1
|
Hernández-Benítez JA, Santos-Ocampo BN, Rosas-Ramírez DG, Bautista-Hernández LA, Bautista-de Lucio VM, Pérez NO, Rodríguez-Tovar AV. The Effect of Temperature over the Growth and Biofilm Formation of the Thermotolerant Aspergillus flavus. J Fungi (Basel) 2025; 11:53. [PMID: 39852472 PMCID: PMC11766932 DOI: 10.3390/jof11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Aspergillus flavus is a medically relevant fungus, particularly in tropical regions. Although its aflatoxin production and thermotolerance are well documented, its biofilm-forming ability has received less attention, despite being a key factor in the virulence of A. flavus as an opportunistic pathogen, which can significantly impact therapeutic outcomes. To investigate the influence of temperature on the growth and biofilm formation of an A. flavus isolate, we compared it on solid media with the reference strain A. flavus ATCC 22546 and documented morphological changes during conidial germination. We examined biofilm formation in both strains across different temperatures and evaluated the susceptibility of this A. flavus isolate to antifungal agents in both planktonic and biofilm form. Our results showed that the temperature can promote conidiation on solid media. Radial growth was highest at 28 °C, while the conidial count and density were favored at higher temperatures. Moreover, we determined that 37 °C was the optimal temperature for conidial germination and biofilm formation. We described four distinct phases in A. flavus biofilm development-initiation (0-12 h), consolidation (12-24 h), maturation (24-48 h), and dispersion (48-72 h)-with the notable presence of conidial heads at 42 °C. Carbohydrates and proteins constitute the primary components of the extracellular matrix. We observed an abundance of lipid droplets within the hyphae of the MMe18 strain biofilm. The mature biofilms demonstrated reduced susceptibility to amphotericin B and itraconazole, requiring higher inhibitory concentrations for both antifungals compared with their planktonic counterparts.
Collapse
Affiliation(s)
- José Alejandro Hernández-Benítez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico; (J.A.H.-B.); (B.N.S.-O.)
| | - Brenda Nallely Santos-Ocampo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico; (J.A.H.-B.); (B.N.S.-O.)
| | - Daniel Genaro Rosas-Ramírez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior s/n, Ciudad Universitaria, Alcaldía Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Luis Antonio Bautista-Hernández
- Unidad de Investigación del Instituto de Oftalmología, Fundación de Asistencia Privada Conde de Valenciana I.A.P., Chimalpopoca 14, Col. Obrera, Alcaldía Cuahutémoc, Mexico City C.P. 06800, Mexico; (L.A.B.-H.); (V.M.B.-d.L.)
| | - Víctor Manuel Bautista-de Lucio
- Unidad de Investigación del Instituto de Oftalmología, Fundación de Asistencia Privada Conde de Valenciana I.A.P., Chimalpopoca 14, Col. Obrera, Alcaldía Cuahutémoc, Mexico City C.P. 06800, Mexico; (L.A.B.-H.); (V.M.B.-d.L.)
| | - Néstor Octavio Pérez
- Departamento de Investigación y Desarrollo, Probiomed, S.A. de C.V., Cruce de Carreteras Acatzingo-Zumahuacan s/n, Tenancingo C.P. 52400, State of Mexico, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico; (J.A.H.-B.); (B.N.S.-O.)
| |
Collapse
|
2
|
Brodsky JL, Iyer A, Fortounas KI, Fisher EA. The emerging role of fat-inducing transcript 2 in endoplasmic reticulum proteostasis and lipoprotein biogenesis. Curr Opin Lipidol 2024; 35:248-252. [PMID: 39172716 PMCID: PMC11387134 DOI: 10.1097/mol.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
PURPOSE OF REVIEW This review examines the evolving role of the fat-inducing transcript 2 (FIT2) protein in lipid droplet (LD) biology and its broader implications in cellular physiology and disease. With recent advancements in understanding FIT2 function across various model systems, this review provides a timely synthesis of its mechanisms and physiological significance. RECENT FINDINGS FIT2, an endoplasmic reticulum (ER)-resident protein, has been established as a critical regulator of LD formation in diverse organisms, from yeast to mammals. It facilitates LD biogenesis by sequestering diacylglycerol (DAG) and potentially influencing ER membrane dynamics. Beyond its role in lipid metabolism, FIT2 intersects with the ER-associated degradation (ERAD), is critical for protein homeostasis, and is linked to the unfolded protein response (UPR). Dysregulation of FIT2 has also been linked to metabolic disorders such as insulin resistance and lipodystrophy, highlighting its clinical relevance. SUMMARY Insights into FIT2 function underscore its pivotal role in LD formation and lipid homeostasis. Understanding its involvement in ER proteostasis and very low density lipoprotein biogenesis has broad implications for metabolic diseases and cancer. Therapeutic strategies targeting FIT2 may offer novel approaches to modulate lipid metabolism and mitigate associated pathologies. Further research is needed to elucidate the full spectrum of FIT2's interactions within cellular lipid and protein networks, potentially uncovering new therapeutic avenues for metabolic and ER stress-related disorders.
