1
|
Proctor E, Frost HR, Mantri B, Satapathy S, Botquin G, Gorman J, De Oliveira DMP, McArthur J, Davies MR, Tolun G, Botteaux A, Smeesters P, Sanderson‐Smith M. Fibrinogen-binding M-related proteins facilitate the recruitment of plasminogen by Streptococcus pyogenes. Protein Sci 2025; 34:e70078. [PMID: 40100134 PMCID: PMC11917135 DOI: 10.1002/pro.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 03/20/2025]
Abstract
Group A Streptococcus (GAS) M-related proteins (Mrp) are dimeric α-helical coiled-coil cell-wall-attached proteins. During infection, Mrp recruit human fibrinogen (Fg) to the bacterial surface, enhancing phagocytosis resistance and promoting growth in human blood. However, Mrp exhibit a high degree of sequence diversity, clustering into four evolutionarily distinct groups. It is currently unknown whether this diversity affects the host-pathogen interactions mediated by Mrp. In this study, nine Mrp sequences from the four major evolutionary groups were selected to examine the effect of sequence diversity on protein-protein interactions with Fg. Negative staining transmission electron microscopy confirmed that Mrp are fibrillar proteins measuring between 45.4 and 47.3 nm in length, and mass photometry confirmed the ability of Mrp to form dimers. Surface plasmon resonance was used to evaluate the affinity of each Mrp for Fg. All Mrp studied bound to Fg via Fragment D (FgD) with nanomolar affinity. Previous studies have linked the acquisition of plasminogen (Plg) by GAS Fg-binding M proteins to tissue destruction and excessive stimulation of the human inflammatory response during infection. Our findings show that Mrp provide an alternative mechanism for Plg recruitment, as Plg binding by Mrp was significantly enhanced following pre-incubation with Fg. These data suggest that Mrp play an important role in GAS host-pathogen interactions. However, further studies are necessary to investigate the relevance of these findings in vivo.
Collapse
Affiliation(s)
- Emma‐Jayne Proctor
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Hannah R. Frost
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV)Université Libre de BruxellesBrusselsBelgium
| | - Bhanu Mantri
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Sandeep Satapathy
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
- The Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Gwenaëlle Botquin
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV)Université Libre de BruxellesBrusselsBelgium
| | - Jody Gorman
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - David M. P. De Oliveira
- The Institute for Molecular Biosciences, Centre for Superbug SolutionsThe University of QueenslandBrisbaneQueenslandAustralia
| | - Jason McArthur
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Mark R. Davies
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVictoriaAustralia
| | - Gökhan Tolun
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
- The ARC Training Centre for Cryo‐electron Microscopy of Membrane Proteins, University of WollongongWollongongNSWAustralia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV)Université Libre de BruxellesBrusselsBelgium
| | - Pierre Smeesters
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV)Université Libre de BruxellesBrusselsBelgium
| | - Martina Sanderson‐Smith
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
2
|
Proctor EJ, Frost HR, Satapathy S, Botquin G, Urbaniec J, Gorman J, De Oliveira DMP, McArthur J, Davies MR, Botteaux A, Smeesters P, Sanderson-Smith M. Molecular characterization of the interaction between human IgG and the M-related proteins from Streptococcus pyogenes. J Biol Chem 2024; 300:105623. [PMID: 38176650 PMCID: PMC10844976 DOI: 10.1016/j.jbc.2023.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Group A Streptococcal M-related proteins (Mrps) are dimeric α-helical-coiled-coil cell membrane-bound surface proteins. During infection, Mrp recruit the fragment crystallizable region of human immunoglobulin G via their A-repeat regions to the bacterial surface, conferring upon the bacteria enhanced phagocytosis resistance and augmented growth in human blood. However, Mrps show a high degree of sequence diversity, and it is currently not known whether this diversity affects the Mrp-IgG interaction. Herein, we report that diverse Mrps all bind human IgG subclasses with nanomolar affinity, with differences in affinity which ranged from 3.7 to 11.1 nM for mixed IgG. Using surface plasmon resonance, we confirmed Mrps display preferential IgG-subclass binding. All Mrps were found to have a significantly weaker affinity for IgG3 (p < 0.05) compared to all other IgG subclasses. Furthermore, plasma pulldown assays analyzed via Western blotting revealed that all Mrp were able to bind IgG in the presence of other serum proteins at both 25 °C and 37 °C. Finally, we report that dimeric Mrps bind to IgG with a 1:1 stoichiometry, enhancing our understanding of this important host-pathogen interaction.
