1
|
Ascher S, Wilms E, Pontarollo G, Formes H, Bayer F, Müller M, Malinarich F, Grill A, Bosmann M, Saffarzadeh M, Brandão I, Groß K, Kiouptsi K, Kittner JM, Lackner KJ, Jurk K, Reinhardt C. Gut Microbiota Restricts NETosis in Acute Mesenteric Ischemia-Reperfusion Injury. Arterioscler Thromb Vasc Biol 2020; 40:2279-2292. [PMID: 32611241 DOI: 10.1161/atvbaha.120.314491] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Recruitment of neutrophils and formation of neutrophil extracellular traps (NETs) contribute to lethality in acute mesenteric infarction. To study the impact of the gut microbiota in acute mesenteric infarction, we used gnotobiotic mouse models to investigate whether gut commensals prime the reactivity of neutrophils towards formation of neutrophil extracellular traps (NETosis). Approach and Results: We applied a mesenteric ischemia-reperfusion (I/R) injury model to germ-free (GF) and colonized C57BL/6J mice. By intravital imaging, we quantified leukocyte adherence and NET formation in I/R-injured mesenteric venules. Colonization with gut microbiota or monocolonization with Escherichia coli augmented the adhesion of leukocytes, which was dependent on the TLR4 (Toll-like receptor-4)/TRIF (TIR-domain-containing adapter-inducing interferon-β) pathway. Although neutrophil accumulation was decreased in I/R-injured venules of GF mice, NETosis following I/R injury was significantly enhanced compared with conventionally raised mice or mice colonized with the minimal microbial consortium altered Schaedler flora. Also ex vivo, neutrophils from GF and antibiotic-treated mice showed increased LPS (lipopolysaccharide)-induced NETosis. Enhanced TLR4 signaling in GF neutrophils was due to elevated TLR4 expression and augmented IRF3 (interferon regulatory factor-3) phosphorylation. Likewise, neutrophils from antibiotic-treated conventionally raised mice had increased NET formation before and after ischemia. Increased NETosis in I/R injury was abolished in conventionally raised mice deficient in the TLR adaptor TRIF. In support of the desensitizing influence of enteric LPS, treatment of GF mice with LPS via drinking water diminished LPS-induced NETosis in vitro and in the mesenteric I/R injury model. CONCLUSIONS Collectively, our results identified that the gut microbiota suppresses NETing neutrophil hyperreactivity in mesenteric I/R injury, while ensuring immunovigilance by enhancing neutrophil recruitment.
Collapse
Affiliation(s)
- Stefanie Ascher
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.).,Institute for Pharmacy & Biochemistry, Johannes Gutenberg University of Mainz, Germany (S.A.)
| | - Eivor Wilms
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Giulia Pontarollo
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Henning Formes
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Franziska Bayer
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Maria Müller
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Frano Malinarich
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Alexandra Grill
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.).,German Center for Cardiovascular Research, Partner Site RheinMain, Mainz, Germany (A.G., C.R.)
| | - Markus Bosmann
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.).,Pulmonary Center, Department of Medicine, Boston University School of Medicine, MA (M.B.)
| | - Mona Saffarzadeh
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Inês Brandão
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.).,Centro de Apoio Tecnológico Agro Alimentar (CATAA), Zona Industrial de Castelo Branco, Portugal (I.B.)
| | - Kathrin Groß
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Klytaimnistra Kiouptsi
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Jens M Kittner
- I. Department of Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Germany (J.M.K.)