Collapse
Affiliation(s)
- Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Iyer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Konstantinos I. Fortounas
- Division of Cardiology and the Department of Medicine, NYU School of Medicine, New York, NY, USA
- Cardiovascular Research Center and the Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, New York, NY, USA
| | - Edward A. Fisher
- Division of Cardiology and the Department of Medicine, NYU School of Medicine, New York, NY, USA
- Cardiovascular Research Center and the Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, New York, NY, USA
| |
Collapse
|
3
|
Lee CWJ, Brisland A, Qu X, Horianopoulos LC, Hu G, Mayer FL, Kronstad JW. Loss of Opi3 causes a lipid imbalance that influences the virulence traits of Cryptococcus neoformans but not cryptococcosis. Front Cell Infect Microbiol 2024; 14:1448229. [PMID: 39193507 PMCID: PMC11347413 DOI: 10.3389/fcimb.2024.1448229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The basidiomycete fungus Cryptococcus neoformans is a useful model for investigating mechanisms of fungal pathogenesis in mammalian hosts. This pathogen is the causative agent of cryptococcal meningitis in immunocompromised patients and is in the critical priority group of the World Health Organization fungal priority pathogens list. In this study, we employed a mutant lacking the OPI3 gene encoding a methylene-fatty-acyl-phospholipid synthase to characterize the role of phosphatidylcholine (PC) and lipid homeostasis in the virulence of C. neoformans. We first confirmed that OPI3 was required for growth in nutrient limiting conditions, a phenotype that could be rescued with exogenous choline and PC. Additionally, we established that loss of Opi3 and the lack of PC lead to an accumulation of neutral lipids in lipid droplets and alterations in major lipid classes. The growth defect of the opi3Δ mutant was also rescued by sorbitol and polyethylene glycol (PEG), a result consistent with protection of ER function from the stress caused by lipid imbalance. We then examined the impact of Opi3 on virulence and found that the dependence of PC synthesis on Opi3 caused reduced capsule size and this was accompanied by an increase in shed capsule polysaccharide and changes in cell wall composition. Further tests of virulence demonstrated that survival in alveolar macrophages and the ability to cause disease in mice were not impacted by loss of Opi3 despite the choline auxotrophy of the mutant in vitro. Overall, this work establishes the contribution of lipid balance to virulence factor elaboration by C. neoformans and suggests that host choline is sufficient to support proliferation during disease.
Collapse
Affiliation(s)
- Christopher W. J. Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Anna Brisland
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Xianya Qu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Linda C. Horianopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - François L. Mayer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Alves V, de Andrade IB, Corrêa-Junior D, Avellar-Moura I, Passos K, Soares J, Pontes B, Almeida MA, Almeida-Paes R, Frases S. Revealing the impact of Rapamycin on the virulence factors of the Candida haemulonii complex. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100247. [PMID: 38974670 PMCID: PMC11225706 DOI: 10.1016/j.crmicr.2024.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
The incidence of invasive fungal infections caused by Candida species is increasing, particularly in immunocompromised individuals. This increasing incidence poses a dual challenge, comprising escalating antifungal resistance and the necessity for accurate fungal identification. The Candida haemulonii complex further complicates these challenges due to limited identification tools. Like some other Candida species, infections involving this complex show resistance to multiple antifungals, requiring innovative therapeutic approaches. Rapamycin, known for its antifungal properties and immunosuppressive characteristics, was investigated against the C. haemulonii complex species. Results revealed a rapamycin minimal inhibitory concentration (MIC) range of 0.07 to >20 µM, with fungicidal effects in most strains. In vitro analyses using the rapamycin maximum plasma concentration (0.016 µM) showed reduced surface properties and decreased production of extracellular enzymes. Rapamycin also hindered biofilm formation by some strains. Even when treated at the human therapeutic dose, which is lower than the MIC, phenotypic variations in C. haemulonii were detected, hinting at the possible attenuation of some virulence factors when exposed to rapamycin.
