1
|
Gong Z, Zhang J, Yu J, Liu L, Wang X, Ma Q, Deng G, Wu X. Mycobacterium tuberculosis stimulates cuproptosis by regulating Lnc-Gm5532 to target FDX1 for bacteria intracellular survival. Int Immunopharmacol 2025; 160:114967. [PMID: 40449270 DOI: 10.1016/j.intimp.2025.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/08/2025] [Accepted: 05/25/2025] [Indexed: 06/03/2025]
Abstract
Cuproptosis is a novel cell death modality but its regulatory role in tuberculosis remains obscure. This study is committed to explore the specific mechanism of cuproptosis induced by Mycobacterium tuberculosis (M.tb) infection. We confirmed that M.tb induced cuproptosis contributes to its intracellular survival. Then microarray analysis was employed to screen M.tb-infected DE mRNAs and LncRNAs which may be potential regulators of cuproptosis. We focus on a key cuproptosis gene FDX1, and 7 LncRNAs that can target FDX1. Among them, LncRNA-Gm5532 upregulated the expression of FDX1 by sponging miR-7232-5p, which further promoted the expression of cuproptosis-associated proteins, increased intracellular copper ions, worsened lipid acylation-DLAT aggregation, and resulting in cuproptosis. Meanwhile, LncRNA-Gm5532 boosts the survival of M.tb in macrophages. Collectively, LncRNA-Gm5532 exacterbates M.tb-induced cuproptosis by targeting FDX1 and promotes immune escape of M.tb. The study will provide new insights into the regulation of tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Zhaoqian Gong
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiaxue Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jialin Yu
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Li Liu
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoping Wang
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750021, China
| | - Qiumeng Ma
- Analvsis and Testing Center, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guangcun Deng
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Xiaoling Wu
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
2
|
Molnár D, Surányi ÉV, Trombitás T, Füzesi D, Hirmondó R, Toth J. Genetic stability of Mycobacterium smegmatis under the stress of first-line antitubercular agents. eLife 2024; 13:RP96695. [PMID: 39565350 DOI: 10.7554/elife.96695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.
Collapse
Affiliation(s)
- Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Viola Surányi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Trombitás
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dóra Füzesi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Rita Hirmondó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Toth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
3
|
Sharma A, Singh N, Bhasin M, Tiwari P, Chopra P, Varadarajan R, Singh R. Deciphering the role of VapBC13 and VapBC26 toxin antitoxin systems in the pathophysiology of Mycobacterium tuberculosis. Commun Biol 2024; 7:1417. [PMID: 39478197 PMCID: PMC11525840 DOI: 10.1038/s42003-024-06998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
The expansion of VapBC TA systems in M. tuberculosis has been linked with its fitness and survival upon exposure to stress conditions. Here, we have functionally characterized VapBC13 and VapBC26 TA modules of M. tuberculosis. We report that overexpression of VapC13 and VapC26 toxins in M. tuberculosis results in growth inhibition and transcriptional reprogramming. We have also identified various regulatory proteins as hub nodes in the top response network of VapC13 and VapC26 overexpression strains. Further, analysis of RNA protection ratios revealed potential tRNA targets for VapC13 and VapC26. Using in vitro ribonuclease assays, we demonstrate that VapC13 and VapC26 degrade serT and leuW tRNA, respectively. However, no significant changes in rRNA cleavage profiles were observed upon overexpression of VapC13 and VapC26 in M. tuberculosis. In order to delineate the role of these TA systems in M. tuberculosis physiology, various mutant strains were constructed. We show that in comparison to the parental strain, ΔvapBC13 and ΔvapBC26 strains were mildly susceptible to oxidative stress. Surprisingly, the growth patterns of parental and mutant strains were comparable in aerosol-infected guinea pigs. These observations imply that significant functional redundancy exists for some TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Arun Sharma
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prabhakar Tiwari
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Pankaj Chopra
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
4
|
Oyageshio OP, Myrick JW, Saayman J, van der Westhuizen L, Al-Hindi DR, Reynolds AW, Zaitlen N, Hoal EG, Uren C, Möller M, Henn BM. Strong effect of demographic changes on Tuberculosis susceptibility in South Africa. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002643. [PMID: 39042651 PMCID: PMC11265723 DOI: 10.1371/journal.pgph.0002643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/12/2024] [Indexed: 07/25/2024]
Abstract
South Africa is among the world's top eight tuberculosis (TB) burden countries, and despite a focus on HIV-TB co-infection, most of the population living with TB are not HIV co-infected. The disease is endemic across the country, with 80-90% exposure by adulthood. We investigated epidemiological risk factors for (TB) in the Northern Cape Province, South Africa: an understudied TB endemic region with extreme TB incidence (926/100,000). We leveraged the population's high TB incidence and community transmission to design a case-control study with similar mechanisms of exposure between the groups. We recruited 1,126 participants with suspected TB from 12 community health clinics and generated a cohort of 774 individuals (cases = 374, controls = 400) after implementing our enrollment criteria. All participants were GeneXpert Ultra tested for active TB by a local clinic. We assessed important risk factors for active TB using logistic regression and random forest modeling. We find that factors commonly identified in other global populations tend to replicate in our study, e.g. male gender and residence in a town had significant effects on TB risk (OR: 3.02 [95% CI: 2.30-4.71]; OR: 3.20 [95% CI: 2.26-4.55]). We also tested for demographic factors that may uniquely reflect historical changes in health conditions in South Africa. We find that socioeconomic status (SES) significantly interacts with an individual's age (p = 0.0005) indicating that protective effect of higher SES changed across age cohorts. We further find that being born in a rural area and moving to a town strongly increases TB risk, while town birthplace and current rural residence is protective. These interaction effects reflect rapid demographic changes, specifically SES over recent generations and mobility, in South Africa. Our models show that such risk factors combined explain 19-21% of the variance (r2) in TB case/control status.
Collapse
Affiliation(s)
- Oshiomah P. Oyageshio
- Center for Population Biology, University of California, Davis, Davis, California, United States of America
| | - Justin W. Myrick
- UC Davis Genome Center, University of California, Davis, Davis, California, United States of America
| | - Jamie Saayman
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lena van der Westhuizen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Dana R. Al-Hindi
- Department of Anthropology, University of California, Davis, Davis, California, United States of America
| | - Austin W. Reynolds
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Noah Zaitlen
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Eileen G. Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Caitlin Uren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Brenna M. Henn
- Center for Population Biology, University of California, Davis, Davis, California, United States of America
- UC Davis Genome Center, University of California, Davis, Davis, California, United States of America
- Department of Anthropology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
5
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
6
|
Smiejkowska N, Oorts L, Van Calster K, De Vooght L, Geens R, Mattelaer HP, Augustyns K, Strelkov SV, Lamprecht D, Temmerman K, Sterckx YGJ, Cappoen D, Cos P. A high-throughput target-based screening approach for the identification and assessment of Mycobacterium tuberculosis mycothione reductase inhibitors. Microbiol Spectr 2024; 12:e0372323. [PMID: 38315026 PMCID: PMC10913476 DOI: 10.1128/spectrum.03723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
The World Health Organization's goal to combat tuberculosis (TB) is hindered by the emergence of anti-microbial resistance, therefore necessitating the exploration of new drug targets. Multidrug regimens are indispensable in TB therapy as they provide synergetic bactericidal effects, shorten treatment duration, and reduce the risk of resistance development. The research within our European RespiriTB consortium explores Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we describe the development and validation of a luminescence-coupled, target-based assay for the identification of novel compounds inhibiting Mycobacterium tuberculosis mycothione reductase (MtrMtb), an enzyme with a role in the protection against oxidative stress. Recombinant MtrMtb was employed for the development of a highly sensitive, robust high-throughput screening (HTS) assay by coupling enzyme activity to a bioluminescent readout. Its application in a semi-automated setting resulted in the screening of a diverse library of ~130,000 compounds, from which 19 hits were retained after an assessment of their potency, selectivity, and specificity. The selected hits formed two clusters and four fragment molecules, which were further evaluated in whole-cell and intracellular infection assays. The established HTS discovery pipeline offers an opportunity to deliver novel MtrMtb inhibitors and lays the foundation for future efforts in developing robust biochemical assays for the identification and triaging of inhibitors from high-throughput library screens. IMPORTANCE The growing anti-microbial resistance poses a global public health threat, impeding progress toward eradicating tuberculosis. Despite decades of active research, there is still a dire need for the discovery of drugs with novel modes of action and exploration of combination drug regimens. Within the European RespiriTB consortium, we explore Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we present the development of a high-throughput screening pipeline that led to the identification of M. tuberculosis mycothione reductase inhibitors.
Collapse
Affiliation(s)
- Natalia Smiejkowska
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Lauren Oorts
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Kevin Van Calster
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Rob Geens
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Henri-Philippe Mattelaer
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Sergei V. Strelkov
- Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| |
Collapse
|
7
|
Han B, Wang J, Hai Y, Sun D, Liang W, Yin P, Ding H. The Incidence, Changes and Treatments of Cervical Deformity After Infection and Inflammation. Neurospine 2023; 20:205-220. [PMID: 37016867 PMCID: PMC10080454 DOI: 10.14245/ns.2244744.372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 04/03/2023] Open
Abstract
A healthy cervical spine with normal movement is the basis of many daily activities and is essential for maintaining a good quality of life. However, the alignment, fusion, and structure of the cervical spine can change for various reasons, leading to cervical deformity, mainly kyphosis. Approximately 5%‒20% of spinal infections in the cervical spine cause cervical deformity. The deformity can recover early; however, the disease's long-term existence or the continuous action of abnormal stress may lead to intervertebral fusion and abnormal osteophytes. Many gaps and controversies exist regarding infectious cervical deformities, including a lack of clear definitions and an acceptable classification system thereby requiring further research. Moreover, there is no consensus on the indications for postinfectious cervical deformity associated with <i>Mycobacterium tuberculosis</i>, <i>Staphylococcus aureus</i>, and Brucellosis. Therefore, we reviewed and discussed the incidence, clinical manifestations, changes, and treatment of infectious and inflammatory secondary cervical deformities from common to rare to provide a theoretical basis for clinical decision-making.