Collapse
Affiliation(s)
- Emma-Jayne Proctor
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Hannah R Frost
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV), Université Libre de Bruxelles, Brussels, Belgium
| | - Sandeep Satapathy
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia; The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gwenaëlle Botquin
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV), Université Libre de Bruxelles, Brussels, Belgium
| | - Joanna Urbaniec
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Jody Gorman
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - David M P De Oliveira
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, QLD, Australia
| | - Jason McArthur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria, Australia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Smeesters
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV), Université Libre de Bruxelles, Brussels, Belgium
| | - Martina Sanderson-Smith
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
3
|
Expression of the Group A Streptococcus Fibrinogen-Binding Protein Mrp Is Negatively Regulated by the Small Regulatory RNA FasX. J Bacteriol 2022; 204:e0025122. [PMID: 36286516 PMCID: PMC9664951 DOI: 10.1128/jb.00251-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small regulatory RNAs (sRNAs) represent a major class of regulatory molecule that promotes the ability of the group A
Streptococcus
(GAS) and other pathogens to regulate virulence factor expression. Despite FasX being the best-described sRNA in GAS, there remains much to be learned.
Collapse
|
4
|
Abstract
M and M-like proteins are major virulence factors of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes. These proteins confer resistance against innate and adaptive immune responses by recruiting specific human proteins to the streptococcal surface. Nonimmune recruitment of immunoglobulins G (IgG) and A (IgA) through their fragment crystallizable (Fc) domains by M and M-like proteins was described almost 40 years ago, but its impact on virulence remains unresolved. These interactions have been suggested to be consequential under immune conditions at mucosal surfaces and in secretions but not in plasma, while other evidence suggests importance in evading phagocytic killing in nonimmune blood. Recently, an indirect effect of Fc-binding through ligand-induced stabilization of an M-like protein was shown to increase virulence. Nonimmune recruitment has also been seen to contribute to tissue damage in animal models of autoimmune diseases triggered by S. pyogenes infection. The damage was treatable by targeting Fc-binding. This and other potential therapeutic applications warrant renewed attention to Fc-binding by M and M-like proteins.
Collapse
Affiliation(s)
- Jori O. Mills
- Department of Chemistry & Biochemistry, La Jolla, California, United States of America
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, La Jolla, California, United States of America
| |
Collapse
|
5
|
Tian J, Du J, Han J, Bao X, Song X, Lu Z. Proteomics reveals the preliminary physiological states of the spotted seal (Phoca largha) pups. Sci Rep 2020; 10:18727. [PMID: 33127980 PMCID: PMC7599241 DOI: 10.1038/s41598-020-75759-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Spotted seal (Phoca largha) is a critically endangered pinniped in China and South Korea. The conventional method to protect and maintain the P. largha population is to keep them captive in artificially controlled environments. However, little is known about the physiological differences between wild and captive P. largha. To generate a preliminary protein expression profile for P. largha, whole blood from wild and captive pups were subjected to a label-free comparative proteomic analysis. According to the results, 972 proteins were identified and predicted to perform functions related to various metabolic, immune, and cellular processes. Among the identified proteins, the expression level of 51 were significantly different between wild and captive P. large pups. These differentially expressed proteins were enriched in a wide range of cellular functions, including cytoskeleton, phagocytosis, proteolysis, the regulation of gene expression, and carbohydrate metabolism. The abundances of proteins involved in phagocytosis and ubiquitin-mediated proteolysis were significantly higher in the whole blood of wild P. largha pups than in captive individuals. In addition, heat shock protein 90-beta, were determined as the key protein associated with the differences in the wild and captive P. largha pups due to the most interactions of it with various differentially expressed proteins. Moreover, wild P. largha pups could be more nutritionally stressed and have more powerful immune capacities than captive pups. This study provides the first data on the protein composition of P. largha and provides useful information on the physiological characteristics for research in this species.
