innate immunity, which can generate an inflammatory response mediated by cytokines and nitric oxide (NO). Herein, we demonstrate in bovine macrophages that lipids fromB. bovisattenuated R1A strain (LA) produced a stronger NO release, an early TNFαmRNA induction and 2-fold higher IL-12p35 mRNA levels compared to the lipids of virulent S2P strain (LV). Neither LAnor LVinduced anti-inflammatory IL-10. Regarding signalling pathways, we here report that LAinduced a significant phosphorylation of p38 and extracellular signal-regulated kinases 1 and 2 (ERK1/2) whereas LVonly induced a reduced activation of ERK1/2. Besides, NF-κB was activated by LAand LV, but LAproduced an early degradation of the inhibitor IκB. Interestingly, LVand the majority of its lipid fractions, exerted a significant inhibition of concanavalin A-induced peripheral blood mononuclear cell proliferation with respect to LAand its corresponding lipid fractions. In addition, we determined that animals infected with R1A developed a higher increase in IgM anti-phosphatidylcholine than those inoculated with S2P. Collectively, S2P lipids generated a decreased inflammatory response contributing to the evasion of innate immunity. Moreover, since R1A lipids induced a pro-inflammatory profile, we propose these molecules as good candidates for immunoprophylactic strategies against babesiosis.
Collapse
|
11
|
Khare S, Lawhon SD, Drake KL, Nunes JES, Figueiredo JF, Rossetti CA, Gull T, Everts RE, Lewin HA, Galindo CL, Garner HR, Adams LG. Systems biology analysis of gene expression during in vivo Mycobacterium avium paratuberculosis enteric colonization reveals role for immune tolerance. PLoS One 2012; 7:e42127. [PMID: 22912686 PMCID: PMC3422314 DOI: 10.1371/journal.pone.0042127] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 07/03/2012] [Indexed: 12/31/2022] Open
Abstract
Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection), processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i) early (30 min and 1 hr post-infection), ii) intermediate (2, 4 and 8 hrs post-infection), and iii) late (12 hrs post-infection). We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence) that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed pathways and specifically modified mechanistic genes contributing to the colonization of Peyer's patch.
Collapse
Affiliation(s)
- Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kenneth L. Drake
- Seralogix, Limited Liability Company, Austin, Texas, United States of America
| | - Jairo E. S. Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Josely F. Figueiredo
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Carlos A. Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Cristi L. Galindo
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Harold R. Garner
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Leslie Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
12
|
Uptake and persistence of Mycobacterium avium subsp. paratuberculosis in human monocytes. Infect Immun 2012; 80:3768-75. [PMID: 22890992 DOI: 10.1128/iai.00534-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is a bacterium sometimes found in human blood and tissue samples that may have a role in the etiology of Crohn's disease in humans. To date, however, there have been few studies examining the interactions of these bacteria with human cells. Using the THP-1 human monocytic cell line, this study shows that the uptake and trafficking of M. avium subsp. paratuberculosis in human cells are cholesterol dependent and that these bacteria localize to cholesterol-rich compartments that are slow to acidify. M. avium subsp. paratuberculosis bacteria containing phagosomes stain for the late endosomal marker Rab7, but recruitment of the Rab7-interacting lysosomal protein that regulates the fusion of bacterium-containing phagosomes with lysosomal compartments and facilitates subsequent bacterial clearance is significantly reduced. Disruption of phagosome acidification via this mechanism may contribute to M. avium subsp. paratuberculosis persistence in human cells, but there was no evidence that internalized M. avium subsp. paratuberculosis also affects the survival of bacteria taken up during a secondary phagocytic event.
Collapse
|
13
|
Sim YS, Kim SY, Kim EJ, Shin SJ, Koh WJ. Impaired Expression of MAPK Is Associated with the Downregulation of TNF-α, IL-6, and IL-10 in Mycobacterium abscessus Lung Disease. Tuberc Respir Dis (Seoul) 2012; 72:275-83. [PMID: 23227067 PMCID: PMC3510277 DOI: 10.4046/trd.2012.72.3.275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 12/07/2011] [Accepted: 01/09/2012] [Indexed: 11/26/2022] Open
Abstract
Background Healthy individuals who develop nontuberculous mycobacteria (NTM) lung disease are likely to have specific susceptibility factors which can lead to a NTM infection. The aim of the present study was to investigate the mechanism underlying innate immune responses, including the role of mitogen-activated protein kinase (MAPK), in Mycobacterium abscessus lung disease. Methods Extracellular signal-regulated kinase (ERK1/2) and p38 MAPK expression in monocytes from peripheral blood mononuclear cells were measured by Western blot analysis after stimulation by Mycobacterium avium in five patients with M. abscessus lung disease and seven healthy controls. A M. avium-induced cytokine assay was performed after inhibition of ERK1/2 and p38 MAPK pathways. Results Mycobacterium avium induced p38 and ERK1/2 expression in monocytes from healthy controls and subsequently upregulated tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 production. In monocytes from patients with M. abscessus lung disease, however, induction of p38 and ERK1/2 expression, and the production of TNF-α, IL-6, and IL-10 were significantly lower. Conclusion Decreased activity of MAPK and cytokine secretion in monocytes from patients with M. abscessus lung disease may provide an explanation regarding host susceptibility to these uncommon infections.
