1
|
Jin Z, Pang W, Zhao Y, Min H, Yao S, Bian Z, Wen Y, Peng C, Cao Y, Zheng L. Oral administration of IPI549 protects mice from neuropathology and an overwhelming inflammatory response during experimental cerebral malaria. Int J Parasitol Drugs Drug Resist 2024; 25:100539. [PMID: 38621317 PMCID: PMC11021959 DOI: 10.1016/j.ijpddr.2024.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.
Collapse
Affiliation(s)
- Zhuoru Jin
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China; Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Shijie Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhifang Bian
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yixin Wen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Chuanyang Peng
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China; Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Cimperman CK, Pena M, Gokcek SM, Theall BP, Patel MV, Sharma A, Qi C, Sturdevant D, Miller LH, Collins PL, Pierce SK, Akkaya M. Cerebral Malaria Is Regulated by Host-Mediated Changes in Plasmodium Gene Expression. mBio 2023; 14:e0339122. [PMID: 36852995 PMCID: PMC10127683 DOI: 10.1128/mbio.03391-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Cerebral malaria (CM), the deadliest complication of Plasmodium infection, is a complex and unpredictable disease. However, our understanding of the host and parasite factors that cause CM is limited. Using a mouse model of CM, experimental CM (ECM), we performed a three-way comparison between ECM-susceptible C57BL/6 mice infected with ECM-causing Plasmodium ANKA parasites [ANKA(C57BL/6)], ECM-resistant BALB/c mice infected with Plasmodium ANKA [ANKA(BALB/c)], and C57BL/6 mice infected with Plasmodium NK65 that does not cause ECM [NK65(C57BL/6)]. All ANKA(C57BL/6) mice developed CM. In contrast, in ANKA(BALB/c) and NK65(C57BL/6), infections do not result in CM and proceed similarly in terms of parasite growth, disease course, and host immune response. However, parasite gene expression in ANKA(BALB/c) was remarkably different than that in ANKA(C57BL/6) but similar to the gene expression in NK65(C57BL/6). Thus, Plasmodium ANKA has an ECM-specific gene expression profile that is activated only in susceptible hosts, providing evidence that the host has a critical influence on the outcome of infection. IMPORTANCE Hundreds of thousands of lives are lost each year due to the brain damage caused by malaria disease. The overwhelming majority of these deaths occur in young children living in sub-Saharan Africa. Thus far, there are no vaccines against this deadly disease, and we still do not know why fatal brain damage occurs in some children while others have milder, self-limiting disease progression. Our research provides an important clue to this problem. Here, we showed that the genetic background of the host has an important role in determining the course and the outcome of the disease. Our research also identified parasite molecules that can potentially be targeted in vaccination and therapy approaches.
Collapse
Affiliation(s)
- Clare K. Cimperman
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Sohret M. Gokcek
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Brandon P. Theall
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Meha V. Patel
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Anisha Sharma
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - ChenFeng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Daniel Sturdevant
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Munir Akkaya
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Lombardini ED, Turner GDH, Brown AE, Inamnuay L, Kaewamatawong T, Sunyakumthorn P, Ferguson DJP. A systematic analysis of ultrastructural lesions in the Plasmodium coatneyi splenectomized rhesus macaque model of severe malaria. Vet Pathol 2022; 59:873-882. [DOI: 10.1177/03009858221088783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmodium falciparum remains one of the world’s deadliest diseases and with ongoing concerns of evolving drug resistance, there is a need for continued refinement of the Plasmodium coatneyi infection model in macaques to study severe malaria. As such, the systemic ultrastructural lesions associated with P. coatneyi infection in splenectomized rhesus macaques was evaluated in 6 animals. Autopsy samples from multiple areas of the central nervous system (CNS), kidneys, heart, liver, and lungs of all 6 animals were processed for electron microscopy. A systematic analysis of the ultrastructural changes associated with the plasmodium was undertaken by multiple pathologists to ensure consensus. All tissues exhibited marked sequestration of infected red blood cells comprised either of cytoadherence to endothelium or rosette formation, associated with variable degrees of host cell damage in a range of tissues that in severe cases resulted in necrosis. This is the first complete systemic evaluation of ultrastructural tissue lesions in P. coatneyi–infected rhesus macaques, and the findings have important implications evaluating of the use of this model for the study of severe malaria caused by P. falciparum in humans.