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Germany (K.J.L.)
| | - Kerstin Jurk
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Christoph Reinhardt
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.).,German Center for Cardiovascular Research, Partner Site RheinMain, Mainz, Germany (A.G., C.R.)
| |
Collapse
|
2
|
Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome. Proc Natl Acad Sci U S A 2019; 116:3688-3694. [PMID: 30808756 DOI: 10.1073/pnas.1814273116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a deleterious immune response to infection that leads to organ failure and is the 11th most common cause of death worldwide. Despite plaguing humanity for thousands of years, the host factors that regulate this immunological response and subsequent sepsis severity and outcome are not fully understood. Here we describe how the Western diet (WD), a diet high in fat and sucrose and low in fiber, found rampant in industrialized countries, leads to worse disease and poorer outcomes in an LPS-driven sepsis model in WD-fed mice compared with mice fed standard fiber-rich chow (SC). We find that WD-fed mice have higher baseline inflammation (metaflammation) and signs of sepsis-associated immunoparalysis compared with SC-fed mice. WD mice also have an increased frequency of neutrophils, some with an "aged" phenotype, in the blood during sepsis compared with SC mice. Importantly, we found that the WD-dependent increase in sepsis severity and higher mortality is independent of the microbiome, suggesting that the diet may be directly regulating the innate immune system through an unknown mechanism. Strikingly, we could predict LPS-driven sepsis outcome by tracking specific WD-dependent disease factors (e.g., hypothermia and frequency of neutrophils in the blood) during disease progression and recovery. We conclude that the WD is reprogramming the basal immune status and acute response to LPS-driven sepsis and that this correlates with alternative disease paths that lead to more severe disease and poorer outcomes.
Collapse
|
3
|
Chotirmall SH, Gellatly SL, Budden KF, Mac Aogain M, Shukla SD, Wood DLA, Hugenholtz P, Pethe K, Hansbro PM. Microbiomes in respiratory health and disease: An Asia-Pacific perspective. Respirology 2017; 22:240-250. [PMID: 28102970 DOI: 10.1111/resp.12971] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/30/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023]
Abstract
There is currently enormous interest in studying the role of the microbiome in health and disease. Microbiome's role is increasingly being applied to respiratory diseases, in particular COPD, asthma, cystic fibrosis and bronchiectasis. The changes in respiratory microbiomes that occur in these diseases and how they are modified by environmental challenges such as cigarette smoke, air pollution and infection are being elucidated. There is also emerging evidence that gut microbiomes play a role in lung diseases through the modulation of systemic immune responses and can be modified by diet and antibiotic treatment. There are issues that are particular to the Asia-Pacific region involving diet and prevalence of specific respiratory diseases. Each of these issues is further complicated by the effects of ageing. The challenges now are to elucidate the cause and effect relationships between changes in microbiomes and respiratory diseases and how to translate these into new treatments and clinical care. Here we review the current understanding and progression in these areas.
Collapse
Affiliation(s)
- Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Micheál Mac Aogain
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
4
|
Cisalpino D, Fagundes CT, Brito CB, Ascenção FR, Queiroz-Junior CM, Vieira AT, Sousa LP, Amaral FA, Vieira LQ, Nicoli JR, Teixeira MM, Souza DG. Microbiota-Induced Antibodies Are Essential for Host Inflammatory Responsiveness to Sterile and Infectious Stimuli. THE JOURNAL OF IMMUNOLOGY 2017; 198:4096-4106. [PMID: 28424241 DOI: 10.4049/jimmunol.1600852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 03/16/2017] [Indexed: 01/06/2023]
Abstract
The indigenous intestinal microbiota is frequently considered an additional major organ of the human body and exerts profound immunomodulating activities. Germ-free (GF) mice display a significantly different inflammatory responsiveness pattern compared with conventional (CV) mice, and this was dubbed a "hyporesponsive phenotype." Taking into account that the deposition of immune complexes is a major event in acute inflammation and that GF mice have a distinct Ig repertoire and B cell activity, we aimed to evaluate whether this altered Ig repertoire interferes with the inflammatory responsiveness of GF mice. We found that serum transfer from CV naive mice was capable of reversing the inflammatory hyporesponsiveness of GF mice in sterile inflammatory injury induced by intestinal ischemia and reperfusion, as well as in a model of lung infection by Klebsiella pneumoniae Transferring serum from Ig-deficient mice to GF animals did not alter their response to inflammatory insult; however, injecting purified Abs from CV animals restored inflammatory responsiveness in GF mice, suggesting that natural Abs present in serum were responsible for altering GF responsiveness. Mechanistically, injection of serum and Ig from CV mice into GF animals restored IgG deposition, leukocyte influx, NF-κB activation, and proinflammatory gene expression in inflamed tissues and concomitantly downregulated annexin-1 and IL-10 production. Thus, our data show that microbiota-induced natural Abs are pivotal for host inflammatory responsiveness to sterile and infectious insults.