Collapse
Affiliation(s)
- Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Igor Avellar-Moura
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Karini Passos
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Juliana Soares
- Laboratório de Pinças Ópticas, Instituto de Ciências Biomédicas & Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bruno Pontes
- Laboratório de Pinças Ópticas, Instituto de Ciências Biomédicas & Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| | - Marcos Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
5
|
Tang L, Zhai H, Zhang S, Lv Y, Li Y, Wei S, Ma P, Wei S, Hu Y, Cai J. Functional Characterization of Aldehyde Dehydrogenase in Fusarium graminearum. Microorganisms 2023; 11:2875. [PMID: 38138019 PMCID: PMC10745421 DOI: 10.3390/microorganisms11122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH), a common oxidoreductase in organisms, is an aldehyde scavenger involved in various metabolic processes. However, its function in different pathogenic fungi remains unknown. Fusarium graminearum causes Fusarium head blight in cereals, which reduces grain yield and quality and is an important global food security problem. To elucidate the pathogenic mechanism of F. graminearum, seven genes encoding ALDH were knocked out and then studied for their function. Single deletions of seven ALDH genes caused a decrease in spore production and weakened the pathogenicity. Furthermore, these deletions altered susceptibility to various abiotic stresses. FGSG_04194 is associated with a number of functions, including mycelial growth and development, stress sensitivity, pathogenicity, toxin production, and energy metabolism. FGSG_00139 and FGSG_11482 are involved in sporulation, pathogenicity, and SDH activity, while the other five genes are multifunctional. Notably, we found that FGSG_04194 has an inhibitory impact on ALDH activity, whereas FGSG_00979 has a positive impact. RNA sequencing and subcellular location analysis revealed that FGSG_04194 is responsible for biological process regulation, including glucose and lipid metabolism. Our results suggest that ALDH contributes to growth, stress responses, pathogenicity, deoxynivalenol synthesis, and mitochondrial energy metabolism in F. graminearum. Finally, ALDH presents a potential target and theoretical basis for fungicide development.
Collapse
Affiliation(s)
| | - Huanchen Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.T.); (S.Z.); (Y.L.); (Y.L.); (S.W.); (P.M.); (S.W.); (Y.H.); (J.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
7
|
Wang G, Chen A, Wu Y, Wang D, Chang C, Yu G. Fat storage-inducing transmembrane proteins: beyond mediating lipid droplet formation. Cell Mol Biol Lett 2022; 27:98. [DOI: 10.1186/s11658-022-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractFat storage-inducing transmembrane proteins (FITMs) were initially identified in 2007 as members of a conserved endoplasmic reticulum (ER) resident transmembrane protein gene family, and were found to be involved in lipid droplet (LD) formation. Recently, several studies have further demonstrated that the ability of FITMs to directly bind to triglyceride and diacylglycerol, and the diphosphatase activity of hydrolyzing fatty acyl-CoA, might enable FITMs to maintain the formation of lipid droplets, engage in lipid metabolism, and protect against cellular stress. Based on the distribution of FITMs in tissues and their important roles in lipid droplet biology and lipid metabolism, it was discovered that FITMs were closely related to muscle development, adipocyte differentiation, and energy metabolism. Accordingly, the abnormal expression of FITMs was not only associated with type 2 diabetes and lipodystrophy, but also with cardiac disease and several types of cancer. This study reviews the structure, distribution, expression regulation, and functionality of FITMs and their potential relationships with various metabolic diseases, hoping to provide inspiration for fruitful research directions and applications of FITM proteins. Moreover, this review will provide an important theoretical basis for the application of FITMs in the diagnosis and treatment of related diseases.
Collapse
|
8
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
9
|
Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021; 70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.