Collapse
Affiliation(s)
| | - Gareth D. H. Turner
- University of Oxford, Oxford, UK
- Mahidol-Oxford Research Unit, Bangkok, Thailand
| | - Arthur E. Brown
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Laksanee Inamnuay
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | | |
Collapse
|
4
|
Oliveira KRHM, Torres MLM, Kauffmann N, de Azevedo Ataíde BJ, de Souza Franco Mendes N, dos Anjos LM, dos Santos Borges R, Bahia CP, Leão LKR, da Conceição Fonseca Passos A, Herculano AM, de Jesus Oliveira Batista E. Euterpe oleracea fruit (Açai)-enriched diet suppresses the development of experimental cerebral malaria induced by Plasmodium berghei (ANKA) infection. BMC Complement Med Ther 2022; 22:11. [PMID: 35016657 PMCID: PMC8751313 DOI: 10.1186/s12906-021-03495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
Background Cerebral malaria is one of the most severe complications attributed to protozoal infection by Plasmodium falciparum, gaining prominence in children mortality rates in endemic areas. This condition has a complex pathogenesis associated with behavioral, cognitive and motor sequels in humans and current antimalarial therapies have shown little effect in those aspects. Natural products with antioxidant and anti-inflammatory properties have become a valuable alternative therapeutic option in the treatment of distinct conditions. In this context, this study investigated the neuroprotective effect of Euterpe oleracea (açai) enriched diet during the development of experimental cerebral malaria induced by the inoculation of Swiss albino mice with Plasmodium berghei ANKA strain. Methods After Plasmodium infection, animals were maintained on a feeding with Euterpe oleracea enriched ration and parameters such as survival curve, parasitemia and body weight were routinely monitored. The present study has also evaluated the effect of açai-enriched diet on the blood-brain barrier leakage, histological alterations and neurocognitive impairments in mice developing cerebral malaria. Results Our results demonstrate that between 7th–19th day post infection the survival rate of the group treated with açai enriched ration was higher when compared with Plasmodium-infected mice in which 100% of mice died until the 11th days post-infection, demonstrating that açai diet has a protective effect on the survival of infected treated animals. The same was observed in the brain vascular extravasation, where Evans blue dye assays showed significantly less dye extravasation in the brains of Plasmodium-infected mice treated with açai enriched ration, demonstrating more preserved blood-brain barrier integrity. Açai-enriched diet also attenuate the histopathological alterations elicited by Plasmodium berghei infection. We also showed a decrease of the neurological impairments arising from the exposure of cerebral parenchyma in the group treated with açai diet, ameliorating motor and neuropsychiatric changes, analyzed through the SHIRPA protocol. Conclusion With these results, we conclude that the treatment with açai enriched ration decreased the mortality of infected animals, as well as protected the blood-brain barrier and the neurocognitive deficits in Plasmodium-infected animals.
Collapse
|
5
|
Sorci G, Lippens C, Léchenault C, Faivre B. Benefits of immune protection versus immunopathology costs: A synthesis from cytokine KO models. INFECTION GENETICS AND EVOLUTION 2017; 54:491-495. [PMID: 28818622 DOI: 10.1016/j.meegid.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
The inflammatory response can produce damage to host tissues and in several infectious diseases the most severe symptoms are due to immunopathology rather than a direct effect of pathogen multiplication. One hypothesis for the persistence of inflammatory damage posits that the benefits of protection towards infection outweigh the costs. We used data on knocked-out (KO) cytokine models [and the corresponding wild-type (WT) controls] to test this hypothesis. We computed differences in pathogen load and host survival between WT and KO and divided them by the WT values. Using this ratio provides an internal control for variation in pathogen species, host strain, pathogen dose, and inoculation route. We predicted that i) if mortality is essentially due to immunopathology, there should be a loose association between pathogen load and host survival; ii) if mortality is essentially due to pathogen proliferation, we expect a tight association between pathogen load and host survival. The results provide strong support to this latter hypothesis. In 85% of WT - KO comparisons (n=126), an increase in pathogen load was associated with an increase in host mortality, and a decrease in pathogen load was associated with a decrease in host mortality. Overall, these findings are in agreement with the idea that immunopathology persists because immune protection confers immediate benefits in terms of infection clearance.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France.
| | - Cédric Lippens
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Clothilde Léchenault
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
6
|
Oxidative insult can induce malaria-protective trait of sickle and fetal erythrocytes. Nat Commun 2016; 7:13401. [PMID: 27824335 PMCID: PMC5105170 DOI: 10.1038/ncomms13401] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/29/2016] [Indexed: 01/06/2023] Open
Abstract
Plasmodium falciparum infections can cause severe malaria, but not every infected person develops life-threatening complications. In particular, carriers of the structural haemoglobinopathies S and C and infants are protected from severe disease. Protection is associated with impaired parasite-induced host actin reorganization, required for vesicular trafficking of parasite-encoded adhesins, and reduced cytoadherence of parasitized erythrocytes in the microvasculature. Here we show that aberrant host actin remodelling and the ensuing reduced cytoadherence result from a redox imbalance inherent to haemoglobinopathic and fetal erythrocytes. We further show that a transient oxidative insult to wild-type erythrocytes before infection with P. falciparum induces the phenotypic features associated with the protective trait of haemoglobinopathic and fetal erythrocytes. Moreover, pretreatment of mice with the pro-oxidative nutritional supplement menadione mitigate the development of experimental cerebral malaria. Our results identify redox imbalance as a causative principle of protection from severe malaria, which might inspire host-directed intervention strategies.