Collapse
Affiliation(s)
- Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Jiabo Han
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xiangbo Bao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xinran Song
- Dalian Sun Asia Tourism Holding Co., Ltd., 608-6-8 Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
6
|
Analysis of Global Collection of Group A Streptococcus Genomes Reveals that the Majority Encode a Trio of M and M-Like Proteins. mSphere 2020; 5:5/1/e00806-19. [PMID: 31915226 PMCID: PMC6952200 DOI: 10.1128/msphere.00806-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While the GAS M protein has been the leading vaccine target for decades, the bacteria encode many other virulence factors of interest for vaccine development. In this work, we show that emm-like genes are encoded in a remarkable majority of GAS genomes and expressed at a level similar to that for the emm gene. In collaboration with the U.S. Centers for Disease Control, we developed molecular definitions of the different emm and emm-like gene families. This clarification should abrogate mistyping of strains, especially in the area of whole-genome typing. We have also updated the emm-typing collection by removing emm-like gene sequences and provided in-depth analysis of Mrp and Enn protein sequence structure and diversity. The core Mga (multiple gene activator) regulon of group A Streptococcus (GAS) contains genes encoding proteins involved in adhesion and immune evasion. While all GAS genomes contain genes for Mga and C5a peptidase, the intervening genes encoding M and M-like proteins vary between strains. The genetic make-up of the Mga regulon of GAS was characterized by utilizing a collection of 1,688 GAS genomes that are representative of the global GAS population. Sequence variations were examined with multiple alignments, and the expression of all core Mga regulon genes was examined by quantitative reverse transcription-PCR in a representative strain collection. In 85.2% of the sampled genomes, the Mga locus contained genes encoding Mga, Mrp, M, Enn, and C5a peptidase proteins. These isolates account for 53% of global infections. Only 9.1% of genomes did not contain either an mrp or an enn gene. The pairwise identity within Enn (68.6%) and Mrp (83.2%) protein sequences was higher than within M proteins (44.7%). Gene expression varied between strains tested, but high expression was recorded for all genes in at least one strain. Previous nomenclature issues were clarified with molecular gene definitions. Our findings support a shift in focus in the GAS research field to further consider the role of Mrp and Enn in virulence and vaccine development. IMPORTANCE While the GAS M protein has been the leading vaccine target for decades, the bacteria encode many other virulence factors of interest for vaccine development. In this work, we show that emm-like genes are encoded in a remarkable majority of GAS genomes and expressed at a level similar to that for the emm gene. In collaboration with the U.S. Centers for Disease Control, we developed molecular definitions of the different emm and emm-like gene families. This clarification should abrogate mistyping of strains, especially in the area of whole-genome typing. We have also updated the emm-typing collection by removing emm-like gene sequences and provided in-depth analysis of Mrp and Enn protein sequence structure and diversity.
Collapse
|
7
|
Frost HR, Sanderson-Smith M, Walker M, Botteaux A, Smeesters PR. Group A streptococcal M-like proteins: From pathogenesis to vaccine potential. FEMS Microbiol Rev 2018; 42:193-204. [PMID: 29228173 DOI: 10.1093/femsre/fux057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
M and M-like surface proteins from group A Streptococcus (GAS) act as virulence factors and have been used in multiple vaccine candidates. While the M protein has been extensively studied, the two genetically and functionally related M-like proteins, Mrp and Enn, although present in most streptococcal strains have been relatively less characterised. We compile the current state of knowledge for these two proteins, from discovery to recent studies on function and immunogenicity, using the M protein for comparison as a prototype of this family of proteins. We focus on the known interactions between M-like proteins and host ligand proteins, and analyse the genetic data supporting these interactions. We discuss known and possible functions of M-like proteins during GAS infections, and highlight knowledge gaps where further investigation is warranted.