Collapse
Affiliation(s)
- Jacobus T R Brink
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
10
|
Yap WS, Shyu P, Gaspar ML, Jesch SA, Marvalim C, Prinz WA, Henry SA, Thibault G. The yeast FIT2 homologs are necessary to maintain cellular proteostasis and membrane lipid homeostasis. J Cell Sci 2020; 133:jcs248526. [PMID: 33033181 PMCID: PMC7657468 DOI: 10.1242/jcs.248526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage-inducing transmembrane (FIT; also known as FITM) family induces LD formation. Here, we establish a model system to study the role of the Saccharomyces cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in the proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1 Owing to not having a functional UPR, cells with mutated SCS3 exhibited an accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting that there is a UPR-dependent compensatory mechanism that acts to mitigate lack of SCS3 Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitylation and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Wei Sheng Yap
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - Peter Shyu
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - Maria Laura Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Charlie Marvalim
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Susan A Henry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Guillaume Thibault
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673
| |
Collapse
|
11
|
Abstract
Patients with suppressed immunity are at the highest risk for hospital-acquired infections. Among these, invasive candidiasis is the most prevalent systemic fungal nosocomial infection. Over recent decades, the combined prevalence of non-albicans Candida species outranked Candida albicans infections in several geographical regions worldwide, highlighting the need to understand their pathobiology in order to develop effective treatment and to prevent future outbreaks. Candida parapsilosis is the second or third most frequently isolated Candida species from patients. Besides being highly prevalent, its biology differs markedly from that of C. albicans, which may be associated with C. parapsilosis' increased incidence. Differences in virulence, regulatory and antifungal drug resistance mechanisms, and the patient groups at risk indicate that conclusions drawn from C. albicans pathobiology cannot be simply extrapolated to C. parapsilosis Such species-specific characteristics may also influence their recognition and elimination by the host and the efficacy of antifungal drugs. Due to the availability of high-throughput, state-of-the-art experimental tools and molecular genetic methods adapted to C. parapsilosis, genome and transcriptome studies are now available that greatly contribute to our understanding of what makes this species a threat. In this review, we summarize 10 years of findings on C. parapsilosis pathogenesis, including the species' genetic properties, transcriptome studies, host responses, and molecular mechanisms of virulence. Antifungal susceptibility studies and clinician perspectives are discussed. We also present regional incidence reports in order to provide an updated worldwide epidemiology summary.
Collapse
|
12
|
Hayes M, Choudhary V, Ojha N, Shin JJ, Han GS, Carman GM, Loewen CJ, Prinz WA, Levine T. Fat storage-inducing transmembrane (FIT or FITM) proteins are related to lipid phosphatase/phosphotransferase enzymes. ACTA ACUST UNITED AC 2017; 5:88-103. [PMID: 29417057 PMCID: PMC5798408 DOI: 10.15698/mic2018.02.614] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fat storage-inducing transmembrane (FIT or FITM) proteins have been implicated in the partitioning of triacylglycerol to lipid droplets and the budding of lipid droplets from the ER. At the molecular level, the sole relevant interaction is that FITMs directly bind to triacyglycerol and diacylglycerol, but how they function at the molecular level is not known. Saccharomyces cerevisiae has two FITM homologues: Scs3p and Yft2p. Scs3p was initially identified because deletion leads to inositol auxotrophy, with an unusual sensitivity to addition of choline. This strongly suggests a role for Scs3p in phospholipid biosynthesis. Looking at the FITM family as widely as possible, we found that FITMs are widespread throughout eukaryotes, indicating presence in the last eukaryotic common ancestor. Protein alignments also showed that FITM sequences contain the active site of lipid phosphatase/phosphotransferase (LPT) enzymes. This large family transfers phosphate-containing headgroups either between lipids or in exchange for water. We confirmed the prediction that FITMs are related to LPTs by showing that single amino-acid substitutions in the presumptive catalytic site prevented their ability to rescue growth of the mutants on low inositol/high choline media when over-expressed. The substitutions also prevented rescue of other phenotypes associated with loss of FITM in yeast, including mistargeting of Opi1p, defective ER morphology, and aberrant lipid droplet budding. These results suggest that Scs3p, Yft2p and FITMs in general are LPT enzymes involved in an as yet unknown critical step in phospholipid metabolism.