Collapse
|
7
|
Abstract
UNLABELLED Malaria is an infectious disease caused by parasites of several Plasmodium spp. Cerebral malaria (CM) is a common form of severe malaria resulting in nearly 700,000 deaths each year in Africa alone. At present, there is no adjunctive therapy for CM. Although the mechanisms underlying the pathogenesis of CM are incompletely understood, it is likely that both intrinsic features of the parasite and the human host's immune response contribute to disease. The kinase mammalian target of rapamycin (mTOR) is a central regulator of immune responses, and drugs that inhibit the mTOR pathway have been shown to be antiparasitic. In a mouse model of CM, experimental CM (ECM), we show that the mTOR inhibitor rapamycin protects against ECM when administered within the first 4 days of infection. Treatment with rapamycin increased survival, blocked breakdown of the blood-brain barrier and brain hemorrhaging, decreased the influx of both CD4(+) and CD8(+) T cells into the brain and the accumulation of parasitized red blood cells in the brain. Rapamycin induced marked transcriptional changes in the brains of infected mice, and analysis of transcription profiles predicted that rapamycin blocked leukocyte trafficking to and proliferation in the brain. Remarkably, animals were protected against ECM even though rapamycin treatment significantly increased the inflammatory response induced by infection in both the brain and spleen. These results open a new avenue for the development of highly selective adjunctive therapies for CM by targeting pathways that regulate host and parasite metabolism. IMPORTANCE Malaria is a highly prevalent infectious disease caused by parasites of several Plasmodium spp. Malaria is usually uncomplicated and resolves with time; however, in about 1% of cases, almost exclusively among young children, malaria becomes severe and life threatening, resulting in nearly 700,000 deaths each year in Africa alone. Among the most severe complications of Plasmodium falciparum infection is cerebral malaria with a fatality rate of 15 to 20%, despite treatment with antimalarial drugs. Cerebral malaria takes a second toll on African children, leaving survivors at high risk of debilitating neurological defects. At present, we have no effective adjunctive therapies for cerebral malaria, and developing such therapies would have a large impact on saving young lives in Africa. Here we report results that open a new avenue for the development of highly selective adjunctive therapies for cerebral malaria by targeting pathways that regulate host and parasite metabolism.
Collapse
|
8
|
Zhu X, Liu J, Feng Y, Pang W, Qi Z, Jiang Y, Shang H, Cao Y. Phenylhydrazine administration accelerates the development of experimental cerebral malaria. Exp Parasitol 2015; 156:1-11. [PMID: 26005191 DOI: 10.1016/j.exppara.2015.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 01/13/2023]
Abstract
Phenylhydrazine (PHZ) treatment is generally used to enhance parasitemia in infected mice models. Transient reticulocytosis is commonly observed in iron-deficient anemic hosts after treatment with iron supplementation, and is also associated with short-term hemolysis caused by PHZ treatment. In this study, we investigated the relationship between reticulocytosis and cerebral malaria (CM) in a murine model induced by PHZ administration before Plasmodium berghei ANKA (PbA) infection. Mortality and parasitemia were checked daily. Pro-inflammatory cytokines and IL-10 were quantified by ELISA. The expression of CXCL9, CXCL10, CCL5, and CXCR3 mRNAs was determined by real-time PCR. Brain sequestration of CD4(+) and CD8(+) T cells and populations of splenic Th1 CD4(+) T cells, dendritic cells (DCs), CD11b(+) Gr1(+) cells, and regulatory T cells (Tregs) were assessed by FACS. PHZ administration dramatically increased parasitemia from day 3 to day 5 post infection (p.i.) compared with the untreated control infected mice group; also, CM developed at day 5 p.i., compared with day 7 p.i. in untreated control infected mice, as well as significantly decreased blood-brain barrier function (P < 0.001). PHZ administration during PbA infection significantly increased the expression of CXCL9 (P <0.05) and VCAM-1 (P <0.001) in the brain, increased the expression of CXCL10, CCL5 and CXCR3, and significantly increased the recruitment of CD4(+) and CD8(+) T cells (P <0.001 and P <0.01, respectively) as well as CD11b(+) Gr1(+) cells to the brain. In addition, PHZ administration significantly increased the numbers of IL-12-secreting DCs at days 3 and 5 p.i. compared to those of untreated control infected mice (P <0.001 and P <0.01, respectively). Consequently, the activation of CD4(+) T cells, especially the expansion of the Th1 subset (P <0.05), was significantly and dramatically enhanced and was accompanied by marked increases in the production of protein and/or mRNA of the Th1-type pro-inflammatory mediators, IFN-γ and TNF-α (P <0.01 for both for protein; P <0.05 for TNF-α mRNA). Our results suggest that, compared to healthy individuals, people suffering from reticulocytosis may be more susceptible to severe malaria infection in malaria endemic areas. This has implications for the most appropriate selection of treatment, which may also cause reticulocytosis in patients living in such areas.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Jun Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Yonghui Feng
