1
|
Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms 2022; 10:microorganisms10122334. [PMID: 36557586 PMCID: PMC9784227 DOI: 10.3390/microorganisms10122334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.
Collapse
|
2
|
Omanakuttan M, Konatham HR, Dirisala VR, Jeevan A, Mawatwal S, Dhiman R, Ly LH, McMurray D. Prokaryotic Expression, In Vitro Biological Analysis, and In Silico Structural Evaluation of Guinea Pig IL-4. Mol Biotechnol 2020; 62:104-110. [PMID: 31758487 DOI: 10.1007/s12033-019-00227-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Interleukin-4 is a signature cytokine of T-helper type 2 (Th2) cells that play a major role in shaping immune responses. Its role in highly relevant animal model of tuberculosis (TB) like guinea pig has not been studied till date. In the current study, the guinea pig IL-4 gene was cloned and expressed using a prokaryotic expression vector (pET30 a(+)). This approach yielded a recombinant protein of 19 kDa as confirmed by mass spectrometry analysis and named as recombinant guinea pig (rgp)IL-4 protein. The authenticity of the expression of rgpIL-4 protein was further verified through polyclonal anti-IL4 antiserum raised in rabbits that showed specific and strong binding with the recombinant protein. The biological activity of the rgpIL-4 was ascertained in RAW264.7 cells where LPS-treated nitric oxide (NO) production was found to be suppressed in the presence of this protein. The three-dimensional structure of guinea pig IL-4 was predicted by utilizing the template structure of human interleukin-4, which shared a sequence homology of 58%. The homology modeling result showed clear resemblance of guinea pig IL-4 structure with the human IL-4. Taken together, our study indicates that the newly expressed, biologically active rgpIL-4 protein could provide deeper understanding of the immune responses in guinea pig to different infectious diseases like TB and non-infectious ones.
Collapse
Affiliation(s)
- Madhavan Omanakuttan
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, 522213, India
| | - Hanumohan R Konatham
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, 522213, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, 522213, India.
| | - Amminikutty Jeevan
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Lan H Ly
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - David McMurray
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| |
Collapse
|
3
|
Kiran D, Podell BK, Chambers M, Basaraba RJ. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Semin Immunopathol 2015; 38:167-83. [PMID: 26510950 PMCID: PMC4779125 DOI: 10.1007/s00281-015-0537-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Abstract
Infection by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb) is a major cause of morbidity and mortality worldwide. Slow progress has been made in lessening the impact of tuberculosis (TB) on human health, especially in parts of the world where Mtb is endemic. Due to the complexity of TB disease, there is still an urgent need to improve diagnosis, prevention, and treatment strategies to control global spread of disease. Active research targeting avenues to prevent infection or transmission through vaccination, to diagnose asymptomatic carriers of Mtb, and to improve antimicrobial drug treatment responses is ongoing. However, this research is hampered by a relatively poor understanding of the pathogenesis of early infection and the factors that contribute to host susceptibility, protection, and the development of active disease. There is increasing interest in the development of adjunctive therapy that will aid the host in responding to Mtb infection appropriately thereby improving the effectiveness of current and future drug treatments. In this review, we summarize what is known about the host response to Mtb infection in humans and animal models and highlight potential therapeutic targets involved in TB granuloma formation and resolution. Strategies designed to shift the balance of TB granuloma formation toward protective rather than destructive processes are discussed based on our current knowledge. These therapeutic strategies are based on the assumption that granuloma formation, although thought to prevent the spread of the tubercle bacillus within and between individuals contributes to manifestations of active TB disease in human patients when left unchecked. This effect of granuloma formation favors the spread of infection and impairs antimicrobial drug treatment. By gaining a better understanding of the mechanisms by which Mtb infection contributes to irreversible tissue damage, down regulates protective immune responses, and delays tissue healing, new treatment strategies can be rationally designed. Granuloma-targeted therapy is advantageous because it allows for the repurpose of existing drugs used to treat other communicable and non-communicable diseases as adjunctive therapies combined with existing and future anti-TB drugs. Thus, the development of adjunctive, granuloma-targeted therapy, like other host-directed therapies, may benefit from the availability of approved drugs to aid in treatment and prevention of TB. In this review, we have attempted to summarize the results of published studies in the context of new innovative approaches to host-directed therapy that need to be more thoroughly explored in pre-clinical animal studies and in human clinical trials.