Collapse
Affiliation(s)
- Bo Han
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianqiang Wang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Corresponding Author Yong Hai Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
| | - Duan Sun
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weishi Liang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Yin
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongtao Ding
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
D'Souza C, Kishore U, Tsolaki AG. The PE-PPE Family of Mycobacterium tuberculosis: Proteins in Disguise. Immunobiology 2023; 228:152321. [PMID: 36805109 DOI: 10.1016/j.imbio.2022.152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis has thrived in parallel with humans for millennia, and despite our efforts, M. tuberculosis continues to plague us, currently infecting a third of the world's population. The success of M. tuberculosis has recently been attributed, in part, to the PE-PPE family; a unique collection of 168 proteins fundamentally involved in the pathogenesis of M. tuberculosis. The PE-PPE family proteins have been at the forefront of intense research efforts since their discovery in 1998 and whilst our knowledge and understanding has significantly advanced over the last two decades, many important questions remain to be elucidated. This review consolidates and examines the vast body of existing literature regarding the PE-PPE family proteins, with respect to the latest developments in elucidating their evolution, structure, subcellular localisation, function, and immunogenicity. This review also highlights significant inconsistencies and contradictions within the field. Additionally, possible explanations for these knowledge gaps are explored. Lastly, this review poses many important questions, which need to be addressed to complete our understanding of the PE-PPE family, as well as highlighting the challenges associated with studying this enigmatic family of proteins. Further research into the PE-PPE family, together with technological advancements in genomics and proteomics, will undoubtedly improve our understanding of the pathogenesis of M. tuberculosis, as well as identify key targets/candidates for the development of novel drugs, diagnostics, and vaccines.
Collapse
Affiliation(s)
- Christopher D'Souza
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anthony G Tsolaki
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
9
|
Iron–Sulfur Clusters toward Stresses: Implication for Understanding and Fighting Tuberculosis. INORGANICS 2022. [DOI: 10.3390/inorganics10100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) remains the leading cause of death due to a single pathogen, accounting for 1.5 million deaths annually on the global level. Mycobacterium tuberculosis, the causative agent of TB, is persistently exposed to stresses such as reactive oxygen species (ROS), reactive nitrogen species (RNS), acidic conditions, starvation, and hypoxic conditions, all contributing toward inhibiting bacterial proliferation and survival. Iron–sulfur (Fe-S) clusters, which are among the most ancient protein prosthetic groups, are good targets for ROS and RNS, and are susceptible to Fe starvation. Mtb holds Fe-S containing proteins involved in essential biological process for Mtb. Fe-S cluster assembly is achieved via complex protein machineries. Many organisms contain several Fe-S assembly systems, while the SUF system is the only one in some pathogens such as Mtb. The essentiality of the SUF machinery and its functionality under the stress conditions encountered by Mtb underlines how it constitutes an attractive target for the development of novel anti-TB.
Collapse
|
10
|
Mechanistic Insight into the Enzymatic Inhibition of β-Amyrin against Mycobacterial Rv1636: In Silico and In Vitro Approaches. BIOLOGY 2022; 11:biology11081214. [PMID: 36009841 PMCID: PMC9405466 DOI: 10.3390/biology11081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Rv1636 is a mycobacterial universal stress protein whose expression level increases in different type of stress conditions. This protein promotes the growth of Mycobacterium tuberculosis in the host derived stress conditions generated during infection. Therefore in this manuscipt, we are trying to target Rv1636 using natural inhibitor. Targeting essential Mycobacterial protein using natural prodect was hypothesized to generate a molecule with low toxic effects and high inhibitory activity. It was found that Rv1636 contains ATPase activity and its ATPase activity gets disturbed by addition of β-Amyrin in the reaction. β-Amyrin was forund to interfere with the ATP binding site of Rv1636 which was confirmed by molecular docking anad dynamic studies. In addition to the ATPase activity, Rv1636 was also contain the cAMP binding capacity and also involved in balancing the cAMP levels inside cells. So, targeting Rv1636 using β-Amyrin disrupts its ATPase activity and cAMP regulatory activity and these conditions might make Mycobacterium tuberculosis more susceptible to the host derived stress conditions. Abstract Mycobacterium tuberculosis has seen tremendous success as it has developed defenses to reside in host alveoli despite various host-related stress circumstances. Rv1636 is a universal stress protein contributing to mycobacterial survival in different host-derived stress conditions. Both ATP and cAMP can be bound with the Rv1636, and their binding actions are independent of one another. β-Amyrin, a triterpenoid compound, is abundant in medicinal plants and has many pharmacological properties and broad therapeutic potential. The current study uses biochemical, biophysical, and computational methods to define the binding of Rv1636 with β-Amyrin. A substantial interaction between β-Amyrin and Rv1636 was discovered by molecular docking studies, which helped decipher the critical residues involved in the binding process. VAL60 is a crucial residue found in the complexes of both Rv1636_β-Amyrin and Rv1636-ATP. Additionally, the Rv1636_β-Amyrin complex was shown to be stable by molecular dynamics simulation studies (MD), with minimal changes observed during the simulation. In silico observations were further complemented by in vitro assays. Successful cloning, expression, and purification of Rv1636 were accomplished using Ni-NTA affinity chromatography. The results of the ATPase activity assay indicated that Rv1636’s ATPase activity was inhibited in the presence of various β-Amyrin concentrations. Additionally, circular dichroism spectroscopy (CD) was used to examine modifications to Rv1636 secondary structure upon binding of β-Amyrin. Finally, isothermal titration calorimetry (ITC) advocated spontaneous binding of β-Amyrin with Rv1636 elucidating the thermodynamics of the Rv1636_β-Amyrin complex. Thus, the study establishes that β-Amyrin binds to Rv1636 with a significant affinity forming a stable complex and inhibiting its ATPase activity. The present study suggests that β-Amyrin might affect the functioning of Rv1636, which makes the bacterium vulnerable to different stress conditions.
Collapse
|
11
|
Dupuy P, Ghosh S, Adefisayo O, Buglino J, Shuman S, Glickman MS. Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis. Nat Commun 2022; 13:4493. [PMID: 35918328 PMCID: PMC9346131 DOI: 10.1038/s41467-022-32022-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Antibiotic resistance of Mycobacterium tuberculosis is exclusively a consequence of chromosomal mutations. Translesion synthesis (TLS) is a widely conserved mechanism of DNA damage tolerance and mutagenesis, executed by translesion polymerases such as DinBs. In mycobacteria, DnaE2 is the only known agent of TLS and the role of DinB polymerases is unknown. Here we demonstrate that, when overexpressed, DinB1 promotes missense mutations conferring resistance to rifampicin, with a mutational signature distinct from that of DnaE2, and abets insertion and deletion frameshift mutagenesis in homo-oligonucleotide runs. DinB1 is the primary mediator of spontaneous −1 frameshift mutations in homo-oligonucleotide runs whereas DnaE2 and DinBs are redundant in DNA damage-induced −1 frameshift mutagenesis. These results highlight DinB1 and DnaE2 as drivers of mycobacterial genome diversification with relevance to antimicrobial resistance and host adaptation. This manuscript elucidates new mechanisms of mutagenesis in mycobacteria by implicating two translesion DNA polymerases in genome diversification, including creating the mutations that underlie all antibiotic resistance in these global pathogens.
Collapse
Affiliation(s)
- Pierre Dupuy
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Oyindamola Adefisayo
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY, 10065, USA
| | - John Buglino
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA. .,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
13
|
d’Andrea FB, Poulton NC, Froom R, Tam K, Campbell EA, Rock JM. The essential M. tuberculosis Clp protease is functionally asymmetric in vivo. SCIENCE ADVANCES 2022; 8:eabn7943. [PMID: 35507665 PMCID: PMC9067928 DOI: 10.1126/sciadv.abn7943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The Clp protease system is a promising, noncanonical drug target against Mycobacterium tuberculosis (Mtb). Unlike in Escherichia coli, the Mtb Clp protease consists of two distinct proteolytic subunits, ClpP1 and ClpP2, which hydrolyze substrates delivered by the chaperones ClpX and ClpC1. While biochemical approaches uncovered unique aspects of Mtb Clp enzymology, its essentiality complicates in vivo studies. To address this gap, we leveraged new genetic tools to mechanistically interrogate the in vivo essentiality of the Mtb Clp protease. While validating some aspects of the biochemical model, we unexpectedly found that only the proteolytic activity of ClpP1, but not of ClpP2, is essential for substrate degradation and Mtb growth and infection. Our observations not only support a revised model of Mtb Clp biology, where ClpP2 scaffolds chaperone binding while ClpP1 provides the essential proteolytic activity of the complex; they also have important implications for the ongoing development of inhibitors toward this emerging therapeutic target.
Collapse
Affiliation(s)
- Felipe B. d’Andrea
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas C. Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Ruby Froom
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Kayan Tam
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Jeremy M. Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
14
|
Mycobacterium tuberculosis Transcription Factor EmbR Regulates the Expression of Key Virulence Factors That Aid in Ex Vivo and In Vivo Survival. mBio 2022; 13:e0383621. [PMID: 35471080 PMCID: PMC9239209 DOI: 10.1128/mbio.03836-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis encodes ~200 transcription factors that modulate gene expression under different microenvironments in the host. Even though high-throughput chromatin immunoprecipitation sequencing and transcriptome sequencing (RNA-seq) studies have identified the regulatory network for ~80% of transcription factors, many transcription factors remain uncharacterized. EmbR is one such transcription factor whose in vivo regulon and biological function are yet to be elucidated. Previous in vitro studies suggested that phosphorylation of EmbR by PknH upregulates the embCAB operon. Using a gene replacement mutant of embR, we investigated its role in modulating cellular morphology, antibiotic resistance, and survival in the host. Contrary to the prevailing hypothesis, under normal growth conditions, EmbR is neither phosphorylated nor impacted by ethambutol resistance through the regulation of the embCAB operon. The embR deletion mutant displayed attenuated M. tuberculosis survival in vivo. RNA-seq analysis suggested that EmbR regulates operons involved in the secretion pathway, lipid metabolism, virulence, and hypoxia, including well-known hypoxia-inducible genes devS and hspX. Lipidome analysis revealed that EmbR modulates levels of all lysophospholipids, several phospholipids, and M. tuberculosis-specific lipids, which is more pronounced under hypoxic conditions. We found that the EmbR mutant is hypersusceptible to hypoxic stress, and RNA sequencing performed under hypoxic conditions indicated that EmbR majorly regulates genes involved in response to acidic pH, hypoxia, and fatty acid metabolism. We observed condition-specific phosphorylation of EmbR, which contributes to EmbR-mediated transcription of several essential genes, ensuring enhanced survival. Collectively, the study establishes EmbR as a key modulator of hypoxic response that facilitates mycobacterial survival in the host.