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Wei Pang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Zanmei Qi
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Yongjun Jiang
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of AIDS Immunology of Ministry of Health, the First Hospitol of China Medical University, Shenyang, Liaoning, China
| | - Hong Shang
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of AIDS Immunology of Ministry of Health, the First Hospitol of China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
9
|
Schumak B, Klocke K, Kuepper JM, Biswas A, Djie-Maletz A, Limmer A, van Rooijen N, Mack M, Hoerauf A, Dunay IR. Specific depletion of Ly6C(hi) inflammatory monocytes prevents immunopathology in experimental cerebral malaria. PLoS One 2015; 10:e0124080. [PMID: 25884830 PMCID: PMC4401438 DOI: 10.1371/journal.pone.0124080] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/03/2015] [Indexed: 12/24/2022] Open
Abstract
Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice leads to experimental cerebral malaria (ECM) that is commonly associated with serious T cell mediated damage. In other parasitic infection models, inflammatory monocytes have been shown to regulate Th1 responses but their role in ECM remains poorly defined, whereas neutrophils are reported to contribute to ECM immune pathology. Making use of the recent development of specific monoclonal antibodies (mAb), we depleted in vivo Ly6C(hi) inflammatory monocytes (by anti-CCR2), Ly6G+ neutrophils (by anti-Ly6G) or both cell types (by anti-Gr1) during infection with Ovalbumin-transgenic PbA parasites (PbTg). Notably, the application of anti-Gr1 or anti-CCR2 but not anti-Ly6G antibodies into PbTg-infected mice prevented ECM development. In addition, depletion of Ly6C(hi) inflammatory monocytes but not neutrophils led to decreased IFNγ levels and IFNγ+CD8+ T effector cells in the brain. Importantly, anti-CCR2 mAb injection did not prevent the generation of PbTg-specific T cell responses in the periphery, whereas anti-Gr1 mAb injection strongly diminished T cell frequencies and CTL responses. In conclusion, the specific depletion of Ly6C(hi) inflammatory monocytes attenuated brain inflammation and immune cell recruitment to the CNS, which prevented ECM following Plasmodium infection, pointing out a substantial role of Ly6C+ monocytes in ECM inflammatory processes.
Collapse
Affiliation(s)
- Beatrix Schumak
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
- * E-mail: (BS); (IRD)
| | - Katrin Klocke
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Janina M. Kuepper
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Aindrila Biswas
- Institute of Medical Microbiology, University of Magdeburg, Magdeburg, Germany
| | | | - Andreas Limmer
- Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Nico van Rooijen
- VUMC Department of Molecular Cell Biology, Faculty of Medicine Vrije Universiteit, Amsterdam, The Netherlands
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Ildiko Rita Dunay
- Institute of Medical Microbiology, University of Magdeburg, Magdeburg, Germany
- * E-mail: (BS); (IRD)
| |
Collapse
|
10
|
Lewis MD, Behrends J, Sá E Cunha C, Mendes AM, Lasitschka F, Sattler JM, Heiss K, Kooij TWA, Prudêncio M, Bringmann G, Frischknecht F, Mueller AK. Chemical attenuation of Plasmodium in the liver modulates severe malaria disease progression. THE JOURNAL OF IMMUNOLOGY 2015; 194:4860-70. [PMID: 25862814 DOI: 10.4049/jimmunol.1400863] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022]
Abstract
Cerebral malaria is one of the most severe complications of malaria disease, attributed to a complicated series of immune reactions in the host. The syndrome is marked by inflammatory immune responses, margination of leukocytes, and parasitized erythrocytes in cerebral vessels leading to breakdown of the blood-brain barrier. We show that chemical attenuation of the parasite at the very early, clinically silent liver stage suppresses parasite development, delays the time until parasites establish blood-stage infection, and provokes an altered host immune response, modifying immunopathogenesis and protecting from cerebral disease. The early response is proinflammatory and cell mediated, with increased T cell activation in the liver and spleen, and greater numbers of effector T cells, cytokine-secreting T cells, and proliferating, proinflammatory cytokine-producing T cells. Dendritic cell numbers, T cell activation, and infiltration of CD8(+) T cells to the brain are decreased later in infection, possibly mediated by the anti-inflammatory cytokine IL-10. Strikingly, protection can be transferred to naive animals by adoptive transfer of lymphocytes from the spleen at very early times of infection. Our data suggest that a subpopulation belonging to CD8(+) T cells as early as day 2 postinfection is responsible for protection. These data indicate that liver stage-directed early immune responses can moderate the overall downstream host immune response and modulate severe malaria outcome.