Collapse
Affiliation(s)
- Yun Su Sim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
14
|
MacHugh DE, Taraktsoglou M, Killick KE, Nalpas NC, Browne JA, DE Park S, Hokamp K, Gormley E, Magee DA. Pan-genomic analysis of bovine monocyte-derived macrophage gene expression in response to in vitro infection with Mycobacterium avium subspecies paratuberculosis. Vet Res 2012; 43:25. [PMID: 22455317 PMCID: PMC3411445 DOI: 10.1186/1297-9716-43-25] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/28/2012] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis is the causative agent of Johne's disease, an intestinal disease of ruminants with major economic consequences. Infectious bacilli are phagocytosed by host macrophages upon exposure where they persist, resulting in lengthy subclinical phases of infection that can lead to immunopathology and disease dissemination. Consequently, analysis of the macrophage transcriptome in response to M. avium subsp. paratuberculosis infection can provide valuable insights into the molecular mechanisms that underlie Johne's disease. Here, we investigate pan-genomic gene expression in bovine monocyte-derived macrophages (MDM) purified from seven age-matched females, in response to in vitro infection with M. avium subsp. paratuberculosis (multiplicity of infection 2:1) at intervals of 2 hours, 6 hours and 24 hours post-infection (hpi). Differentially expressed genes were identified by comparing the transcriptomes of the infected MDM to the non-infected control MDM at each time point (adjusted P-value threshold ≤ 0.10). 1050 differentially expressed unique genes were identified 2 hpi, with 974 and 78 differentially expressed unique genes detected 6 and 24 hpi, respectively. Furthermore, in the infected MDM the number of upregulated genes exceeded the number of downregulated genes at each time point, with the fold-change in expression for the upregulated genes markedly higher than that for the downregulated genes. Inspection and systems biology analysis of the differentially expressed genes revealed an enrichment of genes involved in the inflammatory response, cell signalling pathways and apoptosis. The transcriptional changes associated with cellular signalling and the inflammatory response may reflect different immuno-modulatory mechanisms that underlie host-pathogen interactions during infection.
Collapse
Affiliation(s)
- David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maria Taraktsoglou
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen DE Park
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Trinity College, Belfield, Dublin 2, Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
15
|
Klug K, Ehlers S, Uhlig S, Reiling N. Mitogen-activated protein kinases p38 and ERK1/2 regulated control of Mycobacterium avium replication in primary murine macrophages is independent of tumor necrosis factor-α and interleukin-10. Innate Immun 2010; 17:470-85. [PMID: 20682586 DOI: 10.1177/1753425910377799] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In macrophages, mitogen-activated protein kinases (MAPK) are critical regulators of both, mycobacterial replication and mycobacteria-induced cytokine formation. To segregate direct effects of MAPK function on mycobacterial replication from indirect, cytokine-mediated effects, we studied the growth of Mycobacterium avium strains in wild-type and tumor necrosis factor (TNF)-α- or interleukin (IL)-10-deficient bone marrow-derived murine macrophages. Using specific inhibitors of the p38- and the ERK1/2-MAPK pathways, we found that the use of SB203580 always reduced, whereas the presence of PD98059 always promoted, bacterial replication of highly virulent and intermediately virulent M. avium strains, independent of endogenous TNF-α or IL-10. The exogenous addition of TNF-α to TNF-α-deficient and wild-type M. avium-infected macrophages overrode the replication-reducing effect of SB203580, but not the replication-promoting effect of PD98059. In summary, our data demonstrate that a proper balance of MAPK activity is essential for macrophage control of M. avium growth, and that the ratio of the cytokines TNF-α and IL-10 can additionally modulate replication. Our findings indicate a novel therapeutic avenue for treating mycobacterial infections in particular by stimulating ERK1/2 or activating ERK1/2-dependent mechanisms in infected macrophages.
Collapse
Affiliation(s)
- Kirsten Klug
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | | | | | | |
Collapse
|
16
|
Paradigm redux—Mycobacterium avium subspecies paratuberculosis-macrophage interactions show clear variations between bovine and human physiological body temperatures. Microb Pathog 2010; 48:143-9. [DOI: 10.1016/j.micpath.2010.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/06/2010] [Accepted: 02/18/2010] [Indexed: 11/23/2022]
|
17
|
Weiss DJ, Souza CD. Review paper: modulation of mononuclear phagocyte function by Mycobacterium avium subsp. paratuberculosis. Vet Pathol 2008; 45:829-41. [PMID: 18984786 DOI: 10.1354/vp.45-6-829] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pathogenic mycobacteria are highly adapted for survival within host mononuclear phagocytes. This is largely due to the organism's capacity to prevent macrophage activation, block phagosome acidification and maturation, and attenuate presentation of antigens to the immune system. Mycobacterium avium subsp. paratuberculosis (MAP) is one such organism that modulates the ruminant innate immune response. It is the causative agent in paratuberculosis, a chronic progressive granulomatous enteritis in ruminants. MAP initially interacts with cell membrane receptors on bovine mononuclear phagocytes and initiates cell signaling responses and phagocytosis. Mannosylated liparabinomannan (Man-LAM) is a major component of the MAP cell wall that interacts with the cell membrane of mononuclear phagocytes and may be a major virulence factor. Toll-like receptor 2 (TLR2) has been incriminated as major signaling receptor that binds to MAP and initiates signaling though the mitogen-activated protein kinase (MAPK)-p38 pathway. This pathway induces transcription of interleukin (IL)-10. Early production of IL-10 suppresses proinflammatory cytokines, chemokines, IL-12, and major histocompatability factor class-II expression. Both IL-10 dependent and IL-10 independent mechanisms appear to be involved in attenuation of phagosome acidification and phagolysosome fusion. Many of the suppressive effects of MAP on bovine mononuclear phagocytes can be reproduced by exposure of bovine monocytes to Man-LAM. Therefore, MAP Man-LAM-induced TLR2-MAPK-p38 signaling with resultant excessive IL-10 expression has emerged as one of the mechanisms by which MAP organisms suppress inflammatory, immune, and antimicrobial responses and promote their survival within host mononuclear phagocytes.
Collapse
Affiliation(s)
- D J Weiss
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA.
| | | |
Collapse
|