Collapse
|
15
|
Gupta KR, Arora G, Mattoo A, Sajid A. Stringent Response in Mycobacteria: From Biology to Therapeutic Potential. Pathogens 2021; 10:pathogens10111417. [PMID: 34832573 PMCID: PMC8622095 DOI: 10.3390/pathogens10111417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis is a human pathogen that can thrive inside the host immune cells for several years and cause tuberculosis. This is due to the propensity of M. tuberculosis to synthesize a sturdy cell wall, shift metabolism and growth, secrete virulence factors to manipulate host immunity, and exhibit stringent response. These attributes help M. tuberculosis to manage the host response, and successfully establish and maintain an infection even under nutrient-deprived stress conditions for years. In this review, we will discuss the importance of mycobacterial stringent response under different stress conditions. The stringent response is mediated through small signaling molecules called alarmones “(pp)pGpp”. The synthesis and degradation of these alarmones in mycobacteria are mediated by Rel protein, which is both (p)ppGpp synthetase and hydrolase. Rel is important for all central dogma processes—DNA replication, transcription, and translation—in addition to regulating virulence, drug resistance, and biofilm formation. Rel also plays an important role in the latent infection of M. tuberculosis. Here, we have discussed the literature on alarmones and Rel proteins in mycobacteria and highlight that (p)ppGpp-analogs and Rel inhibitors could be designed and used as antimycobacterial compounds against M. tuberculosis and non-tuberculous mycobacterial infections.
Collapse
Affiliation(s)
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Abid Mattoo
- Pharmaceutical Development, Ultragenyx Gene Therapy, Woburn, MA 01801, USA;
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
- Correspondence: or
| |
Collapse
|
16
|
Patil V, Jain V. Understanding Metabolic Remodeling in Mycobacterium smegmatis to Overcome Energy Exigency and Reductive Stress Under Energy-Compromised State. Front Microbiol 2021; 12:722229. [PMID: 34539614 PMCID: PMC8440910 DOI: 10.3389/fmicb.2021.722229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
Mycobacteria such as Mycobacterium tuberculosis, the causative agent of tuberculosis that annually kills several million people worldwide, and Mycobacterium smegmatis, the non-pathogenic fast-growing mycobacteria, require oxidative phosphorylation to meet their energy requirements. We have previously shown that deletion of one of the two copies of atpD gene that codes for the ATP synthase β-subunit establishes an energy-compromised state in M. smegmatis. Here we report that upon such deletion, a major routing of electron flux occurs through the less energy-efficient complexes of its respiratory chain. ΔatpD bacterium also shows an increased reduced state which is further confirmed by the overexpression of WhiB3, a major redox sensor. We show a substantial modulation of the biosynthesis of cell wall associated lipids and triacylglycerol (TAG). An accumulation of TAG-containing lipid bodies is further confirmed by using 14C oleate incorporation. Interestingly, the mutant also shows an overexpression of TAG-degrading lipase genes, and the intracellular lipolytic enzymes mediate TAG hydrolysis for their utilization as energy source. We believe that our in vitro energy-depleted model will allow us to explore the critical link between energy metabolism, redox homeostasis, and lipid biosynthesis during ATP-depleted state, which will enhance our understanding of the bacterial adaptation, and will allow us to identify novel drug targets to counter mycobacterial infections.
Collapse
Affiliation(s)
- Varsha Patil
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
17
|
Collateral Sensitivity to β-Lactam Drugs in Drug-Resistant Tuberculosis Is Driven by the Transcriptional Wiring of BlaI Operon Genes. mSphere 2021; 6:e0024521. [PMID: 34047652 PMCID: PMC8265638 DOI: 10.1128/msphere.00245-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of resistance to one antimicrobial can result in enhanced sensitivity to another, known as "collateral sensitivity." This underexplored phenomenon opens new therapeutic possibilities for patients infected with pathogens unresponsive to classical treatments. Intrinsic resistance to β-lactams in Mycobacterium tuberculosis (the causative agent of tuberculosis) has traditionally curtailed the use of these low-cost and easy-to-administer drugs for tuberculosis treatment. Recently, β-lactam sensitivity has been reported in strains resistant to classical tuberculosis therapy, resurging the interest in β-lactams for tuberculosis. However, a lack of understanding of the molecular underpinnings of this sensitivity has delayed exploration in the clinic. We performed gene expression and network analyses and in silico knockout simulations of genes associated with β-lactam sensitivity and genes associated with resistance to classical tuberculosis drugs to investigate regulatory interactions and identify key gene mediators. We found activation of the key inhibitor of β-lactam resistance, blaI, following classical drug treatment as well as transcriptional links between genes associated with β-lactam sensitivity and those associated with resistance to classical treatment, suggesting that regulatory links might explain collateral sensitivity to β-lactams. Our results support M. tuberculosis β-lactam sensitivity as a collateral consequence of the evolution of resistance to classical tuberculosis drugs, mediated through changes to transcriptional regulation. These findings support continued exploration of β-lactams for the treatment of patients infected with tuberculosis strains resistant to classical therapies. IMPORTANCE Tuberculosis remains a significant cause of global mortality, with strains resistant to classical drug treatment considered a major health concern by the World Health Organization. Challenging treatment regimens and difficulty accessing drugs in low-income communities have led to a high prevalence of strains resistant to multiple drugs, making the development of alternative therapies a priority. Although Mycobacterium tuberculosis is naturally resistant to β-lactam drugs, previous studies have shown sensitivity in strains resistant to classical drug treatment, but we currently lack understanding of the molecular underpinnings behind this phenomenon. We found that genes involved in β-lactam susceptibility are activated after classical drug treatment resulting from tight regulatory links with genes involved in drug resistance. Our study supports the hypothesis that β-lactam susceptibility observed in drug-resistant strains results from the underlying regulatory network of M. tuberculosis, supporting further exploration of the use of β-lactams for tuberculosis treatment.
Collapse
|
18
|
Sieniawska E, Sawicki R, Truszkiewicz W, Marchev AS, Georgiev MI. Usnic Acid Treatment Changes the Composition of Mycobacterium tuberculosis Cell Envelope and Alters Bacterial Redox Status. mSystems 2021; 6:e00097-21. [PMID: 33947802 PMCID: PMC8269206 DOI: 10.1128/msystems.00097-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium tuberculosis developed efficient adaptation mechanisms in response to different environmental conditions. This resulted in the ability to survive in human macrophages and in resistance to numerous antibiotics. To get insight into bacterial responses to potent antimycobacterial natural compounds, we tested how usnic acid, a lichen-derived secondary metabolite, would influence mycobacteria at transcriptomic and metabolomic levels. The analysis of expression of sigma factors revealed a profound impact of usnic acid on one of the primary genetic regulatory systems of M. tuberculosis Combined liquid chromatography-mass spectrometry and nuclear magnetic resonance analyses allowed us to observe the perturbations in metabolic pathways, as well as in lipid composition, which took place within 24 h of exposure. Early bacterial response was related to redox homeostasis, lipid synthesis, and nucleic acid repair. Usnic acid treatment provoked disturbances of redox state in mycobacterial cells and increased production of structural elements of the cell wall and cell membrane. In addition, to increase the number of molecules related to restoration of redox balance, the rearrangements of the cell envelope were the first defense mechanisms observed under usnic acid treatment.IMPORTANCE The evaluation of mechanisms of mycobacterial response to natural products has been barely studied. However, it might be helpful to reveal bacterial adaptation strategies, which are eventually crucial for the discovery of new drug targets and, hence, understanding the resistance mechanisms. This study showed that the first-line mycobacterial defense against usnic acid, a potent antimicrobial agent, is the remodeling of the cell envelope and restoring redox homeostasis. Transcriptomic data correlated with metabolomics analysis. The observed metabolic changes appeared similar to those exerted by antibiotics.
Collapse
Affiliation(s)
- Elwira Sieniawska
- Medical University of Lublin, Chair and Department of Pharmacognosy, Lublin, Poland
| | - Rafal Sawicki
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Lublin, Poland
| | - Wieslaw Truszkiewicz
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Lublin, Poland
| | - Andrey S Marchev
- Bulgarian Academy of Sciences, The Stephan Angeloff Institute of Microbiology, Laboratory of Metabolomics, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Bulgarian Academy of Sciences, The Stephan Angeloff Institute of Microbiology, Laboratory of Metabolomics, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
19
|
Nagakubo T, Tahara YO, Miyata M, Nomura N, Toyofuku M. Mycolic acid-containing bacteria trigger distinct types of membrane vesicles through different routes. iScience 2021; 24:102015. [PMID: 33532712 PMCID: PMC7835258 DOI: 10.1016/j.isci.2020.102015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/20/2020] [Accepted: 12/28/2020] [Indexed: 01/15/2023] Open
Abstract
Bacterial membrane vesicles (MVs) are attracting considerable attention in diverse fields of life science and biotechnology due to their potential for various applications. Although there has been progress in determining the mechanisms of MV formation in Gram-negative and Gram-positive bacteria, the mechanisms in mycolic acid-containing bacteria remain an unsolved question due to its complex cell envelope structure. Here, by adapting super-resolution live-cell imaging and biochemical analysis, we show that Corynebacterium glutamicum form distinct types of MVs via different routes in response to environmental conditions. DNA-damaging stress induced MV formation through prophage-triggered cell lysis, whereas envelope stress induced MV formation through mycomembrane blebbing. The MV formation routes were conserved in other mycolic acid-containing bacteria. Our results show how the complex cell envelope structure intrinsically generates various types of MVs and will advance our knowledge on how different types of MVs can be generated from a single cell organism.