Collapse
Affiliation(s)
- Matthew D Lewis
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, D 69120 Heidelberg, Germany; German Centre for Infection Research, D 69120 Heidelberg, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, D 23845 Borstel, Germany
| | - Cláudia Sá E Cunha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - António M Mendes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Felix Lasitschka
- German Centre for Infection Research, D 69120 Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, D 69120 Heidelberg, Germany
| | - Julia M Sattler
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, D 69120 Heidelberg, Germany
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, D 69120 Heidelberg, Germany; MalVa GmbH, D 69121 Heidelberg, Germany
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, the Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, the Netherlands; and
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Gerhard Bringmann
- Institute for Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Friedrich Frischknecht
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, D 69120 Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, D 69120 Heidelberg, Germany; German Centre for Infection Research, D 69120 Heidelberg, Germany;
| |
Collapse
|
11
|
Palomo J, Reverchon F, Piotet J, Besnard AG, Couturier-Maillard A, Maillet I, Tefit M, Erard F, Mazier D, Ryffel B, Quesniaux VFJ. Critical role of IL-33 receptor ST2 in experimental cerebral malaria development. Eur J Immunol 2015; 45:1354-65. [PMID: 25682948 DOI: 10.1002/eji.201445206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/19/2015] [Accepted: 02/11/2015] [Indexed: 11/11/2022]
Abstract
Cerebral malaria, a severe complication of Plasmodium falciparum infection, can be modeled in murine Plasmodium berghei ANKA (PbA) infection. PbA-induced experimental cerebral malaria (ECM) is CD8(+) T-cell mediated, and influenced by TH 1/TH 2 balance. Here, we show that IL-33 expression is increased in brain undergoing ECM and we address the role of the IL-33/ST2 pathway in ECM development. ST2-deficient mice were resistant to PbA-induced neuropathology. They survived >20 days with no ECM neurological sign and a preserved cerebral microcirculation, while WT mice succumbed within 10 days with ECM, brain vascular leakage, distinct microvascular pathology obstruction, and hemorrhages. Parasitemia and brain parasite load were similar in ST2-deficient and WT mice. Protection was accompanied by reduced brain sequestration of activated CD4(+) T cells and perforin(+) CD8(+) T cells. While IFN-γ and T-cell-attracting chemokines CXCL9 and CXCL10 were not affected in the absence of functional ST2 pathway, the local expression of ICAM-1, CXCR3, and LT-α, crucial for ECM development, was strongly reduced, and this may explain the diminished pathogenic T-cell recruitment and resistance to ECM. Therefore, IL-33 is induced in PbA sporozoite infection, and the pathogenic T-cell responses with local microvascular pathology are dependent on IL-33/ST2 signaling, identifying IL-33 as a new actor in ECM development.
Collapse
Affiliation(s)
- Jennifer Palomo
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Flora Reverchon
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Julie Piotet
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Anne-Gaelle Besnard
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Aurélie Couturier-Maillard
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Isabelle Maillet
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Maurel Tefit
- CIMI-Paris (UPMC UMRS CR7, Inserm U1135, CNRS ERL 8255), Paris, France
| | - François Erard
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Dominique Mazier
- CIMI-Paris (UPMC UMRS CR7, Inserm U1135, CNRS ERL 8255), Paris, France.,Groupe Hospitalier Pitié-Salpêtrière Service Parasitologie-Mycologie, Paris, France
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Valérie F J Quesniaux
- CNRS, UMR7355, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| |
Collapse
|
12
|
Recuenco FC, Takano R, Chiba S, Sugi T, Takemae H, Murakoshi F, Ishiwa A, Inomata A, Horimoto T, Kobayashi Y, Horiuchi N, Kato K. Lambda-carrageenan treatment exacerbates the severity of cerebral malaria caused by Plasmodium berghei ANKA in BALB/c mice. Malar J 2014; 13:487. [PMID: 25495520 PMCID: PMC4295290 DOI: 10.1186/1475-2875-13-487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background There is an urgent need to develop and test novel compounds against malaria infection. Carrageenans, sulphated polysaccharides derived from seaweeds, have been previously shown to inhibit Plasmodium falciparum in vitro. However, they are inflammatory and alter the permeability of the blood–brain barrier, raising concerns that their use as a treatment for malaria could lead to cerebral malaria (CM), a severe complication of the disease. In this work, the authors look into the effects of the administration of λ-carrageenan to the development and severity of CM in BALB/c mice, a relatively non-susceptible model, during infection with the ANKA strain of Plasmodium berghei. Methods Five-week-old female BALB/c mice were infected with P. berghei intraperitoneally. One group was treated with λ-carrageenan (PbCGN) following the 4-day suppressive test protocol, whereas the other group was not treated (PbN). Another group of healthy BALB/c mice was similarly given λ-carrageenan (CGN) for comparison. The following parameters were assessed: parasitaemia, clinical signs of CM, and mortality. Brain and other vital organs were collected and examined for gross and histopathological lesions. Evans blue dye assays were employed to assess blood–brain barrier integrity. Results Plasmodium berghei ANKA-infected BALB/c mice treated with λ-carrageenan died earlier than those that received no treatment. Histopathological examination revealed that intracerebral haemorrhages related to CM were present in both groups of infected BALB/c mice, but were more numerous in those treated with λ-carrageenan than in mock-treated animals. Inflammatory lesions were also observed only in the λ-carrageenan-treated mice. These observations are consistent with the clinical signs associated with CM, such as head tilt, convulsions, and coma, which were observed only in this group, and may account for the earlier death of the mice. Conclusion The results of this study indicate that the administration of λ-carrageenan exacerbates the severe brain lesions and clinical signs associated with CM in BALB/c mice infected with P. berghei ANKA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