Collapse
Affiliation(s)
- Dilara Kiran
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA
| | - Mark Chambers
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.,School of Veterinary Medicine Faculty of Health and Medical Sciences, University of Surrey, Vet School Main Building, Daphne Jackson Road, Guildford, GU2 7AL, UK
| | - Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA.
| |
Collapse
|
4
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
5
|
Dirisala VR, Jeevan A, Ramasamy SK, McMurray DN. Molecular cloning, expression, and in silico structural analysis of guinea pig IL-17. Mol Biotechnol 2014; 55:277-87. [PMID: 23813049 DOI: 10.1007/s12033-013-9679-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-17A (IL-17A) is a potent proinflammatory cytokine and the signature cytokine of Th17 cells, a subset which is involved in cytokine and chemokine production, neutrophil recruitment, promotion of T cell priming, and antibody production. IL-17 may play an important role in tuberculosis and other infectious diseases. In preparation for investigating its role in the highly relevant guinea pig model of pulmonary tuberculosis, we cloned guinea pig IL-17A for the first time. The complete coding sequence of the guinea pig IL-17A gene (477 nucleotides; 159 amino acids) was subcloned into a prokaryotic expression vector (pET-30a) resulting in the expression of a 17 kDa recombinant guinea pig IL-17A protein which was confirmed by mass spectrometry analysis. Homology modeling of guinea pig IL-17A revealed that the three-dimensional structure resembles that of human IL-17A. The secondary structure predicted for this protein showed the presence of one extra helix in the N-terminal region. The expression profile of IL-17A was analyzed quantitatively in spleen, lymph node, and lung cells from BCG-vaccinated guinea pigs by real-time PCR. The guinea pig IL-17A cDNA and its recombinant protein will serve as valuable tools for molecular and immunological studies in the guinea pig model of pulmonary TB and other human diseases.
Collapse
Affiliation(s)
- Vijaya R Dirisala
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843-1114, USA,
| | | | | | | |
Collapse
|
6
|
Tsenova L, O'Brien P, Holloway J, Peixoto B, Soteropoulos P, Fallows D, Kaplan G, Subbian S. Etanercept exacerbates inflammation and pathology in a rabbit model of active pulmonary tuberculosis. J Interferon Cytokine Res 2014; 34:716-26. [PMID: 24831609 DOI: 10.1089/jir.2013.0123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment of chronic inflammatory diseases with tumor necrosis factor alpha (TNF-α) antagonists has been associated with increased risk of tuberculosis (TB). We examined the usefulness of the rabbit model of active pulmonary TB for studying the impact of the human immune modulatory reagent etanercept on the host immune response. Control of Mycobacterium tuberculosis (Mtb) infection, disease pathology, and the global transcriptional response in Mtb-infected lungs of rabbits were studied. Etanercept treatment exacerbated disease pathology and reduced bacillary control in the lungs, compared with infected untreated animals. Reduced collagen and fibrin deposition in the granulomas was associated with significant downregulation of the collagen metabolism and fibrosis network genes and upregulation of genes in the inflammatory response and cell recruitment networks in the lungs of etanercept treated, compared with untreated rabbits. Our results suggest that targeting the TNF-α signaling pathway disrupts the tissue remodeling process, which is required for the formation and maintenance of well-differentiated granulomas and for control of Mtb growth in the lungs. These results validate the use of the rabbit model for investigating the impact of selected human immune modulatory drugs, such as a TNF-α antagonist, on the host immune response and pathogenesis in TB.