Collapse
Affiliation(s)
- Toshiki Nagakubo
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Current affiliation: Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka City University, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| | - Nobuhiko Nomura
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| | - Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
Abstract
The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. Since mycobacteria are resource and energy limited under these conditions, it is likely that remodeling has distinct requirements from those of the well-characterized biosynthetic program that operates during unrestricted growth. Unexpectedly, we found that mycomembrane remodeling in nutrient-starved, nonreplicating mycobacteria includes synthesis in addition to turnover. Mycomembrane synthesis under these conditions occurs along the cell periphery, in contrast to the polar assembly of actively growing cells, and both liberates and relies on the nonmammalian disaccharide trehalose. In the absence of trehalose recycling, de novo trehalose synthesis fuels mycomembrane remodeling. However, mycobacteria experience ATP depletion, enhanced respiration, and redox stress, hallmarks of futile cycling and the collateral dysfunction elicited by some bactericidal antibiotics. Inefficient energy metabolism compromises the survival of trehalose recycling mutants in macrophages. Our data suggest that trehalose recycling alleviates the energetic burden of mycomembrane remodeling under stress. Cell envelope recycling pathways are emerging targets for sensitizing resource-limited bacterial pathogens to host and antibiotic pressure.
Collapse
|
21
|
Ethanol in Combination with Oxidative Stress Significantly Impacts Mycobacterial Physiology. J Bacteriol 2020; 202:JB.00222-20. [PMID: 32928928 DOI: 10.1128/jb.00222-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022] Open
Abstract
Here, we investigate the mycobacterial response to the combined stress of an organic oxidant (cumene hydroperoxide [CHP]) and a solvent (ethanol). To understand the interaction between the two stressors, we treated Mycobacterium smegmatis cells to a range of ethanol concentrations (2.5% to 10% [vol/vol]) in combination with a subinhibitory concentration of 1 mM CHP. It was observed that the presence of CHP increases the efficacy of ethanol in inducing rapid cell death. The data further suggest that ethanol reacts with the alkoxy radicals to produce ethanol-derived peroxides. These radicals induce significant membrane damage and lead to cell lysis. The ethanol-derived radicals were primarily recognized by the cells as organic radicals, as was evident by the differential upregulation of the ohr-ohrR genes that function in cells treated with the combination of ethanol and CHP. The role of organic peroxide reductase, Ohr, was further confirmed by the significantly higher sensitivity of the deletion mutant to CHP and the combined stress treatment of CHP and ethanol. Moreover, we also observed the sigma factor σB to be important for the cells treated with ethanol alone as well as the aforementioned combination. A ΔsigB mutant strain had significantly higher susceptibility to the stress conditions. This finding was correlated with the σB-dependent transcriptional regulation of ohr and ohrR In summary, our data indicate that the combination of low levels of ethanol and organic peroxides induce ethanol-derived organic radicals that lead to significant oxidative stress on the cells in a concentration-dependent manner.IMPORTANCE Bacterial response to a combination of stresses can be unexpected and very different compared with that of an individual stress treatment. This study explores the physiological and transcriptional response of mycobacteria in response to the combinatorial treatment of an oxidant with the commonly used solvent ethanol. The presence of a subinhibitory concentration of organic peroxide increases the effectiveness of ethanol by inducing reactive peroxides that destroy the membrane integrity of cells in a significantly short time span. Our work elucidates a mechanism of targeting the complex mycobacterial membrane, which is its primary source of intrinsic resistance. Furthermore, it also demonstrates the importance of exploring the effect of various stress conditions on inducing bacterial clearance.
Collapse
|
22
|
Khanam T, Afsar M, Shukla A, Alam F, Kumar S, Soyar H, Dolma K, Pasupuleti M, Srivastava KK, Ampapathi RS, Ramachandran R. M. tuberculosis class II apurinic/ apyrimidinic-endonuclease/3'-5' exonuclease (XthA) engages with NAD+-dependent DNA ligase A (LigA) to counter futile cleavage and ligation cycles in base excision repair. Nucleic Acids Res 2020; 48:4325-4343. [PMID: 32232338 PMCID: PMC7530888 DOI: 10.1093/nar/gkaa188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Class-II AP-endonuclease (XthA) and NAD+-dependent DNA ligase (LigA) are involved in initial and terminal stages of bacterial DNA base excision repair (BER), respectively. XthA acts on abasic sites of damaged DNA to create nicks with 3′OH and 5′-deoxyribose phosphate (5′-dRP) moieties. Co-immunoprecipitation using mycobacterial cell-lysate, identified MtbLigA-MtbXthA complex formation. Pull-down experiments using purified wild-type, and domain-deleted MtbLigA mutants show that LigA-XthA interactions are mediated by the BRCT-domain of LigA. Small-Angle-X-ray scattering, 15N/1H-HSQC chemical shift perturbation experiments and mutational analysis identified the BRCT-domain region that interacts with a novel 104DGQPSWSGKP113 motif on XthA for complex-formation. Isothermal-titration calorimetry experiments show that a synthetic peptide with this sequence interacts with MtbLigA and disrupts XthA–LigA interactions. In vitro assays involving DNA substrate and product analogs show that LigA can efficiently reseal 3′OH and 5′dRP DNA termini created by XthA at abasic sites. Assays and SAXS experiments performed in the presence and absence of DNA, show that XthA inhibits LigA by specifically engaging with the latter's BRCT-domain to prevent it from encircling substrate DNA. Overall, the study suggests a coordinating function for XthA whereby it engages initially with LigA to prevent the undesirable consequences of futile cleavage and ligation cycles that might derail bacterial BER.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Afsar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ankita Shukla
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Faiyaz Alam
- Sophisticated Analytical Instruments Based Facility and Research Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sanjay Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Horam Soyar
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kunzes Dolma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Mukesh Pasupuleti
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kishore Kumar Srivastava
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ravi Sankar Ampapathi
- Sophisticated Analytical Instruments Based Facility and Research Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
23
|
Bucsan AN, Mehra S, Khader SA, Kaushal D. The current state of animal models and genomic approaches towards identifying and validating molecular determinants of Mycobacterium tuberculosis infection and tuberculosis disease. Pathog Dis 2020; 77:5543892. [PMID: 31381766 PMCID: PMC6687098 DOI: 10.1093/femspd/ftz037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Animal models are important in understanding both the pathogenesis of and immunity to tuberculosis (TB). Unfortunately, we are beginning to understand that no animal model perfectly recapitulates the human TB syndrome, which encompasses numerous different stages. Furthermore, Mycobacterium tuberculosis infection is a very heterogeneous event at both the levels of pathogenesis and immunity. This review seeks to establish the current understanding of TB pathogenesis and immunity, as validated in the animal models of TB in active use today. We especially focus on the use of modern genomic approaches in these models to determine the mechanism and the role of specific molecular pathways. Animal models have significantly enhanced our understanding of TB. Incorporation of contemporary technologies such as single cell transcriptomics, high-parameter flow cytometric immune profiling, proteomics, proteomic flow cytometry and immunocytometry into the animal models in use will further enhance our understanding of TB and facilitate the development of treatment and vaccination strategies.
Collapse
Affiliation(s)
- Allison N Bucsan
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Deepak Kaushal
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA.,Southwest National Primate Research Center, San Antonio, TX, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
24
|
Nguyen MC, Saurel O, Carivenc C, Gavalda S, Saitta S, Tran MP, Milon A, Chalut C, Guilhot C, Mourey L, Pedelacq JD. Conformational flexibility of coenzyme A and its impact on the post-translational modification of acyl carrier proteins by 4'-phosphopantetheinyl transferases. FEBS J 2020; 287:4729-4746. [PMID: 32128972 DOI: 10.1111/febs.15273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/20/2020] [Accepted: 02/29/2020] [Indexed: 12/01/2022]
Abstract
One central question surrounding the biosynthesis of fatty acids and polyketide-derived natural products is how the 4'-phosphopantetheinyl transferase (PPTase) interrogates the essential acyl carrier protein (ACP) domain to fulfill the initial activation step. The triggering factor of this study was the lack of structural information on PPTases at physiological pH, which could bias our comprehension of the mechanism of action of these important enzymes. Structural and functional studies on the family II PPTase PptAb of Mycobacterium abscessus show that pH has a profound effect on the coordination of metal ions and on the conformation of endogenously bound coenzyme A (CoA). The observed conformational flexibility of CoA at physiological pH is accompanied by a disordered 4'-phosphopantetheine (Ppant) moiety. Finally, structural and dynamical information on an isolated mycobacterial ACP domain, in its apo form and in complex with the activator PptAb, suggests an alternate mechanism for the post-translational modification of modular megasynthases.
Collapse
Affiliation(s)
- Minh Chau Nguyen
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Saurel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Coralie Carivenc
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sabine Gavalda
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stéphane Saitta
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mai Phuong Tran
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Milon
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
25
|
Wang R, Kreutzfeldt K, Botella H, Vaubourgeix J, Schnappinger D, Ehrt S. Persistent Mycobacterium tuberculosis infection in mice requires PerM for successful cell division. eLife 2019; 8:e49570. [PMID: 31751212 PMCID: PMC6872210 DOI: 10.7554/elife.49570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist in its host is central to the pathogenesis of tuberculosis, yet the underlying mechanisms remain incompletely defined. PerM, an integral membrane protein, is required for persistence of Mtb in mice. Here, we show that perM deletion caused a cell division defect specifically during the chronic phase of mouse infection, but did not affect Mtb's cell replication during acute infection. We further demonstrate that PerM is required for cell division in chronically infected mice and in vitro under host-relevant stresses because it is part of the mycobacterial divisome and stabilizes the essential divisome protein FtsB. These data highlight the importance of sustained cell division for Mtb persistence, define condition-specific requirements for cell division and reveal that survival of Mtb during chronic infection depends on a persistence divisome.