Collapse
Affiliation(s)
- Hannah R Frost
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, 2522, NSW, Australia
| | - Mark Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia.,Department of Pediatrics, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels 1020, Belgium.,Centre for International Child Health, University of Melbourne, Melbourne 3052, VIC, Australia
| |
Collapse
|
8
|
Courtney HS, Niedermeyer SE, Penfound TA, Hohn CM, Greeley A, Dale JB. Trivalent M-related protein as a component of next generation group A streptococcal vaccines. Clin Exp Vaccine Res 2017; 6:45-49. [PMID: 28168173 PMCID: PMC5292357 DOI: 10.7774/cevr.2017.6.1.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 11/15/2022] Open
Abstract
PURPOSE There is a need to broaden protective coverage of M protein-based vaccines against group A streptococci (GAS) because coverage of the current 30-valent M protein vaccine does not extend to all emm types. An additional GAS antigen and virulence factor that could potentially extend vaccine coverage is M-related protein (Mrp). Previous work indicated that there are three structurally related families of Mrp (MrpI, MrpII, and MrpIII) and peptides of all three elicited bactericidal antibodies against multiple emm types. The purpose of this study was to determine if a recombinant form containing Mrp from the three families would evoke bactericidal antiserum and to determine if this antiserum could enhance the effectiveness of antisera to the 30-valent M protein vaccine. MATERIALS AND METHODS A trivalent recombinant Mrp (trMrp) protein containing N-terminal fragments from the three families (trMrp) was constructed, purified and used to immunize rabbits. Anti-trMrp sera contained high titers of antibodies against the trMrp immunogen and recombinant forms representing MrpI, MrpII, and MrpIII. RESULTS The antisera opsonized emm types of GAS representing each Mrp family and also opsonized emm types not covered by the 30-valent M protein-based vaccine. Importantly, a combination of trMrp and 30-valent M protein antiserum resulted in higher levels of opsonization of GAS than either antiserum alone. CONCLUSION These findings suggest that trMrp may be an effective addition to future constructs of GAS vaccines.
Collapse
Affiliation(s)
- Harry S Courtney
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Shannon E Niedermeyer
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Thomas A Penfound
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Claudia M Hohn
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Adam Greeley
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA
| | - James B Dale
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA.; Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
9
|
Epidemiology Analysis of Streptococcus pyogenes in a Hospital in Southern Taiwan by Use of the Updated emm Cluster Typing System. J Clin Microbiol 2015; 54:157-62. [PMID: 26560544 DOI: 10.1128/jcm.02089-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/05/2015] [Indexed: 12/14/2022] Open
Abstract
emm typing is the most widely used molecular typing method for the human pathogen Streptococcus pyogenes (group A streptococcus [GAS]). emm typing is based on a small variable region of the emm gene; however, the emm cluster typing system defines GAS types according to the nearly complete sequence of the emm gene. Therefore, emm cluster typing is considered to provide more information regarding the functional and structural properties of M proteins in different emm types of GAS. In the present study, 677 isolates collected between 1994 and 2008 in a hospital in southern Taiwan were analyzed by the emm cluster typing system. emm clusters A-C4, E1, E6, and A-C3 were the most prevalent emm cluster types and accounted for 67.4% of total isolates. emm clusters A-C4 and E1 were associated with noninvasive diseases, whereas E6 was significantly associated with both invasive and noninvasive manifestations. In addition, emm clusters D4, E2, and E3 were significantly associated with invasive manifestations. Furthermore, we found that the functional properties of M protein, including low fibrinogen-binding and high IgG-binding activities, were correlated significantly with invasive manifestations. In summary, the present study provides updated epidemiological information on GAS emm cluster types in southern Taiwan.
Collapse
|
10
|
Dale JB, Niedermeyer SE, Agbaosi T, Hysmith ND, Penfound TA, Hohn CM, Pullen M, Bright MI, Murrell DS, Shenep LE, Courtney HS. Protective immunogenicity of group A streptococcal M-related proteins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:344-50. [PMID: 25630406 PMCID: PMC4340887 DOI: 10.1128/cvi.00795-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/17/2015] [Indexed: 01/30/2023]
Abstract
Many previous studies have focused on the surface M proteins of group A streptococci (GAS) as virulence determinants and protective antigens. However, the majority of GAS isolates express M-related protein (Mrp) in addition to M protein, and both have been shown to be required for optimal virulence. In the current study, we evaluated the protective immunogenicity of Mrp to determine its potential as a vaccine component that may broaden the coverage of M protein-based vaccines. Sequence analyses of 33 mrp genes indicated that there are three families of structurally related Mrps (MrpI, MrpII, and MrpIII). N-terminal peptides of Mrps were cloned, expressed, and purified from M type 2 (M2) (MrpI), M4 (MrpII), and M49 (MrpIII) GAS. Rabbit antisera against the Mrps reacted at high titers with the homologous Mrp, as determined by enzyme-linked immunosorbent assay, and promoted bactericidal activity against GAS emm types expressing Mrps within the same family. Mice passively immunized with rabbit antisera against MrpII were protected against challenge infections with M28 GAS. Assays for Mrp antibodies in serum samples from 281 pediatric subjects aged 2 to 16 indicated that the Mrp immune response correlated with increasing age of the subjects. Affinity-purified human Mrp antibodies promoted bactericidal activity against a number of GAS representing different emm types that expressed an Mrp within the same family but showed no activity against emm types expressing an Mrp from a different family. Our results indicate that Mrps have semiconserved N-terminal sequences that contain bactericidal epitopes which are immunogenic in humans. These findings may have direct implications for the development of GAS vaccines.