Collapse
Affiliation(s)
- Matthew Hayes
- University College London Institute of Ophthalmology. 11-43 Bath Street, London, EC1V 9EL, UK
| | - Vineet Choudhary
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Namrata Ojha
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Jh Shin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gil-Soo Han
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Christopher Jr Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy Levine
- University College London Institute of Ophthalmology. 11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
13
|
Chen X, Goodman JM. The collaborative work of droplet assembly. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1205-1211. [PMID: 28711458 DOI: 10.1016/j.bbalip.2017.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
Three proteins have been implicated in the assembly of cytoplasmic lipid droplets: seipin, FIT2, and perilipin. This review examines the current theories of seipin function as well as the evidence for the involvement of all three proteins in droplet biogenesis, and ends with a proposal of how they collaborate to regulate the formation of droplets. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, United States
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, United States.
| |
Collapse
|
14
|
Chen X, Luo Y, Jia G, Zhao H, Liu G, Huang Z. Role of FIT2 in porcine intramuscular preadipocyte differentiation. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Pérez-García LA, Csonka K, Flores-Carreón A, Estrada-Mata E, Mellado-Mojica E, Németh T, López-Ramírez LA, Toth R, López MG, Vizler C, Marton A, Tóth A, Nosanchuk JD, Gácser A, Mora-Montes HM. Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction. Front Microbiol 2016; 7:306. [PMID: 27014229 PMCID: PMC4781877 DOI: 10.3389/fmicb.2016.00306] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
Abstract
Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain. Here, we disrupted C. parapsilosis OCH1 to gain insights into the contribution of N-linked mannosylation to cell fitness and to interactions with immune cells. Loss of Och1 in C. parapsilosis resulted in cellular aggregation, failure of morphogenesis, enhanced susceptibility to cell wall perturbing agents and defects in wall composition. We removed the cell wall O-linked mannans by β-elimination, and assessed the relevance of mannans during interaction with human monocytes. Results indicated that O-linked mannans are important for IL-1β stimulation in a dectin-1 and TLR4-dependent pathway; whereas both, N- and O-linked mannans are equally important ligands for TNFα and IL-6 stimulation, but neither is involved in IL-10 production. Furthermore, mice infected with C. parapsilosis och1Δ null mutant cells had significantly lower fungal burdens compared to wild-type (WT)-challenged counterparts. Therefore, our data are the first to demonstrate that C. parapsilosis N- and O-linked mannans have different roles in host interactions than those reported for C. albicans.
Collapse
Affiliation(s)
- Luis A Pérez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Katalin Csonka
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Arturo Flores-Carreón
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Eine Estrada-Mata
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Erika Mellado-Mojica
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Tibor Németh
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Luz A López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Renata Toth
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Mercedes G López
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Csaba Vizler
- Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - Annamaria Marton
- Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - Adél Tóth
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Joshua D Nosanchuk
- Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY, USA
| | - Attila Gácser
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| |
Collapse
|
16
|
Bednaski A, Trevisan-Silva D, Matsubara F, Boia-Ferreira M, Olivério M, Gremski L, Cavalheiro R, De Paula D, Paredes-Gamero E, Takahashi H, Toledo M, Nader H, Veiga S, Chaim O, Senff-Ribeiro A. Characterization of Brown spider (Loxosceles intermedia) hemolymph: Cellular and biochemical analyses. Toxicon 2015; 98:62-74. [DOI: 10.1016/j.toxicon.2015.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
|
17
|
Gross DA, Silver DL. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol 2015; 49:304-26. [PMID: 25039762 DOI: 10.3109/10409238.2014.931337] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid droplet (LD) is a phylogenetically conserved organelle. In eukaryotes, it is born from the endoplasmic reticulum, but unlike its parent organelle, LDs are the only known cytosolic organelles that are micellar in structure. LDs are implicated in numerous physiological and pathophysiological functions. Many aspects of the LD has captured the attention of diverse scientists alike and has recently led to an explosion in information on the LD biogenesis, expansion and fusion, identification of LD proteomes and diseases associated with LD biology. This review will provide a brief history of this fascinating organelle and provide some contemporary views of unanswered questions in LD biogenesis.