Collapse
Affiliation(s)
- Ruojun Wang
- Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Graduate ProgramWeill Cornell Graduate School of Medical Sciences, Cornell UniversityNew YorkUnited States
| | - Kaj Kreutzfeldt
- Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUnited States
| | - Helene Botella
- Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUnited States
| | - Julien Vaubourgeix
- Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUnited States
| | - Dirk Schnappinger
- Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUnited States
| | - Sabine Ehrt
- Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Graduate ProgramWeill Cornell Graduate School of Medical Sciences, Cornell UniversityNew YorkUnited States
| |
Collapse
|
26
|
Taneja S, Dutta T. On a stake-out: Mycobacterial small RNA identification and regulation. Noncoding RNA Res 2019; 4:86-95. [PMID: 32083232 PMCID: PMC7017587 DOI: 10.1016/j.ncrna.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022] Open
Abstract
Persistence of mycobacteria in the hostile environment of human macrophage is pivotal for its successful pathogenesis. Rapid adaptation to diverse stresses is the key aspect for their survival in the host cells. A range of heterogeneous mechanisms operate in bacteria to retaliate stress conditions. Small RNAs (sRNA) have been implicated in many of those mechanisms in either a single or multiple regulatory networks to post-transcriptionally modulate bacterial gene expression. Although small RNA profiling in mycobacteria by advanced technologies like deep sequencing, tilling microarray etc. have identified hundreds of sRNA, however, a handful of those small RNAs have been unearthed with precise regulatory mechanism. Extensive investigations on sRNA-mediated gene regulations in eubacteria like Escherichia coli revealed the existence of a plethora of distinctive sRNA mechanisms e.g. base pairing, protein sequestration, RNA decoy etc. Increasing studies on mycobacterial sRNA also discovered several eccentric mechanisms where sRNAs act at the posttranscriptional stage to either activate or repress target gene expression that lead to promote mycobacterial survival in stresses. Several intrinsic features like high GC content, absence of any homologue of abundant RNA chaperones, Hfq and ProQ, isolate sRNA mechanisms of mycobacteria from that of other bacteria. An insightful approach has been taken in this review to describe sRNA identification and its regulations in mycobacterial species especially in Mycobacterium tuberculosis.
Collapse
Key Words
- Anti-antisense
- Antisense
- Base pairing
- CDS, coding sequence
- Gene regulation by sRNA
- IGR, intergenic region
- ORF, open reading frame
- RBS, Ribosome binding site
- RNAP, RNA polymerase
- SD, Shine Dalgarno sequence
- Small RNAs
- TF, transcription factor
- TIR, translation initiation region
- UTR, untranslated region
- nt, nucleotide
- sRNA, small RNA
Collapse
Affiliation(s)
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
27
|
Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat Rev Microbiol 2019; 16:496-507. [PMID: 29691481 DOI: 10.1038/s41579-018-0013-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metabolism was once relegated to the supply of energy and biosynthetic precursors, but it has now become clear that it is a specific mediator of nearly all physiological processes. In the context of microbial pathogenesis, metabolism has expanded outside its canonical role in bacterial replication. Among human pathogens, this expansion has emerged perhaps nowhere more visibly than for Mycobacterium tuberculosis, the causative agent of tuberculosis. Unlike most pathogens, M. tuberculosis has evolved within humans, which are both host and reservoir. This makes unrestrained replication and perpetual quiescence equally incompatible strategies for survival as a species. In this Review, we summarize recent work that illustrates the diversity of metabolic functions that not only enable M. tuberculosis to establish and maintain a state of chronic infection within the host but also facilitate its survival in the face of drug pressure and, ultimately, completion of its life cycle.
Collapse
|
28
|
Shockey AC, Dabney J, Pepperell CS. Effects of Host, Sample, and in vitro Culture on Genomic Diversity of Pathogenic Mycobacteria. Front Genet 2019; 10:477. [PMID: 31214242 PMCID: PMC6558051 DOI: 10.3389/fgene.2019.00477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb), an obligate human pathogen and the etiological agent of tuberculosis (TB), remains a major threat to global public health. Comparative genomics has been invaluable for monitoring the emergence and spread of TB and for gaining insight into adaptation of M. tb. Most genomic studies of M. tb are based on single bacterial isolates that have been cultured for several weeks in vitro. However, in its natural human host, M. tb comprises complex, in some cases massive bacterial populations that diversify over the course of infection and cannot be wholly represented by a single genome. Recently, enrichment via hybridization capture has been used as a rapid diagnostic tool for TB, circumventing culturing protocols and enabling the recovery of M. tb genomes directly from sputum. This method has further applicability to the study of M. tb adaptation, as it enables a higher resolution and more direct analysis of M. tb genetic diversity within hosts with TB. Here we analyzed genomic material from M. tb and Mycobacterium bovis populations captured directly from sputum and from cultured samples using metagenomic and Pool-Seq approaches. We identified effects of sampling, patient, and sample type on bacterial genetic diversity. Bacterial genetic diversity was more variable and on average higher in sputum than in culture samples, suggesting that manipulation in the laboratory reshapes the bacterial population. Using outlier analyses, we identified candidate bacterial genetic loci mediating adaptation to these distinct environments. The study of M. tb in its natural human host is a powerful tool for illuminating host pathogen interactions and understanding the bacterial genetic underpinnings of virulence.
Collapse
Affiliation(s)
- Abigail C. Shockey
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jesse Dabney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
29
|
The role of low molecular weight thiols in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2019; 116:44-55. [PMID: 31153518 DOI: 10.1016/j.tube.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Low molecular weight (LMW) thiols are molecules with a functional sulfhydryl group that enable them to detoxify reactive oxygen species, reactive nitrogen species and other free radicals. Their roles range from their ability to modulate the immune system to their ability to prevent damage of biological molecules such as DNA and proteins by protecting against oxidative, nitrosative and acidic stress. LMW thiols are synthesized and found in both eukaryotes and prokaryotes. Due to their beneficial role to both eukaryotes and prokaryotes, their specific functions need to be elucidated, most especially in pathogenic prokaryotes such as Mycobacterium tuberculosis (M.tb), in order to provide a rationale for targeting their biosynthesis for drug development. Ergothioneine (ERG), mycothiol (MSH) and gamma-glutamylcysteine (GGC) are LMW thiols that have been shown to interplay to protect M.tb against cellular stress. Though ERG, MSH and GGC seem to have overlapping functions, studies are gradually revealing their unique physiological roles. Understanding their unique physiological role during the course of tuberculosis (TB) infection, would pave the way for the development of drugs that target their biosynthetic pathway. This review identifies the knowledge gap in the unique physiological roles of LMW thiols and proposes their mechanistic roles based on previous studies. In addition, it gives an update on identified inhibitors of their biosynthetic enzymes.
Collapse
|
30
|
Selectivity among Anti-σ Factors by Mycobacterium tuberculosis ClpX Influences Intracellular Levels of Extracytoplasmic Function σ Factors. J Bacteriol 2019; 201:JB.00748-18. [PMID: 30617240 DOI: 10.1128/jb.00748-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/01/2019] [Indexed: 11/20/2022] Open
Abstract
Extracytoplasmic function σ factors that are stress inducible are often sequestered in an inactive complex with a membrane-associated anti-σ factor. Mycobacterium tuberculosis membrane-associated anti-σ factors have a small, stable RNA gene A (ssrA)-like degron for targeted proteolysis. Interaction between the unfoldase, ClpX, and a substrate with an accessible degron initiates energy-dependent proteolysis. Four anti-σ factors with a mutation in the degron provided a set of natural substrates to evaluate the influence of the degron on degradation strength in ClpX-substrate processivity. We note that a point mutation in the degron (X-Ala-Ala) leads to an order-of-magnitude difference in the dwell time of the substrate on ClpX. Differences in ClpX/anti-σ interactions were correlated with changes in unfoldase activities. Green fluorescent protein (GFP) chimeras or polypeptides with a length identical to that of the anti-σ factor degron also demonstrate degron-dependent variation in ClpX activities. We show that degron-dependent ClpX activity leads to differences in anti-σ degradation, thereby regulating the release of free σ from the σ/anti-σ complex. M. tuberculosis ClpX activity thus influences changes in gene expression by modulating the cellular abundance of ECF σ factors.IMPORTANCE The ability of Mycobacterium tuberculosis to quickly adapt to changing environmental stimuli occurs by maintaining protein homeostasis. Extracytoplasmic function (ECF) σ factors play a significant role in coordinating the transcription profile to changes in environmental conditions. Release of the σ factor from the anti-σ is governed by the ClpXP2P1 assembly. M. tuberculosis ECF anti-σ factors have an ssrA-like degron for targeted degradation. A point mutation in the degron leads to differences in ClpX-mediated proteolysis and affects the cellular abundance of ECF σ factors. ClpX activity thus synchronizes changes in gene expression with environmental stimuli affecting M. tuberculosis physiology.
Collapse
|
31
|
Sao Emani C, Williams MJ, Wiid IJ, Baker B. The functional interplay of low molecular weight thiols in Mycobacterium tuberculosis. J Biomed Sci 2018; 25:55. [PMID: 30001196 PMCID: PMC6042322 DOI: 10.1186/s12929-018-0458-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/05/2018] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Three low molecular weight thiols are synthesized by Mycobacterium tuberculosis (M.tb), namely ergothioneine (ERG), mycothiol (MSH) and gamma-glutamylcysteine (GGC). They are able to counteract reactive oxygen species (ROS) and/or reactive nitrogen species (RNS). In addition, the production of ERG is elevated in the MSH-deficient M.tb mutant, while the production of MSH is elevated in the ERG-deficient mutants. Furthermore, the production of GGC is elevated in the MSH-deficient mutant and the ERG-deficient mutants. The propensity of one thiol to be elevated in the absence of the other prompted further investigations into their interplay in M.tb. METHODS To achieve that, we generated two M.tb mutants that are unable to produce ERG nor MSH but are able to produce a moderate (ΔegtD-mshA) or significantly high (ΔegtB-mshA) amount of GGC relative to the wild-type strain. In addition, we generated an M.tb mutant that is unable to produce GGC nor MSH but is able to produce a significantly low level of ERG (ΔegtA-mshA) relative to the wild-type strain. The susceptibilities of these mutants to various in vitro and ex vivo stress conditions were investigated and compared. RESULTS The ΔegtA-mshA mutant was the most susceptible to cellular stress relative to its parent single mutant strains (ΔegtA and ∆mshA) and the other double mutants. In addition, it displayed a growth-defect in vitro, in mouse and human macrophages suggesting; that the complete inhibition of ERG, MSH and GGC biosynthesis is deleterious for the growth of M.tb. CONCLUSIONS This study indicates that ERG, MSH and GGC are able to compensate for each other to maximize the protection and ensure the fitness of M.tb. This study therefore suggests that the most effective strategy to target thiol biosynthesis for anti-tuberculosis drug development would be the simultaneous inhibition of the biosynthesis of ERG, MSH and GGC.