Collapse
Affiliation(s)
- Liana Tsenova
- 1 Laboratory of Mycobacterial Immunity and Pathogenesis, The Public Health Research Institute (PHRI), Rutgers Biomedical and Health Sciences, Rutgers The State University of New Jersey , Newark, New Jersey
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dirisala VR, Jeevan A, Ly LH, McMurray DN. Prokaryotic expression and in vitro functional analysis of IL-1β and MCP-1 from guinea pig. Mol Biotechnol 2013; 54:312-9. [PMID: 22744745 PMCID: PMC3594633 DOI: 10.1007/s12033-012-9574-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Guinea pig (Cavia porcellus) is an excellent animal model for studying human tuberculosis (TB) and also for a number of other infectious and non-infectious diseases. One of the major roadblocks in effective utilization of this animal model is the lack of readily available immunological reagents. In order to address this issue, guinea pig interleukin 1 beta (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) were efficiently cloned and expressed in a prokaryotic expression vector, and the expressed proteins in soluble form from both the genes were confirmed by N-terminal sequencing. The biological activity of recombinant guinea pig IL-1β was demonstrated by its ability to drive proliferation in thymocytes, and the recombinant guinea pig MCP-1 exhibited chemotactic activity for guinea pig resident peritoneal macrophages. These biologically active recombinant guinea pig proteins will facilitate an in-depth understanding of the role they play in the immune responses of the guinea pig to TB and other diseases.
Collapse
Affiliation(s)
- Vijaya R Dirisala
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX, USA.
| | | | | | | |
Collapse
|
8
|
Molecular cloning and expression of the IL-10 gene from guinea pigs. Gene 2012; 498:120-7. [PMID: 22349028 DOI: 10.1016/j.gene.2012.01.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/23/2012] [Accepted: 01/27/2012] [Indexed: 12/26/2022]
Abstract
The Guinea pig (Cavia porcellus) is one of the most relevant small animals for modeling human tuberculosis (TB) in terms of susceptibility to low dose aerosol infection, the organization of granulomas, extrapulmonary dissemination and vaccine-induced protection. It is also considered to be a gold standard for a number of other infectious and non-infectious diseases; however, this animal model has a major disadvantage due to the lack of readily available immunological reagents. In the present study, we successfully cloned a cDNA for the critical Th2 cytokine, interleukin-10 (IL-10), from inbred Strain 2 guinea pigs using the DNA sequence information provided by the genome project. The complete open reading frame (ORF) consists of 537 base pairs which encodes a protein of 179 amino acids. This cDNA sequence exhibited 87% homology with human IL-10. Surprisingly, it showed only 84% homology with the previously published IL-10 sequence from the C4-deficient (C4D) guinea pig, leading us to clone IL-10 cDNA from the Hartley strain of guinea pig. The IL-10 gene from the Hartley strain showed 100% homology with the IL-10 sequence of Strain 2 guinea pigs. In order to validate the only published IL-10 sequence existing in Genbank reported from C4D guinea pigs, genomic DNA was isolated from tissues of C4D guinea pigs. Amplification with various sets of primers showed that the IL-10 sequence reported from C4D guinea pigs contained numerous errors. Hence the IL-10 sequence that is being reported by us replaces the earlier sequence making our IL-10 sequence to be the first one accurate from guinea pig. Recombinant guinea pig IL-10 proteins were subsequently expressed in both prokaryotic and eukaryotic cells, purified and were confirmed by N-terminal sequencing. Polyclonal anti-IL-10 antibodies were generated in rabbits using the recombinant IL-10 protein expressed in this study. Taken together, our results indicate that the DNA sequence information provided by the genome project is useful to directly clone much needed cDNAs necessary to study TB in the guinea pig. The newly cloned guinea pig IL-10 cDNA and recombinant proteins will serve as valuable resources for immunological studies in the guinea pig model of TB and other diseases.