Collapse
Affiliation(s)
- Daniel Cisalpino
- Laboratório de Interação Microorganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Caio T Fagundes
- Laboratório de Interação Microorganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Camila B Brito
- Laboratório de Interação Microorganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Fernando R Ascenção
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Laboratório de Biologia Cardíaca, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Angélica T Vieira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Flávio A Amaral
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Leda Q Vieira
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; and
| | - Jacques R Nicoli
- Laboratório de Fisiologia e Ecologia de Microorganismos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil;
| | - Danielle G Souza
- Laboratório de Interação Microorganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil;
| |
Collapse
|
5
|
Sandes S, Alvim L, Silva B, Acurcio L, Santos C, Campos M, Santos C, Nicoli J, Neumann E, Nunes Á. Selection of new lactic acid bacteria strains bearing probiotic features from mucosal microbiota of healthy calves: Looking for immunobiotics through in vitro and in vivo approaches for immunoprophylaxis applications. Microbiol Res 2017; 200:1-13. [PMID: 28527759 DOI: 10.1016/j.micres.2017.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/27/2022]
Abstract
From the birth, since their mucosal microbiota and immune system are not fully developed, newborn calves are susceptible to several mucosal pathogenic microorganisms. Operating through humoral and non-humoral mechanisms in the host, several lactic acid bacteria strains bearing probiotic features are often employed in livestock as food supplement, improving animal production performance, promoting health and reducing the severity of mucosal infections. Accordingly, we isolated, species-level identified and screened for their probiotic potentials seventy lactic acid bacteria strains from upper airway, vaginal and intestinal mucosa of healthy calves. Based on in vitro approaches, we selected three strains: Lactobacillus fermentum V3B-08 isolated from upper airway mucosa, Weissella hellenica V1V-30 isolated from vaginal mucosa and Lactobacillus farciminis B4F-06 isolated from intestinal mucosa were used to mono-colonize germ-free mice in the same site in which these strains were isolated, aiming to characterize their immunomodulatory features. These strains were able to colonize germ-free mice mucosa and trigger sIgA synthesis at a local level, in addition to stimulating, in different ways, adaptive immune responses at a systemic level.
Collapse
Affiliation(s)
- Sávio Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| | - Luige Alvim
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Bruno Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Leonardo Acurcio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Cinara Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil; Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Márcia Campos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Camila Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Jacques Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Álvaro Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Silva BC, Sandes SHC, Alvim LB, Bomfim MRQ, Nicoli JR, Neumann E, Nunes AC. Selection of a candidate probiotic strain of Pediococcus pentosaceus from the faecal microbiota of horses by in vitro testing and health claims in a mouse model of Salmonella infection. J Appl Microbiol 2016; 122:225-238. [PMID: 27813217 PMCID: PMC7166613 DOI: 10.1111/jam.13339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/13/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
AIMS The aim of this study was to verify the suitable use of candidate 'probiotics' selected by in vitro tests and the importance of in vivo assays to nominate micro-organisms as probiotics and alternative prophylactic treatments for Salmonella Typhimurium infection. METHODS AND RESULTS Thirty-three lactic acid bacteria (LAB) isolated from foal's faeces were assessed based on the main desirable functional in vitro criteria. Based on these results, Pediococcus pentosaceus strain 40 was chosen to evaluate its putative probiotic features in a mouse model of Salmonella infection. Daily intragastric doses of Ped. pentosaceus 40 for 10 days before and 10 days after Salmonella challenge (106 CFU of Salm. Typhimurium per mouse) led to a significant aggravation in mouse health by increasing weight loss, worsening clinical symptoms and anticipating the time and the number of deaths by Salmonella. Pediococcus pentosaceus modulated cell-mediated immune responses by up-regulation of the gene expression of the proinflammatory cytokines IFN-γ and TNF-α in the small intestine. CONCLUSION The usual criteria were used for in vitro screening of a large number of LAB for desirable probiotic functional properties. However, the best candidate probiotic strain identified, Ped. pentosaceus #40, aggravated the experimental disease in mice. SIGNIFICANCE AND IMPACT OF THE STUDY These findings emphasize the need for prophylactic or therapeutic effectiveness to be demonstrated in in vivo models to make precise health claims.