Collapse
Affiliation(s)
- C. Sao Emani
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; SAMRC Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Stellenbosch University, PO Box 241, Francie van Zijl Drive, Tygerberg 8000, Cape Town, South Africa
| | - M. J. Williams
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; SAMRC Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Stellenbosch University, PO Box 241, Francie van Zijl Drive, Tygerberg 8000, Cape Town, South Africa
| | - I. J. Wiid
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; SAMRC Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Stellenbosch University, PO Box 241, Francie van Zijl Drive, Tygerberg 8000, Cape Town, South Africa
| | - B. Baker
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; SAMRC Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Stellenbosch University, PO Box 241, Francie van Zijl Drive, Tygerberg 8000, Cape Town, South Africa
| |
Collapse
|
32
|
Prusa J, Zhu DX, Stallings CL. The stringent response and Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:5035815. [PMID: 29947752 PMCID: PMC7191866 DOI: 10.1093/femspd/fty054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022] Open
Abstract
During infection, the host restrains Mycobacterium tuberculosis (Mtb) from proliferating by imposing an arsenal of stresses. Despite this onslaught of attacks, Mtb is able to persist for the lifetime of the host, indicating that this pathogen has substantial molecular mechanisms to resist host-inflicted damage. The stringent response is a conserved global stress response in bacteria that involves the production of the hyperphosphorylated guanine nucleotides ppGpp and pppGpp (collectively called (p)ppGpp). (p)ppGpp then regulates a number of cellular processes to adjust the physiology of the bacteria to promote survival in different environments. Survival in the presence of host-generated stresses is an essential quality of successful pathogens, and the stringent response is critical for the intracellular survival of a number of pathogenic bacteria. In addition, the stringent response has been linked to virulence gene expression, persistence, latency and drug tolerance. In Mtb, (p)ppGpp synthesis is required for survival in low nutrient conditions, long term culture and during chronic infection in animal models, all indicative of a strict requirement for (p)ppGpp during exposure to stresses associated with infection. In this review we discuss (p)ppGpp metabolism and how this functions as a critical regulator of Mtb virulence.
Collapse
Affiliation(s)
- Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
33
|
Small RNA profiling in Mycobacterium tuberculosis identifies MrsI as necessary for an anticipatory iron sparing response. Proc Natl Acad Sci U S A 2018; 115:6464-6469. [PMID: 29871950 PMCID: PMC6016810 DOI: 10.1073/pnas.1718003115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This work describes the most extensive discovery and functional characterization of small regulatory RNAs (sRNAs) in Mycobacterium tuberculosis to date. We comprehensively define the sRNAs expressed in M. tuberculosis under five host-like stress conditions. This reference dataset comprehensively defines the expression patterns and boundaries of mycobacterial sRNAs. We perform in-depth characterization of one sRNA, mycobacterial regulatory sRNA in iron (MrsI), which is induced in M. tuberculosis in multiple stress conditions. MrsI is critical for the iron-sparing response in mycobacteria by binding directly to mRNAs encoding nonessential iron-containing proteins to repress their expression. Interestingly, MrsI acts in an anticipatory manner, in which its induction by a variety of stresses primes M. tuberculosis to enter an iron-sparing state more rapidly upon iron deprivation. One key to the success of Mycobacterium tuberculosis as a pathogen is its ability to reside in the hostile environment of the human macrophage. Bacteria adapt to stress through a variety of mechanisms, including the use of small regulatory RNAs (sRNAs), which posttranscriptionally regulate bacterial gene expression. However, very little is currently known about mycobacterial sRNA-mediated riboregulation. To date, mycobacterial sRNA discovery has been performed primarily in log-phase growth, and no direct interaction between any mycobacterial sRNA and its targets has been validated. Here, we performed large-scale sRNA discovery and expression profiling in M. tuberculosis during exposure to five pathogenically relevant stresses. From these data, we identified a subset of sRNAs that are highly induced in multiple stress conditions. We focused on one of these sRNAs, ncRv11846, here renamed mycobacterial regulatory sRNA in iron (MrsI). We characterized the regulon of MrsI and showed in mycobacteria that it regulates one of its targets, bfrA, through a direct binding interaction. MrsI mediates an iron-sparing response that is required for optimal survival of M. tuberculosis under iron-limiting conditions. However, MrsI is induced by multiple host-like stressors, which appear to trigger MrsI as part of an anticipatory response to impending iron deprivation in the macrophage environment.
Collapse
|
34
|
Bothra A, Arumugam P, Panchal V, Menon D, Srivastava S, Shankaran D, Nandy A, Jaisinghani N, Singh A, Gokhale RS, Gandotra S, Rao V. Phospholipid homeostasis, membrane tenacity and survival of Mtb in lipid rich conditions is determined by MmpL11 function. Sci Rep 2018; 8:8317. [PMID: 29844505 PMCID: PMC5974182 DOI: 10.1038/s41598-018-26710-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 05/18/2018] [Indexed: 11/09/2022] Open
Abstract
The mycobacterial cell wall is a chemically complex array of molecular entities that dictate the pathogenesis of Mycobacterium tuberculosis. Biosynthesis and maintenance of this dynamic entity in mycobacterial physiology is still poorly understood. Here we demonstrate a requirement for M. tuberculosis MmpL11 in the maintenance of the cell wall architecture and stability in response to surface stress. In the presence of a detergent like Tyloxapol, a mmpL11 deletion mutant suffered from a severe growth attenuation as a result of altered membrane polarity, permeability and severe architectural damages. This mutant failed to tolerate permissible concentrations of cis-fatty acids suggesting its increased sensitivity to surface stress, evident as smaller colonies of the mutant outgrown from lipid rich macrophage cultures. Additionally, loss of MmpL11 led to an altered cellular fatty acid flux in the mutant: reduced incorporation into membrane cardiolipin was associated with an increased flux into the cellular triglyceride pool. This increase in storage lipids like triacyl glycerol (TAG) was associated with the altered metabolic state of higher dormancy-associated gene expression and decreased sensitivity to frontline TB drugs. This study provides a detailed mechanistic insight into the function of mmpL11 in stress adaptation of mycobacteria.
Collapse
Affiliation(s)
- Ankur Bothra
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Vipul Panchal
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dilip Menon
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sonali Srivastava
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Deepthi Shankaran
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ananya Nandy
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Archana Singh
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Rajesh S Gokhale
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, CSIR-Central Road Research Institute, New Delhi, India.,National Institute of Immunology, New Delhi, India
| | - Sheetal Gandotra
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, CSIR-Central Road Research Institute, New Delhi, India
| | - Vivek Rao
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India. .,Academy of Scientific and Innovative Research, CSIR-Central Road Research Institute, New Delhi, India.
| |
Collapse
|
35
|
Anaerobic Mycobacterium tuberculosis Cell Death Stems from Intracellular Acidification Mitigated by the DosR Regulon. J Bacteriol 2017; 199:JB.00320-17. [PMID: 28874407 DOI: 10.1128/jb.00320-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/23/2017] [Indexed: 01/28/2023] Open
Abstract
Mycobacterium tuberculosis is a strict aerobe capable of prolonged survival in the absence of oxygen. We investigated the ability of anaerobic M. tuberculosis to counter challenges to internal pH homeostasis in the absence of aerobic respiration, the primary mechanism of proton efflux for aerobic bacilli. Anaerobic M. tuberculosis populations were markedly impaired for survival under a mildly acidic pH relative to standard culture conditions. An acidic environmental pH greatly increased the susceptibilities of anaerobic bacilli to the collapse of the proton motive force by protonophores, to antimicrobial compounds that target entry into the electron transport system, and to small organic acids with uncoupling activity. However, anaerobic bacilli exhibited high tolerance against these challenges at a near-neutral pH. At a slightly alkaline pH, which was near the optimum intracellular pH, the addition of protonophores even improved the long-term survival of bacilli. Although anaerobic M. tuberculosis bacilli under acidic conditions maintained 40% lower ATP levels than those of bacilli under standard culture conditions, ATP loss alone could not explain the drop in viability. Protonophores decreased ATP levels by more than 90% regardless of the extracellular pH but were bactericidal only under acidic conditions, indicating that anaerobic bacilli could survive an extreme ATP loss provided that the external pH was within viable intracellular parameters. Acidic conditions drastically decreased the anaerobic survival of a DosR mutant, while an alkaline environment improved the survival of the DosR mutant. Together, these findings indicate that intracellular acidification is a primary challenge for the survival of anaerobic M. tuberculosis and that the DosR regulon plays a critical role in sustaining internal pH homeostasis.IMPORTANCE During infection, M. tuberculosis bacilli are prevalent in environments largely devoid of oxygen, yet the factors that influence the survival of these severely growth-limited and metabolically limited bacilli remain poorly understood. We determined how anaerobic bacilli respond to fluctuations in environmental pH and observed that these bacilli were highly susceptible to stresses that promoted internal acidic stress, whereas conditions that promoted an alkaline internal pH promoted long-term survival even during severe ATP depletion. The DosR regulon, a major regulator of general hypoxic stress, played an important role in maintaining internal pH homeostasis under anaerobic conditions. Together, these findings indicate that in the absence of aerobic respiration, protection from internal acidification is crucial for long-term M. tuberculosis survival.