Collapse
|
9
|
Identifying a role for Toll-like receptor 3 in the innate immune response to Chlamydia muridarum infection in murine oviduct epithelial cells. Infect Immun 2011; 80:254-65. [PMID: 22006569 DOI: 10.1128/iai.05549-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Because epithelial cells are the major cell type productively infected with Chlamydia during genital tract infections, the overall goal of our research was to understand the contribution of infected epithelial cells to the host defense. We previously showed that Toll-like receptor 3 (TLR3) is the critical pattern recognition receptor in oviduct epithelial (OE) cells that is stimulated during Chlamydia infection, resulting in the synthesis of beta interferon (IFN-β). Here, we present data that implicates TLR3 in the expression of a multitude of other innate-inflammatory immune modulators including interleukin-6 (IL-6), CXCL10, CXCL16, and CCL5. We demonstrate that Chlamydia-induced expression of these cytokines is severely disrupted in TLR3-deficient OE cells, whereas Chlamydia replication in the TLR3-deficient cells is more efficient than in wild-type OE cells. Pretreatment of the TLR3-deficient OE cells with 50 U of IFN-β/ml prior to infection diminished Chlamydia replication and restored the ability of Chlamydia infection to induce IL-6, CXCL10, and CCL5 expression in TLR3-deficient OE cells; however, CXCL16 induction was not restored by IFN-β preincubation. Our findings were corroborated in pathway-focused PCR arrays, which demonstrated a multitude of different inflammatory genes that were defectively regulated during Chlamydia infection of the TLR3-deficient OE cells, and we found that some of these genes were induced only when IFN-β was added prior to infection. Our OE cell data implicate TLR3 as an essential inducer of IFN-β and other inflammatory mediators by epithelial cells during Chlamydia infection and highlight the contribution of TLR3 to the inflammatory cytokine response.
Collapse
|
10
|
Subbian S, Tsenova L, O'Brien P, Yang G, Koo MS, Peixoto B, Fallows D, Dartois V, Muller G, Kaplan G. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs. PLoS Pathog 2011; 7:e1002262. [PMID: 21949656 PMCID: PMC3174258 DOI: 10.1371/journal.ppat.1002262] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/22/2011] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment. Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is a leading infectious cause of morbidity and mortality. Although current antibiotic regimens can cure TB, treatment requires at least six months for completion. Recent studies indicate that bacteria in a less metabolically active state are less responsive to antibiotic killing and suggest that this may partly explain the long duration required for TB treatment. In this study, using a rabbit model of pulmonary TB, we show that immune modulation of Mtb infected animals with CC-3052, a phosphodiesterase-4 (PDE4) inhibitor that reduces tumor necrosis factor alpha (TNF-α) production by increasing intracellular cAMP levels, resulted in the down-regulation of host genes involved in the innate immune response. Bacteria from the lungs of CC-3052 treated rabbits displayed differential expression of those genes associated with stress responses. In addition, co-treatment of INH with CC-3052 abolished the INH-induced Mtb gene expression in the infected rabbits. Importantly, bacillary clearance from the lungs of rabbits co-treated with CC-3052 and INH was improved over that in animals treated with INH alone. The results of this study provide a basis for novel use of immune modulation to improve the efficacy of antibiotic therapy and to shorten the duration of TB treatment.
Collapse
Affiliation(s)
- Selvakumar Subbian
- Laboratory of Mycobacterial Immunity and Pathogenesis, the Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey, United States of America
| | - Liana Tsenova
- Laboratory of Mycobacterial Immunity and Pathogenesis, the Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey, United States of America
- Biological Sciences Department, New York City College of Technology, Brooklyn, New York, United States of America
| | - Paul O'Brien
- Laboratory of Mycobacterial Immunity and Pathogenesis, the Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey, United States of America
| | - Guibin Yang
- Laboratory of Mycobacterial Immunity and Pathogenesis, the Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey, United States of America
| | - Mi-Sun Koo
- Laboratory of Mycobacterial Immunity and Pathogenesis, the Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey, United States of America
| | - Blas Peixoto
- Laboratory of Mycobacterial Immunity and Pathogenesis, the Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey, United States of America