Collapse
Affiliation(s)
- B C Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - S H C Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - L B Alvim
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - M R Q Bomfim
- Laboratório de Biologia Molecular de Microrganismos do Núcleo de Biologia Parasitária, Centro Universitário do Maranhão (UniCEUMA), São Luís, MA, Brazil
| | - J R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - E Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - A C Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Galindo-Villegas J. Recent findings on vertebrate developmental immunity using the zebrafish model. Mol Immunol 2015; 69:106-12. [PMID: 26589453 DOI: 10.1016/j.molimm.2015.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023]
Abstract
To grant survival against sterile or microbe induced inflammation, all animals rely on correct immune system functioning. The development of immunity occurs in vertebrates during embryogenesis in a process called hematopoiesis, which is characterized by the formation of blood cellular components such as embryonic erythrocytes and primitive macrophages. These cells are formed in a sterile environment from a rare subset of pluripotent hematopoietic stem cells (HSC) during a brief period of the primitive hematopoietic wave. Diverse signals, like Notch, are indispensable in HSC emergence and differentiation. However, to successfully replicate the process in vitro using pluripotent precursors, the full set of required signals is still a matter of debate. Among the latest findings, proinflammatory signals produced by transient primitive myelocites in zebrafish have been seen to act as essential mediators in establishing the HSC program of the adult vertebrate hematopoietic system. In this regard, the zebrafish immune model has emerged as a feasible live vertebrate model for examining developmental immunity and related host-microbe interactions, both at the molecular and cellular level. Thus, using the zebrafish embryo, this review summarizes recent findings, on the signals required for immune development and further maturation of the system, in a context where no adaptive immune response has yet been developed.
Collapse
Affiliation(s)
- Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain.
| |
Collapse
|
8
|
Vieira AT, Macia L, Galvão I, Martins FS, Canesso MCC, Amaral FA, Garcia CC, Maslowski KM, De Leon E, Shim D, Nicoli JR, Harper JL, Teixeira MM, Mackay CR. A Role for Gut Microbiota and the Metabolite-Sensing Receptor GPR43 in a Murine Model of Gout. Arthritis Rheumatol 2015; 67:1646-56. [PMID: 25914377 DOI: 10.1002/art.39107] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Host-microbial interactions are central in health and disease. Monosodium urate monohydrate (MSU) crystals cause gout by activating the NLRP3 inflammasome, leading to interleukin-1β (IL-1β) production and neutrophil recruitment. This study was undertaken to investigate the relevance of gut microbiota, acetate, and the metabolite-sensing receptor GPR43 in regulating inflammation in a murine model of gout. METHODS Gout was induced by the injection of MSU crystals into the knee joints of mice. Macrophages from the various animals were stimulated to determine inflammasome activation and production of reactive oxygen species (ROS). RESULTS Injection of MSU crystals caused joint inflammation, as seen by neutrophil influx, hypernociception, and production of IL-1β and CXCL1. These parameters were greatly decreased in germ-free mice, mice treated with antibiotics, and GPR-43-deficient mice. Recolonization or administration of acetate to germ-free mice restored inflammation in response to injection of MSU crystals. In vitro, macrophages produced ROS and assembled the inflammasome when stimulated with MSU. Macrophages from germ-free animals produced little ROS, and there was little inflammasome assembly. Similar results were observed in macrophages from GPR-43-deficient mice. Treatment of germ-free mice with acetate restored in vitro responsiveness of macrophages to MSU crystals. CONCLUSION In the absence of microbiota, there is decreased production of short-chain fatty acids that are necessary for adequate inflammasome assembly and IL-1β production in a manner that is at least partially dependent on GPR43. These results clearly show that the commensal microbiota shapes the host's ability to respond to an inflammasome-dependent acute inflammatory stimulus outside the gut.