Collapse
|
36
|
Mycobacterial Acid Tolerance Enables Phagolysosomal Survival and Establishment of Tuberculous Infection In Vivo. Cell Host Microbe 2017; 20:250-8. [PMID: 27512905 PMCID: PMC4985559 DOI: 10.1016/j.chom.2016.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 01/20/2023]
Abstract
The blockade of phagolysosomal fusion is considered a critical mycobacterial strategy to survive in macrophages. However, viable mycobacteria have been observed in phagolysosomes during infection of cultured macrophages, and mycobacteria have the virulence determinant MarP, which confers acid resistance in vitro. Here we show in mice and zebrafish that innate macrophages overcome mycobacterial lysosomal avoidance strategies to rapidly deliver a substantial proportion of infecting bacteria to phagolysosomes. Exploiting the optical transparency of the zebrafish, we tracked the fates of individual mycobacteria delivered to phagosomes versus phagolysosomes and discovered that bacteria survive and grow in phagolysosomes, though growth is slower. MarP is required specifically for phagolysosomal survival, making it an important determinant for the establishment of mycobacterial infection in their hosts. Our work suggests that if pathogenic mycobacteria fail to prevent lysosomal trafficking, they tolerate the resulting acidic environment of the phagolysosome to establish infection. In vivo, newly infecting mycobacteria are rapidly trafficked to lysosomes within macrophages The mycobacterial acid tolerance determinant MarP enables lysosomal survival and growth Phagolysosomal mycobacteria can successfully establish infection, which is MarP dependent
Collapse
|
37
|
Kaur K, Kumari P, Sharma S, Sehgal S, Tyagi JS. DevS/DosS sensor is bifunctional and its phosphatase activity precludes aerobic DevR/DosR regulon expression inMycobacterium tuberculosis. FEBS J 2016; 283:2949-62. [DOI: 10.1111/febs.13787] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Kohinoor Kaur
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Priyanka Kumari
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Saurabh Sharma
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Snigdha Sehgal
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
38
|
Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. J Bacteriol 2016; 198:1360-73. [PMID: 26883824 DOI: 10.1128/jb.00935-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress,M. tuberculosis is prepared for battle against the host defense and able to persist within the human population.
Collapse
|
39
|
Vemula MH, Ganji R, Sivangala R, Jakkala K, Gaddam S, Penmetsa S, Banerjee S. Mycobacterium tuberculosis Zinc Metalloprotease-1 Elicits Tuberculosis-Specific Humoral Immune Response Independent of Mycobacterial Load in Pulmonary and Extra-Pulmonary Tuberculosis Patients. Front Microbiol 2016; 7:418. [PMID: 27065979 PMCID: PMC4814508 DOI: 10.3389/fmicb.2016.00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/15/2016] [Indexed: 11/20/2022] Open
Abstract
Conventionally, facultative intracellular pathogen, Mycobacterium tuberculosis, the tuberculosis (TB) causing bacilli in human is cleared by cell-mediated immunity (CMI) with CD4+ T cells playing instrumental role in protective immunity, while antibody-mediated immunity (AMI) is considered non-protective. This longstanding convention has been challenged with recent evidences of increased susceptibility of hosts with compromised AMI and monoclonal antibodies conferring passive protection against TB and other intracellular pathogens. Therefore, novel approaches toward vaccine development include strategies aiming at induction of humoral response along with CMI. This necessitates the identification of mycobacterial proteins with properties of immunomodulation and strong immunogenicity. In this study, we determined the immunogenic potential of M. tuberculosis Zinc metalloprotease-1 (Zmp1), a secretory protein essential for intracellular survival and pathogenesis of M. tuberculosis. We observed that Zmp1 was secreted by in vitro grown M. tuberculosis under granuloma-like stress conditions (acidic, oxidative, iron deficiency, and nutrient deprivation) and generated Th2 cytokine microenvironment upon exogenous treatment of peripheral blood mononulear cells PBMCs with recombinant Zmp1 (rZmp1). This was supported by recording specific and robust humoral response in TB patients in a cohort of 295. The anti-Zmp1 titers were significantly higher in TB patients (n = 121) as against healthy control (n = 62), household contacts (n = 89) and non-specific infection controls (n = 23). A significant observation of the study is the presence of equally high titers of anti-Zmp1 antibodies in a range of patients with high bacilli load (sputum bacilli load of 300+ per mL) to paucibacillary smear-negative pulmonary tuberculosis (PTB) cases. This clearly indicated the potential of Zmp1 to evoke an effective humoral response independent of mycobacterial load. Such mycobacterial proteins can be explored as antigen candidates for prime-boost vaccination strategies or extrapolated as markers for disease detection and progression.
Collapse
Affiliation(s)
- Mani H Vemula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Ramya Sivangala
- Department of Immunology, Bhagwan Mahavir Medical Research Center Hyderabad, India
| | - Kiran Jakkala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Sumanlatha Gaddam
- Department of Immunology, Bhagwan Mahavir Medical Research CenterHyderabad, India; Department of Genetics, Osmania UniversityHyderabad, India
| | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| |
Collapse
|
40
|
Ehrt S, Rhee K, Schnappinger D. Mycobacterial genes essential for the pathogen's survival in the host. Immunol Rev 2015; 264:319-26. [PMID: 25703569 DOI: 10.1111/imr.12256] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mycobacterium tuberculosis (Mtb) has evolved within the human immune system as both host and reservoir. The study of genes required for its growth and persistence in vivo thus offers linked insights into its pathogenicity and host immunity. Studies of Mtb mutants have implicated metabolic adaptation (consisting of carbon, nitrogen, vitamin, and cofactor metabolism), intrabacterial pH homeostasis, and defense against reactive oxygen and reactive nitrogen species, as key determinants of its pathogenicity. However, the mechanisms of host immunity are complex and often combinatorial. Growing evidence has thus begun to reveal that the determinants of Mtb's pathogenicity may serve a broader and more complex array of functions than the isolated experimental settings in which they were initially found. Here, we review select examples, which exemplify this complexity, highlighting the distinct phases of Mtb's life cycle and the diverse microenvironments encountered therein.
Collapse
Affiliation(s)
- Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | | | | |
Collapse
|
41
|
Goodsmith N, Guo XV, Vandal OH, Vaubourgeix J, Wang R, Botella H, Song S, Bhatt K, Liba A, Salgame P, Schnappinger D, Ehrt S. Disruption of an M. tuberculosis membrane protein causes a magnesium-dependent cell division defect and failure to persist in mice. PLoS Pathog 2015; 11:e1004645. [PMID: 25658098 PMCID: PMC4450064 DOI: 10.1371/journal.ppat.1004645] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/28/2014] [Indexed: 01/17/2023] Open
Abstract
The identification of Mycobacterium tuberculosis genes necessary for persistence in vivo provides insight into bacterial biology as well as host defense strategies. We show that disruption of M. tuberculosis membrane protein PerM (Rv0955) resulted in an IFN-γ-dependent persistence defect in chronic mouse infection despite the mutant's near normal growth during acute infection. The perM mutant required increased magnesium for replication and survival; incubation in low magnesium media resulted in cell elongation and lysis. Transcriptome analysis of the perM mutant grown in reduced magnesium revealed upregulation of cell division and cell wall biosynthesis genes, and live cell imaging showed PerM accumulation at the division septa in M. smegmatis. The mutant was acutely sensitive to β-lactam antibiotics, including specific inhibitors of cell division-associated peptidoglycan transpeptidase FtsI. Together, these data implicate PerM as a novel player in mycobacterial cell division and pathogenesis, and are consistent with the hypothesis that immune activation deprives M. tuberculosis of magnesium.
Collapse
Affiliation(s)
- Nichole Goodsmith
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Xinzheng V. Guo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Omar H. Vandal
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Ruojun Wang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Hélène Botella
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Shuang Song
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Kamlesh Bhatt
- Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Amir Liba
- Agilent Technologies, Wilmington, Delaware, United States of America
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Yang Y, Kulka K, Montelaro RC, Reinhart TA, Sissons J, Aderem A, Ojha AK. A hydrolase of trehalose dimycolate induces nutrient influx and stress sensitivity to balance intracellular growth of Mycobacterium tuberculosis. Cell Host Microbe 2014; 15:153-63. [PMID: 24528862 DOI: 10.1016/j.chom.2014.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 11/26/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Chronic tuberculosis in an immunocompetent host is a consequence of the delicately balanced growth of Mycobacterium tuberculosis (Mtb) in the face of host defense mechanisms. We identify an Mtb enzyme (TdmhMtb) that hydrolyzes the mycobacterial glycolipid trehalose dimycolate and plays a critical role in balancing the intracellular growth of the pathogen. TdmhMtb is induced under nutrient-limiting conditions and remodels the Mtb envelope to increase nutrient influx but concomitantly sensitizes Mtb to stresses encountered in the host. Consistent with this, a ΔtdmhMtb mutant is more resilient to stress and grows to levels higher than those of wild-type in immunocompetent mice. By contrast, mutant growth is retarded in MyD88(-/-) mice, indicating that TdmhMtb provides a growth advantage to intracellular Mtb in an immunocompromised host. Thus, the effects and countereffects of TdmhMtb play an important role in balancing intracellular growth of Mtb in a manner that is directly responsive to host innate immunity.
Collapse
Affiliation(s)
- Yong Yang
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kathleen Kulka
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ronald C Montelaro
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Todd A Reinhart
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James Sissons
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Alan Aderem
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Anil K Ojha
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
43
|
Ramirez MV, Dawson CC, Crew R, England K, Slayden RA. MazF6 toxin of Mycobacterium tuberculosis demonstrates antitoxin specificity and is coupled to regulation of cell growth by a Soj-like protein. BMC Microbiol 2013; 13:240. [PMID: 24172039 PMCID: PMC3834876 DOI: 10.1186/1471-2180-13-240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/24/2013] [Indexed: 09/03/2023] Open
Abstract
Background Molecular programs employed by Mycobacterium tuberculosis (Mtb) for the establishment of non-replicating persistence (NRP) are poorly understood. In order to investigate mechanisms regulating entry into NRP, we asked how cell cycle regulation is linked to downstream adaptations that ultimately result in NRP. Based on previous reports and our recent studies, we reason that, in order to establish NRP, cells are halted in the cell cycle at the point of septum formation by coupled regulatory mechanisms. Results Using bioinformatic consensus modeling, we identified an alternative cell cycle regulatory element, SojMtb encoded by rv1708. SojMtb coordinates a regulatory mechanism involving cell cycle control at the point of septum formation and elicits the induction of the MazF6 toxin. MazF6 functions as an mRNA interferase leading to bacteriostasis that can be prevented by interaction with its cognate antitoxin, MazE6. Further, MazEF6 acts independently of other Maz family toxin:antitoxin pairs. Notably, sojMtb and mazEF6 transcripts where identified at 20, 40 and 100 days post-infection in increasing abundance indicating a role in adaption during chronic infection. Conclusions Here we present the first evidence of a coupled regulatory system in which cell cycle regulation via SojMtb is linked to downstream adaptations that are facilitated through the activity of the MazEF6 TA pair.