| | - Dorothy Fallows
- Laboratory of Mycobacterial Immunity and Pathogenesis, the Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey, United States of America
| | | | - George Muller
- Celgene Corporation, Summit, New Jersey, United States of America
| | - Gilla Kaplan
- Laboratory of Mycobacterial Immunity and Pathogenesis, the Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kramp JC, McMurray DN, Formichella C, Jeevan A. The in vivo immunomodulatory effect of recombinant tumour necrosis factor-alpha in guinea pigs vaccinated with Mycobacterium bovis bacille Calmette-Guérin. Clin Exp Immunol 2011; 165:110-20. [PMID: 21545584 DOI: 10.1111/j.1365-2249.2011.04406.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous studies from our laboratory demonstrated that treatment in vitro with recombinant guinea pig tumour necrosis factor TNF (rgpTNF)-α-enhanced T cell and macrophage functions. Similarly, injection of Mycobacterium tuberculosis-infected guinea pigs with anti-TNF-α altered splenic granuloma organization and caused inflammatory changes and reduced the cell-associated mycobacteria in the tuberculous pluritis model. In this study, rgpTNF-α was injected into bacille Calmette-Guérin (BCG)-vaccinated guinea pigs to modulate immune functions in vivo. Guinea pigs were vaccinated intradermally with BCG, 2 × 10(3) colony-forming units (CFU) and injected intraperitoneally with either rgpTNF-α (25 µg/animal) or 1% bovine serum albumin (BSA) for a total of 12 injections given every other day. Treatment with rgpTNF-α significantly enhanced the skin test response to purified protein derivative (PPD), reduced the number of CFUs and increased the PPD-induced proliferation in the lymph nodes at 6 weeks after vaccination. The levels of interleukin (IL)-12 mRNA were increased in the lymph node and spleen cells stimulated with PPD. TNF-α treatment induced a decrease in TNF-α, IL-12p40 and IL-10 mRNA levels in peritoneal cells following PPD stimulation while live M. tuberculosis caused an increase in TNF-α mRNA and a decrease in the IL-10 mRNA expression. TNF-α injection also induced an increase in the infiltration of mononuclear cells and in the proportions of CD3(+) T cells in the lymph nodes. These results indicate that rgpTNF-α enhances some aspects of T cell immunity and promotes control of mycobacteria in the tissues. Future studies will address the role of TNF-α in BCG-vaccinated guinea pigs following low-dose pulmonary challenge with virulent M. tuberculosis.
Collapse
Affiliation(s)
- J C Kramp
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College of Medicine, College Station, TX, USA
| | | | | | | |
Collapse
|
12
|
Cloning of guinea pig IL-4: reduced IL-4 mRNA after vaccination or Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2010; 91:47-56. [PMID: 21167782 DOI: 10.1016/j.tube.2010.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/27/2010] [Accepted: 11/16/2010] [Indexed: 01/19/2023]
Abstract
Interleukin-4 (IL-4), a pleiotropic cytokine produced by T-helper type 2 (Th2) cells, is involved in promoting humoral immune responses, allergic reactions and asthma. Previous studies suggested an important role for IL-4 in susceptibility to pulmonary tuberculosis; however, the role of IL-4 has not been studied in the guinea pig, a highly relevant model for this disease. In the present study, we cloned a cDNA for guinea pig IL-4 and examined, for the first time, mRNA expression by real-time RT-PCR in cultured guinea pig cells. High levels of IL-4 mRNA expression were detected in spleen T cells of naïve animals after in vitro stimulation with PMA plus ionomycin for 4-24 h. The expression of IL-4 mRNA was low in spleen and lymph node cells immunized with ovalbumin (OVA) plus Complete Freund's Adjuvant (CFA) in response to OVA (Th1), but significantly higher in the guinea pigs immunized with OVA plus alum (Th2). BCG vaccination reduced the expression of IL-4 mRNA in both spleen and lung digest cells compared to naïve guinea pigs, while levels of IFN-γ were similar in both groups. Furthermore, lung cells from Mycobacterium tuberculosis-infected guinea pigs stimulated in vitro with PPD or MPT64 showed low levels of IL-4 mRNA expression. Thus, BCG vaccination or M. tuberculosis infection modulates IL-4 mRNA expression in the guinea pig. Cloning of guinea pig IL-4 will allow us to address the role of IL-4 in vaccine-induced resistance to pulmonary TB in a highly relevant animal model.
Collapse
|
13
|
Barker LF, Brennan MJ, Rosenstein PK, Sadoff JC. Tuberculosis vaccine research: the impact of immunology. Curr Opin Immunol 2009; 21:331-8. [DOI: 10.1016/j.coi.2009.05.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/13/2009] [Indexed: 01/21/2023]
|