13
|
Predictive criteria to study the pathogenesis of malaria-associated ALI/ARDS in mice. Mediators Inflamm 2014; 2014:872464. [PMID: 25276057 PMCID: PMC4167651 DOI: 10.1155/2014/872464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022] Open
Abstract
Malaria-associated acute lung injury/acute respiratory distress syndrome (ALI/ARDS) often results in morbidity and mortality. Murine models to study malaria-associated ALI/ARDS have been described; we still lack a method of distinguishing which mice will develop ALI/ARDS before death. This work aimed to characterize malaria-associated ALI/ARDS in a murine model and to demonstrate the first method to predict whether mice are suffering from ALI/ARDS before death. DBA/2 mice infected with Plasmodium berghei ANKA developing ALI/ARDS or hyperparasitemia (HP) were compared using histopathology, PaO2 measurement, pulmonary X-ray, breathing capacity, lung permeability, and serum vascular endothelial growth factor (VEGF) levels according to either the day of death or the suggested predictive criteria. We proposed a model to predict malaria-associated ALI/ARDS using breathing patterns (enhanced pause and frequency respiration) and parasitemia as predictive criteria from mice whose cause of death was known to retrospectively diagnose the sacrificed mice as likely to die of ALI/ARDS as early as 7 days after infection. Using this method, we showed increased VEGF levels and increased lung permeability in mice predicted to die of ALI/ARDS. This proposed method for accurately identifying mice suffering from ALI/ARDS before death will enable the use of this model to study the pathogenesis of this disease.
Collapse
|
14
|
Meadows DN, Pyzik M, Wu Q, Torre S, Gros P, Vidal SM, Rozen R. Increased resistance to malaria in mice with methylenetetrahydrofolate reductase (Mthfr) deficiency suggests a mechanism for selection of the MTHFR 677C>T (c.665C>T) variant. Hum Mutat 2014; 35:594-600. [PMID: 24616178 DOI: 10.1002/humu.22533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/19/2014] [Indexed: 11/06/2022]
Abstract
The polymorphism 677C>T (NM_005957.4:c.665C>T/p.Ala222Val, rs1801133:C>T) in methylenetetrahydrofolate reductase (MTHFR) results in mild enzymatic deficiency and increased risk for several complex traits including adverse reproductive outcomes, birth defects, and heart disease. Despite these deleterious effects, homozygosity is high (5%-15%) in many populations, and among the highest in Mediterranean regions, where malaria was historically endemic and may have conferred a selective advantage for other mutations. We infected Mthfr-deficient (Mthfr(+) (/-) ) and MTHFR overexpressing (MTHFR(Tg) ) mice with Plasmodium berghei ANKA to induce cerebral malaria. Mthfr(+/-) mice survived longer (P < 0.02, log-rank test), and MTHFR(Tg) mice died earlier (P < 0.05, log-rank test) after infection compared with wild-type littermates. Flow cytometry revealed increased lymphocyte populations and increased CCR4(+) NK cells in spleen of Mthfr(+) (/-) mice; MTHFR(Tg) animals had decreased numbers of these NK cells. Interferon-γ and interleukin-10 immunoreactive proteins were increased and decreased, respectively, in brain of Mthfr(+/-) mice compared with wild-type. We suggest that mild MTHFR deficiency protects against malarial infection and that this phenomenon may have led to the high frequency of the 677C>T/c.665C>T variant in human populations.
Collapse
Affiliation(s)
- Danielle N Meadows
- Department of Human Genetics, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang ML, Feng YH, Pang W, Qi ZM, Zhang Y, Guo YJ, Luo EJ, Cao YM. Parasite densities modulate susceptibility of mice to cerebral malaria during co-infection with Schistosoma japonicum and Plasmodium berghei. Malar J 2014; 13:116. [PMID: 24670210 PMCID: PMC3986926 DOI: 10.1186/1475-2875-13-116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Malaria and schistosomiasis are endemic and co-exist in the same geographic areas, even co-infecting the same host. Previous studies have reported that concomitant infection with Schistosoma japonicum could offer protection against experimental cerebral malaria (ECM) in mice. This study was performed to evaluate whether alterations in parasite density could alter this protective effect. Methods Mice were inoculated with 100 or 200 S. japonicum cercariae followed by infection with high or low density of Plasmodium berghei ANKA strain eight weeks after the first infection. Then, parasitaemia, survival rate and blood–brain-barrier (BBB) damage were assessed. Interferon-gamma (IFN-γ), interleukin (IL)-4, IL-5, IL-13, IL-10, and TGF-β levels were determined in splenocyte supernatants using enzyme-linked immunosorbent assay (ELISA). Cell surface/intracellular staining and flow cytometry were used to analyse the level of CD4+/CD8+ T cells, CD4+CD25+Foxp3+ Tregs, IL-10-secreting Tregs, and IL-10+Foxp3-CD4+ T cells in the spleen, and CD4+/CD8+ T cells infiltrating the brain. Results Co-infection with low density P. berghei and increased S. japonicum cercariae significantly increased the levels of IL-4, IL-5, IL-13, TGF-β and Tregs, but significantly decreased the levels of IFN-γ and the percentage of CD4+ T cells and CD8+ T cells in the spleen and CD8+ T cell infiltration in the brain. Increased worm loads also significantly decreased mortality and BBB impairment during ECM. When challenged with higher numbers of P. berghei and increased cercariae, the observed cytokine changes were not statistically significant. The corresponding ECM mortality and BBB impairment also remained unchanged. Conclusions This study demonstrates that protection for ECM depends on the numbers of the parasites, S. japonicum and P. berghei, during co-infection. Alterations in the regulatory response appear to play a key role in this adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya-ming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No 92 Beier Road, Heping District, Shenyang 110001, China.