Collapse
Affiliation(s)
- David A Gross
- Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School Singapore , Singapore , and
| | | |
Collapse
|
18
|
Dynamics of the lipid droplet proteome of the Oleaginous yeast rhodosporidium toruloides. EUKARYOTIC CELL 2015; 14:252-64. [PMID: 25576482 DOI: 10.1128/ec.00141-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that serve as a neutral lipid reservoir and a hub for lipid metabolism. Manipulating LD formation, evolution, and mobilization in oleaginous species may lead to the production of fatty acid-derived biofuels and chemicals. However, key factors regulating LD dynamics remain poorly characterized. Here we purified the LDs and identified LD-associated proteins from cells of the lipid-producing yeast Rhodosporidium toruloides cultured under nutrient-rich, nitrogen-limited, and phosphorus-limited conditions. The LD proteome consisted of 226 proteins, many of which are involved in lipid metabolism and LD formation and evolution. Further analysis of our previous comparative transcriptome and proteome data sets indicated that the transcription level of 85 genes and protein abundance of 77 proteins changed under nutrient-limited conditions. Such changes were highly relevant to lipid accumulation and partially confirmed by reverse transcription-quantitative PCR. We demonstrated that the major LD structure protein Ldp1 is an LD marker protein being upregulated in lipid-rich cells. When overexpressed in Saccharomyces cerevisiae, Ldp1 localized on the LD surface and facilitated giant LD formation, suggesting that Ldp1 plays an important role in controlling LD dynamics. Our results significantly advance the understanding of the molecular basis of lipid overproduction and storage in oleaginous yeasts and will be valuable for the development of superior lipid producers.
Collapse
|
19
|
Singaravelu K, Gácser A, Nosanchuk JD. Genetic determinants of virulence - Candida parapsilosis. Rev Iberoam Micol 2013; 31:16-21. [PMID: 24257473 DOI: 10.1016/j.riam.2013.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022] Open
Abstract
The global epidemiology of fungal infections is changing. While overall, Candida albicans remains the most common pathogen; several institutions in Europe, Asia and South America have reported the rapid emergence to predominance of Candida parapsilosis. This mini-review examines the impact of gene deletions achieved in C. parapsilosis that have been published to date. The molecular approaches to gene disruption in C. parapsilosis and the molecularly characterized genes to date are reviewed. Similar to C. albicans, factors influencing virulence in C. parapsilosis include adherence, biofilm formation, lipid metabolism, and secretion of hydrolytic enzymes such as lipases, phospholipases and secreted aspartyl proteinases. Development of a targeted gene deletion method has enabled the identification of several unique aspects of C. parapsilosis genes that play a role in host-pathogen interactions - CpLIP1, CpLIP2, SAPP1a, SAPP1b, BCR1, RBT1, CpFAS2, OLE1, FIT-2. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).
Collapse
Affiliation(s)
- Kumara Singaravelu
- Departments of Medicine (Infectious Diseases) and Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Joshua D Nosanchuk
- Departments of Medicine (Infectious Diseases) and Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY, United States.
| |
Collapse
|
20
|
Chow BDW, Linden JR, Bliss JM. Candida parapsilosis and the neonate: epidemiology, virulence and host defense in a unique patient setting. Expert Rev Anti Infect Ther 2013; 10:935-46. [PMID: 23030332 DOI: 10.1586/eri.12.74] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Invasive candidiasis is a common problem in premature infants that leads to high morbidity and mortality. Although Candida albicans has historically been the most prominent species involved in these infections and has therefore been the subject of the most study, Candida parapsilosis is increasing in frequency, and neonates are disproportionately affected. This article reviews unique aspects of the epidemiology of this organism as well as strategies for prophylaxis against invasive candidiasis in general. Additionally, important differences between C. parapsilosis and C. albicans are coming to light related to virulence determinants and interactions with components of host immunity. These developments are reviewed while highlighting the significant gaps in our understanding that remain to be elucidated.