Collapse
Affiliation(s)
- James B Dale
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Microbiology, Immunology and Biochemistry, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Shannon E Niedermeyer
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Tina Agbaosi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Nicholas D Hysmith
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas A Penfound
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Claudia M Hohn
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Matthew Pullen
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Michael I Bright
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Daniel S Murrell
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Lori E Shenep
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Harry S Courtney
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
11
|
Group A streptococcus expresses a trio of surface proteins containing protective epitopes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1421-5. [PMID: 25080552 DOI: 10.1128/cvi.00448-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group A streptococci (GAS) (Streptococcus pyogenes) are common causes of infections in humans for which there is no licensed vaccine. Decades of work has focused on the role of the surface M protein in eliciting type-specific protective immunity. Recent studies have identified additional surface proteins of GAS that contain opsonic epitopes. In the present study, we describe a serotype M65 GAS originally isolated during an epidemiologic study in Bamako, Mali, which simultaneously expressed M, M-related protein (Mrp), and streptococcal protective antigen (Spa) on the bacterial surface. The emm, mrp, and spa genes were sequenced from PCR amplicons derived from the M65 chromosome. Rabbit antisera raised against synthetic peptides copying the N-terminal regions of M, Mrp, and Spa were highly specific for each peptide, reacted with the surface of M65 GAS, and promoted bactericidal activity against the organism. A mixture of antisera against all three peptides was most effective in the bactericidal assays. Immunofluorescence microscopy revealed that the M, Mrp, and Spa antisera bound to the bacterial surface in the presence of human plasma proteins and resulted in the deposition of complement. Five additional spa genes were identified in the Mrp-positive GAS serotypes, and their sequences were determined. Our results indicate that there are multiple antigens on the surface of GAS that evoke antibodies that promote bacterial killing. A more complete understanding of the relative contributions of M, Mrp, and Spa in eliciting protective immunity may aid in the development of GAS vaccines with enhanced coverage and efficacy.
Collapse
|
12
|
Non-immune binding of human IgG to M-related proteins confers resistance to phagocytosis of group A streptococci in blood. PLoS One 2013; 8:e78719. [PMID: 24205299 PMCID: PMC3808296 DOI: 10.1371/journal.pone.0078719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/20/2013] [Indexed: 12/04/2022] Open
Abstract
The non-immune binding of immunoglobulins by bacteria is thought to contribute to the pathogenesis of infections. M-related proteins (Mrp) are group A streptococcal (GAS) receptors for immunoglobulins, but it is not known if this binding has any impact on virulence. To further investigate the binding of immunoglobulins to Mrp, we engineered mutants of an M type 4 strain of GAS by inactivating the genes for mrp, emm, enn, sof, and sfbX and tested these mutants in IgG-binding assays. Inactivation of mrp dramatically decreased the binding of human IgG, whereas inactivation of emm, enn, sof, and sfbx had only minor effects, indicating that Mrp is a major IgG-binding protein. Binding of human immunoglobulins to a purified, recombinant form of Mrp indicated that it selectively binds to the Fc domain of human IgG, but not IgA or IgM and that it preferentially bound subclasses IgG1>IgG4>IgG2>IgG3. Recombinant proteins encompassing different regions of Mrp were engineered and used to map its IgG-binding domain to its A-repeat region and a recombinant protein with 3 A-repeats was a better inhibitor of IgG binding than one with a single A-repeat. A GAS mutant expressing Mrp with an in-frame deletion of DNA encoding the A-repeats had a dramatically reduced ability to bind human IgG and to grow in human blood. Mrp exhibited host specificity in binding IgG; human IgG was the best inhibitor of the binding of IgG followed by pig, horse, monkey, and rabbit IgG. IgG from goat, mouse, rat, cow, donkey, chicken, and guinea pig were poor inhibitors of binding. These findings indicate that Mrp preferentially binds human IgG and that this binding contributes to the ability of GAS to resist phagocytosis and may be a factor in the restriction of GAS infections to the human host.
Collapse
|