| |
Collapse
|
16
|
Polimeni M, Prato M. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood-brain barrier integrity? Fluids Barriers CNS 2014; 11:1. [PMID: 24467887 PMCID: PMC3905658 DOI: 10.1186/2045-8118-11-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/24/2014] [Indexed: 12/23/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM.
Collapse
Affiliation(s)
| | - Mauro Prato
- Dipartimento di Neuroscienze, Università di Torino, C,so Raffaello 30, 10125 Torino, Italy.
| |
Collapse
|
17
|
Erdmann RB, Gartner JG, Leonard WJ, Ellison CA. Lack of functional TSLP receptors mitigates Th2 polarization and the establishment and growth of 4T1 primary breast tumours but has different effects on tumour quantities in the lung and brain. Scand J Immunol 2014; 78:408-18. [PMID: 24033709 DOI: 10.1111/sji.12106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/22/2013] [Indexed: 02/03/2023]
Abstract
The 4T1 mammary carcinoma cell line produces TSLP. We had hypothesized that TSLP promotes the development of a permissive environment for the growth and metastasis of primary tumour and that this is associated with a Th2-polarized antitumour immune response. We found that, in Tslpr(-/-) mice, the mean tumour diameters were smaller from days 27 to 40, and relatively fewer tumour cells were present in the lung, compared with wild-type mice. Polarization of the Th2 cytokine profile was also diminished in Tslpr(-/-) mice. These findings confirmed those reported previously by others. Here, we further show that primary tumours are established less often in Tslpr(-/-) mice and that, unexpectedly, the relative number of tumour cells in the brain is greater in Tslpr(-/-) mice compared with wild-type mice. Findings from our cytotoxicity assays show that 4T1-directed lysis is undetectable in both WT and Tslpr(-/-) mice, ruling out the possibility that altered cytotoxic responses in Tslpr(-/-) mice are responsible for the differences we observed. In a human tissue microarray, positive staining for TSLP was seen in tumour cells from breast cancer tissue, but it was also seen in normal glandular epithelial cells from normal breast tissue, which has not been shown before. Thus, our findings provide new insight into the effects of TSLP in metastatic breast cancer.
Collapse
Affiliation(s)
- R B Erdmann
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
18
|
Liu Y, Chen Y, Li Z, Han Y, Sun Y, Wang Q, Liu B, Su Z. Role of IL-10-producing regulatory B cells in control of cerebral malaria in Plasmodium berghei infected mice. Eur J Immunol 2013; 43:2907-18. [PMID: 23893352 DOI: 10.1002/eji.201343512] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/17/2013] [Accepted: 07/22/2013] [Indexed: 12/31/2022]
Abstract
Cerebral malaria (CM) is a neurological syndrome often occurring in severe malaria. Although CM is known as an immunopathology in brain tissue mediated by excessive proinflammatory cytokines, the immunoregulatory mechanism is poorly understood. Here, we investigated the role of IL-10-producing regulatory B (Breg) cells in modulating CM development in a murine model of Plasmodium berghei ANKA infection. We observed that blood-stage P. berghei induced expansion of IL-10-producing Breg cells in C57BL/6 mice. Adoptive transfer of IL-10(+) Breg cells to P. berghei infected mice significantly reduced the accumulation of NK and CD8(+) T cells and hemorrhage in brain tissue, and improved the survival of the mice compared with control groups, although parasitemia levels were not altered. Treatment of Breg-cell recipient mice with anti-IL-10 receptor mAb blocked the protective effect of Breg cells. Adoptive transfer of CD4(+) CD25(+) Treg cells failed to prevent CM in infected mice. Spleen cells from Breg-cell recipient mice produced increased levels of IL-10 in vitro. Cell co-culture showed that purified IL-10(+) B cells, but not IL-10(-) B cells, promoted IL-10 production by CD4(+) T cells. These results demonstrate that IL-10-producing Breg cells may represent an important mechanism for controlling the immunopathology and prevention of CM associated with P. berghei infection.