Collapse
Affiliation(s)
- Brian D W Chow
- Department of Pediatrics, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | | |
Collapse
|
21
|
Moir RD, Gross DA, Silver DL, Willis IM. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. PLoS Genet 2012; 8:e1002890. [PMID: 22927826 PMCID: PMC3426550 DOI: 10.1371/journal.pgen.1002890] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022] Open
Abstract
The ability to store nutrients in lipid droplets (LDs) is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT) proteins are conserved ER–resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2) and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol) to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER stress. The ability to form lipid droplets is a conserved property of eukaryotic cells that allows the storage of excess metabolic energy in a form that can be readily accessed. In adipose tissue, the storage of excess calories in lipid droplets normally protects other tissues from lipotoxicity and insulin resistance, but this protection is lost with chronic over-nutrition. The FAT storage-inducing transmembrane (FIT) proteins were recently identified as a conserved family of proteins that reside in the lipid bilayer of the endoplasmic reticulum and are implicated in lipid droplet formation. In this work we show that specific functions of the FIT proteins are conserved between yeast and humans and that SCS3 and YFT2, the yeast homologs of mammalian FIT2, are part of a large genetic interaction network connecting lipid metabolism, vesicle trafficking, transcription, and protein synthesis. From these interactions we determined that yeast strains lacking SCS3 and YFT2 are defective in their response to chronic ER stress and cannot induce the unfolded protein response pathway or transcription of phospholipid biosynthetic genes in low inositol. Our findings suggest that the mammalian FIT genes may play an important role in ER stress pathways, which are linked to obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Gross
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke–NUS Graduate Medical School Singapore, Singapore, Singapore
| | - David L. Silver
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke–NUS Graduate Medical School Singapore, Singapore, Singapore
- * E-mail: (IMW); (DLS)
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (IMW); (DLS)
| |
Collapse
|
22
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
23
|
Loures FV, Stroeder H, Almeida I, Calich VLG. Paracoccidioides brasiliensis lipids modulate macrophage activity via Toll-dependent or independent mechanisms. ACTA ACUST UNITED AC 2012; 66:58-70. [PMID: 22574780 DOI: 10.1111/j.1574-695x.2012.00986.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 02/06/2023]
Abstract
The macrophages are the first host cells that interact with the fungus Paracoccidioides brasiliensis, but the main mechanisms that regulate this interaction are not well understood. Because the role played by P. brasiliensis lipids in macrophage activation was not previously investigated, we aimed to assess the influence of diverse lipid fractions from P. brasiliensis yeasts in this process. The possible participation of TLR2 and TLR4 signaling was also evaluated using TLR2- and TLR4-defective macrophages. Four lipid-rich fractions were studied as follows: F1, composed by membrane phospholipids and neutral lipids, F2 by glycolipids of short chain, F3a by membrane glycoproteins anchored by glycosylphosphatidylinositol (GPI) groups, and F3b by glycolipids of long chain. All assayed lipid fractions were able to activate peritoneal macrophages and induce nitric oxide (NO) production. Importantly, the F1 and F3a fractions exerted opposite effects in the control of P. brasiliensis uptake and killing, but both fractions inhibited cytokines production. Furthermore, the increased NO production and expression of costimulatory molecules induced by F3a was shown to be TLR2 dependent although F1 used Toll-independent mechanisms. In conclusion, our work suggests that lipid components may play a role in the innate immunity against P. brasiliensis infection using Toll-dependent and independent mechanisms to control macrophage activation.
Collapse
Affiliation(s)
- Flávio V Loures
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | | | | | | |
Collapse
|
24
|
Horváth P, Nosanchuk JD, Hamari Z, Vágvölgyi C, Gácser A. The identification of gene duplication and the role of secreted aspartyl proteinase 1 in Candida parapsilosis virulence. J Infect Dis 2012; 205:923-33. [PMID: 22301631 DOI: 10.1093/infdis/jir873] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we analyzed the role of Candida parapsilosis-secreted aspartyl proteinase isoenzyme 1 (SAPP1) in virulence. The in silico analysis of SAPP1 sequence revealed a 2871 base pair-duplicated region (SAPP1a and SAPP1b) in the genome of C. parapsilosis. We generated homozygous ΔΔsapp1a, ΔΔsapp1b, and ΔΔsapp1a-ΔΔsapp1b mutants. Notably, Sapp1 production in an inducer medium was reduced by approximately 50% in the ΔΔsapp1a and ΔΔsapp1b mutants, but the other validated SAPP gene (SAPP2) was not affected. In contrast, Sapp2 production was increased in the ΔΔsapp1a-ΔΔsapp1b mutant relative to wild-type (WT) yeast. The ΔΔsapp1a-ΔΔsapp1b strain was hypersusceptible to human serum and was attenuated in its capacity to damage host-effector cells. The phagocytosis and killing of ΔΔsapp1a-ΔΔsapp1b yeasts by human peripheral blood mononuclear cells (PBMCs) and PBMC-derived macrophages (PBMC-DM) was significantly enhanced relative to WT. Phagolysosomal fusion in PBMC-DMs occurred more than twice as frequently with ingested ΔΔsapp1a-ΔΔsapp1b yeast cells compared with WT.
Collapse
Affiliation(s)
- Péter Horváth
- Department of Microbiology, University of Szeged, Közép fasor, Szeged, Hungary
| | | | | | | | | |
Collapse
|