Collapse
Affiliation(s)
| | | | | | | | - Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
44
|
Zegeye ED, Balasingham SV, Laerdahl JK, Homberset H, Kristiansen PE, Tønjum T. Effects of conserved residues and naturally occurring mutations on Mycobacterium tuberculosis RecG helicase activity. MICROBIOLOGY-SGM 2013; 160:217-227. [PMID: 24169816 DOI: 10.1099/mic.0.072140-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RecG is a helicase that is conserved in nearly all bacterial species. The prototypical Escherichia coli RecG promotes regression of stalled replication forks, participates in DNA recombination and DNA repair, and prevents aberrant replication. Mycobacterium tuberculosis RecG (RecGMtb) is a DNA-dependent ATPase that unwinds a variety of DNA substrates, although its preferred substrate is a Holliday junction. Here, we performed site-directed mutagenesis of selected residues in the wedge domain and motifs Q, I, Ib and VI of RecGMtb. Three of the 10 substitution mutations engineered were detected previously as naturally occurring SNPs in the gene encoding RecGMtb. Alanine substitution mutations at residues Q292, F286, K321 and R627 abolished the RecGMtb unwinding activity, whilst RecGMtb F99A, P285S and T408A mutants exhibited ~25-50 % lower unwinding activity than WT. We also found that RecGMtb bound ATP in the absence of a DNA cofactor.
Collapse
Affiliation(s)
- Ephrem Debebe Zegeye
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Jon K Laerdahl
- Bioinformatics Core Facility, Department of Informatics, University of Oslo, Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Håvard Homberset
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Per E Kristiansen
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Jain S, Mandal RS, Anand S, Maiti S, Ramachandran S. Probing the amino acids critical for protein oligomerisation and protein-nucleotide interaction in Mycobacterium tuberculosis PII protein through integration of computational and experimental approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2736-49. [PMID: 24129075 DOI: 10.1016/j.bbapap.2013.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
We investigated the interacting amino acids critical for the stability and ATP binding of Mycobacterium tuberculosis PII protein through a series of site specific mutagenesis experiments. We assessed the effect of mutants using glutaraldehyde crosslinking and size exclusion chromatography and isothermal titration calorimetry. Mutations in the amino acid pair R60-E62 affecting central electrostatic interaction resulted in insoluble proteins. Multiple sequence alignment of PII orthologs displayed a conserved pattern of charged residues at these positions. Mutation of amino acid D97 to a neutral residue was tolerated whereas positive charge was not acceptable. Mutation of R107 alone had no effect on trimer formation. However, the combination of neutral residues both at positions 97 and 107 was not acceptable even with the pair at 60-62 intact. Reversal of charge polarity could partially restore the interaction. The residues including K90, R101 and R103 with potential to form H-bonds to ATP are conserved throughout across numerous orthologs of PII but when mutated to Alanine, they did not show significant differences in the total free energy change of the interaction as examined through isothermal titration calorimetry. The ATP binding pattern showed anti-cooperativity using three-site binding model. We observed compensatory effect in enthalpy and entropy changes and these may represent structural adjustments to accommodate ATP in the cavity even in absence of some interactions to perform the requisite function. In this respect these small differences between the PII orthologs may have evolved to suite species specific physiological niches.
Collapse
Affiliation(s)
- Sriyans Jain
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110 007, India
| | | | | | | | | |
Collapse
|
46
|
Essential roles for Mycobacterium tuberculosis Rel beyond the production of (p)ppGpp. J Bacteriol 2013; 195:5629-38. [PMID: 24123821 DOI: 10.1128/jb.00759-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In Mycobacterium tuberculosis, the stringent response to amino acid starvation is mediated by the M. tuberculosis Rel (RelMtb) enzyme, which transfers a pyrophosphate from ATP to GDP or GTP to synthesize ppGpp and pppGpp, respectively. (p)ppGpp then influences numerous metabolic processes. RelMtb also encodes a second, distinct catalytic domain that hydrolyzes (p)ppGpp into pyrophosphate and GDP or GTP. RelMtb is required for chronic M. tuberculosis infection in mice; however, it is unknown which catalytic activity of RelMtb mediates pathogenesis and whether (p)ppGpp itself is necessary. In order to individually investigate the roles of (p)ppGpp synthesis and hydrolysis during M. tuberculosis pathogenesis, we generated RelMtb point mutants that were either synthetase dead (RelMtb(H344Y)) or hydrolase dead (RelMtb(H80A)). M. tuberculosis strains expressing the synthetase-dead RelMtb(H344Y) mutant did not persist in mice, demonstrating that the RelMtb (p)ppGpp synthetase activity is required for maintaining bacterial titers during chronic infection. Deletion of a second predicted (p)ppGpp synthetase had no effect on pathogenesis, demonstrating that RelMtb was the major contributor to (p)ppGpp production during infection. Interestingly, expression of an allele encoding the hydrolase-dead RelMtb mutant, RelMtb(H80A), that is incapable of hydrolyzing (p)ppGpp but still able to synthesize (p)ppGpp decreased the growth rate of M. tuberculosis and changed the colony morphology of the bacteria. In addition, RelMtb(H80A) expression during acute or chronic M. tuberculosis infection in mice was lethal to the infecting bacteria. These findings highlight a distinct role for RelMtb-mediated (p)ppGpp hydrolysis that is essential for M. tuberculosis pathogenesis.
Collapse
|
47
|
Marrero J, Trujillo C, Rhee KY, Ehrt S. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog 2013; 9:e1003116. [PMID: 23326232 PMCID: PMC3542180 DOI: 10.1371/journal.ppat.1003116] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/19/2012] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. 13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb's central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt) Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections. The development of new drugs targeting Mycobacterium tuberculosis (Mtb) will benefit from a better understanding of the mechanisms by which this pathogen establishes and maintains chronic infections. Mtb has to adapt its metabolic needs to the nutritional environment in the host. We investigated the role of glucose phosphorylation and discovered that Mtb expresses two functional glucokinases. Using 13C-tracing experiments we demonstrated that both enzymes are competent to incorporate glucose into central carbon metabolism. In agreement with the view that Mtb metabolizes fatty acids to grow in vivo, both enzymes were dispensable for Mtb replication in mouse lungs and spleens. Surprisingly, however, the glucokinase double mutant was attenuated during the chronic phase of mouse infections. These studies suggest that Mtb metabolizes glucose in vivo and that its survival in chronically infected mice depends on glucose phosphorylation.
Collapse
Affiliation(s)
- Joeli Marrero
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | | | | | | |
Collapse
|
48
|
Interaction of CarD with RNA polymerase mediates Mycobacterium tuberculosis viability, rifampin resistance, and pathogenesis. J Bacteriol 2012; 194:5621-31. [PMID: 22904282 DOI: 10.1128/jb.00879-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis infection continues to cause substantial human suffering. New chemotherapeutic strategies, which require insight into the pathways essential for M. tuberculosis pathogenesis, are imperative. We previously reported that depletion of the CarD protein in mycobacteria compromises viability, resistance to oxidative stress and fluoroquinolones, and pathogenesis. CarD associates with the RNA polymerase (RNAP), but it has been unknown which of the diverse functions of CarD are mediated through the RNAP; this question must be answered to understand the CarD mechanism of action. Herein, we describe the interaction between the M. tuberculosis CarD and the RNAP β subunit and identify point mutations that weaken this interaction. The characterization of mycobacterial strains with attenuated CarD/RNAP β interactions demonstrates that the CarD/RNAP β association is required for viability and resistance to oxidative stress but not for fluoroquinolone resistance. Weakening the CarD/RNAP β interaction also increases the sensitivity of mycobacteria to rifampin and streptomycin. Surprisingly, depletion of the CarD protein did not affect sensitivity to rifampin. These findings define the CarD/RNAP interaction as a new target for chemotherapeutic intervention that could also improve the efficacy of rifampin treatment of tuberculosis. In addition, our data demonstrate that weakening the CarD/RNAP β interaction does not completely phenocopy the depletion of CarD and support the existence of functions for CarD independent of direct RNAP binding.
Collapse
|
49
|
Zegeye ED, Balasingham SV, Laerdahl JK, Homberset H, Tønjum T. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions. MICROBIOLOGY-SGM 2012; 158:1982-1993. [PMID: 22628485 PMCID: PMC3542137 DOI: 10.1099/mic.0.058693-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecGMtb) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecGMtb preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecGMtb helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg2+, Mn2+, Cu2+ or Fe2+. Like its Escherichia coli orthologue, RecGMtb is also a strictly DNA-dependent ATPase.
Collapse
Affiliation(s)
- Ephrem Debebe Zegeye
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Jon K Laerdahl
- Bioinformatics Core Facility, Department of Informatics, University of Oslo, Oslo, Norway.,Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Håvard Homberset
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
50
|
Mycobacterium smegmatis RoxY is a repressor of oxyS and contributes to resistance to oxidative stress and bactericidal ubiquitin-derived peptides. J Bacteriol 2011; 193:6824-33. [PMID: 21984791 DOI: 10.1128/jb.05492-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mycobactericidal properties of macrophages include the generation of reactive oxygen intermediates and the delivery of bacteria to a hydrolytic lysosome enriched in bactericidal ubiquitin-derived peptides (Ub-peptides). To better understand the interactions of ubiquitin-derived peptides with mycobacteria and identify putative mycobacterial intrinsic resistance mechanisms, we screened for transposon mutants with increased susceptibility to the bactericidal Ub-peptide Ub2. We isolated 27 Mycobacterium smegmatis mutants that were hypersusceptible to Ub2. Two mutants were isolated that possessed mutations in the msmeg_0166 gene, which encodes a transcriptional regulator. The msmeg_0166 mutants were also hypersusceptible to other host antimicrobial peptides and oxidative stress. In characterizing msmeg_0166, we found that it encodes a repressor of oxyS, and therefore we have renamed the gene roxY. We demonstrate that RoxY and OxyS contribute to M. smegmatis resistance to oxidative stress. An ahpD transposon mutant was also isolated in our screen for Ub-peptide hypersusceptibility. Overexpression of oxyS in M. smegmatis reduced transcription of the ahpCD genes, which encode a peroxide detoxification system. Our data indicate that RoxY, OxyS, and AhpD play a role in the mycobacterial oxidative stress response and are important for resistance to host antimicrobial peptides.
Collapse
|