Collapse
Affiliation(s)
- Yunfeng Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China; School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Karimi A, Navidbakhsh M, Motevalli Haghi A, Faghihi S. Measurement of the uniaxial mechanical properties of rat brains infected by Plasmodium berghei ANKA. Proc Inst Mech Eng H 2013; 227:609-14. [DOI: 10.1177/0954411913476779] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Degenerative and demyelinating diseases are known to alter the mechanical properties of brain tissue. While few studies have characterized these biomechanical changes, it is clear that accurate characterization of the mechanical properties of diseased brain tissue could be a substantial asset to neuronavigation and surgery simulation through haptic devices. In this study, samples of brain tissue from rats infected with Plasmodium berghei ANKA, an African murine malaria parasite, are evaluated using a uniaxial tensile test machine. Infected brains having different levels of parasitemia are mounted on the testing machine and extended until failure of the tissue. The stress–strain curve of each sample is obtained and compared to healthy rat brain tissue. Young’s modulus of each sample is extracted from the Hookean part of the stress–strain diagram. Young’s modulus of rats’ brain shows considerable difference among the samples having various levels of parasitemia compared with the controls. For instance, the brains with 0% (control), 1.5%, and 9% parasitemia showed a Young’s modulus of 46.15, 54.54, and 266.67 kPa, respectively. This suggests sequestration of the stiffened and less deformable parasitized red blood cells in the brain microvasculature.
Collapse
Affiliation(s)
- Alireza Karimi
- Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Mechanical Engineering Department, Iran University of Science and Technology, Tehran, Iran
| | - Mahdi Navidbakhsh
- Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Afsaneh Motevalli Haghi
- Medical Parasitology and Mycology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahab Faghihi
- Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
20
|
Held J, Preuße C, Döser A, Richter L, Heppner FL, Stenzel W. Enhanced acute immune response in IL-12p35-/- mice is followed by accelerated distinct repair mechanisms in Staphylococcus aureus-induced murine brain abscess. J Infect Dis 2013; 208:749-60. [PMID: 23532102 DOI: 10.1093/infdis/jit126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Murine Staphylococcus aureus-mediated brain abscess comprises 2 major phases, an initial phase of cerebritis, followed by a healing phase characterized by capsule formation. METHODS C57BL/6 wild-type (WT) and IL-12p35(-/-) mice were intracerebrally infected with S. aureus to induce brain abscesses. Clinical disease activity and bacterial load were monitored. The cell populations that were involved, as well as their specific mediators, were analyzed by immunohistochemistry, quantitative real-time polymerase chain reaction, and flow cytometry. RESULTS In the acute phase, IL-12p35(-/-) mice were protected from disease. This was associated with enhanced recruitment of granulocytes, accompanied by upregulated expression of Il17a, Csf2 (which encodes granulocyte-macrophage colony-stimulating factor), Cxcl1, and Cxcl5, as well as increased expression of proinflammatory mediators, including Nos2 (which encodes inducible nitric oxide synthase), Ptgs2 (which encodes cyclooxygenase 2), and Tnf, that were primarily produced by granulocytes and activated microglia/macrophages. Furthermore, mechanisms associated with beneficial wound healing, including an accelerated formation of a fibrous capsule, were demonstrated by prominent VEGF-A production and collagen deposition driven by an earlier onset of T-helper 2 immunity in the absence of interleukin 12 (IL-12). CONCLUSIONS Brain abscess development is orchestrated by IL-12 at different stages of disease. Our data indicate that IL-12 has a nonprotective role in the acute phase and that IL-12 deficiency results in the accelerated formation of a protective capsule during the healing phase, which we consider crucial for early recovery from disease.
Collapse
Affiliation(s)
- Josephin Held
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The blood-brain barrier (BBB) is a structural and functional barrier that protects the central nervous system (CNS) from invasion by blood-borne pathogens including parasites. However, some intracellular and extracellular parasites can traverse the BBB during the course of infection and cause neurological disturbances and/or damage which are at times fatal. The means by which parasites cross the BBB and how the immune system controls the parasites within the brain are still unclear. In this review we present the current understanding of the processes utilized by two human neuropathogenic parasites, Trypanosoma brucei spp and Toxoplasma gondii, to go across the BBB and consequences of CNS invasion. We also describe briefly other parasites that can invade the brain and how they interact with or circumvent the BBB. The roles played by parasite-derived and host-derived molecules during parasitic and white blood cell invasion of the brain are discussed.
Collapse
Affiliation(s)
- Willias Masocha
- Department of Applied Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | | |
Collapse
|
22
|
Grau GER, Craig AG. Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiol 2012; 7:291-302. [DOI: 10.2217/fmb.11.155] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cerebral malaria is one of a number of clinical syndromes associated with infection by human malaria parasites of the genus Plasmodium. The etiology of cerebral malaria derives from sequestration of parasitized red cells in brain microvasculature and is thought to be enhanced by the proinflammatory status of the host and virulence characteristics of the infecting parasite variant. In this article we examine the range of factors thought to influence the development of Plasmodium falciparum cerebral malaria in humans and review the evidence to support their role.
Collapse
Affiliation(s)
- Georges Emile Raymond Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, The University of Sydney, Camperdown NSW 2042, Australia
- La Jolla Infectious Disease Institute, San Diego, CA 92109, USA
| | | |
Collapse
|