Collapse
Affiliation(s)
- Angélica T Vieira
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, and Monash University, Clayton, Victoria, Australia
| | | | - Izabela Galvão
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Flávio A Amaral
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Kendle M Maslowski
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Ellen De Leon
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Doris Shim
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | | | | | | | | |
Collapse
|
9
|
Steinberg RS, Lima M, Gomes de Oliveira NL, Miyoshi A, Nicoli JR, Neumann E, Nunes AC. Effect of intestinal colonisation by two Lactobacillus strains on the immune response of gnotobiotic mice. Benef Microbes 2015; 5:409-19. [PMID: 24939801 DOI: 10.3920/bm2013.0075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of intestinal colonisation on the immune system was investigated in germ-free mice monoassociated with Lactobacillus strains isolated from calf faeces. Single doses of Lactobacillus acidophilus L36 or Lactobacillus salivarius L38 were administered to germ-free mice by intragastric gavage. Ten days later, the mice were euthanised. Gene expression levels of interleukin 5 (IL-5), IL-6, IL-10, IL-12b, IL-17a, gamma interferon (IFN-γ), transforming growth factor beta 1 (TGF-β1), and tumour necrosis factor alpha (TNF-α) were quantified in segments of the small and large intestines by real time quantitative polymerase chain reaction. All the mice were colonised rapidly after Lactobacillus administration with intestinal counts ranging from 6.53 to 8.26 log cfu/g. L. acidophilus L36 administration increased the expression of cytokines involved with the Th2 (IL-5, IL-6 and TGF-β1) and Th17 (IL-17a, TNF-α and IL-6) inflammatory response, whereas L. salivarius L38 appeared to stimulate a pattern of less diversified cytokines in the intestine. Intragastric gavage of L. acidophilus L36 and L. salivarius L38 induced similar levels of colonisation in the digestive tracts of germ-free mice but stimulated different immune responses in the intestinal mucosa. The different immunomodulation patterns might facilitate the potential use of these lactobacilli as probiotics to treat distinct pathological conditions, for example protection against Citrobacter rodentium infection by stimulating IL-17 production.
Collapse
Affiliation(s)
- R S Steinberg
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M Lima
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - N L Gomes de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A Miyoshi
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - J R Nicoli
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - E Neumann
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A C Nunes
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Steinberg RS, Silva LCS, Souza TC, Lima MT, de Oliveira NLG, Vieira LQ, Arantes RME, Miyoshi A, Nicoli JR, Neumann E, Nunes ÁC. Safety and protective effectiveness of two strains of Lactobacillus with probiotic features in an experimental model of salmonellosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:8755-76. [PMID: 25162711 PMCID: PMC4198989 DOI: 10.3390/ijerph110908755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 12/21/2022]
Abstract
Two strains of Lactobacillus, previously isolated from bovine faeces and tested in vitro for properties desired in probiotics, were evaluated for their in vivo effectiveness in protecting against experimental salmonellosis. L. salivarius L38 and L. acidophilus L36 previously demonstrated the ability to successfully colonize the gastrointestinal tract of germ-free mice and stimulate the immune system associated with the intestinal mucosa. L38- or L36-feeding showed no detrimental effect on the general health indicators and did not induce changes in normal architecture of liver and small intestine, indicating that the use of these strains is apparently safe. In control animals fed L38 strain, several cytokines had augmented mRNA levels that can be associated with a homeostatic state of intestinal mucosa, while L36 had less diverse regulation. IgA production and secretion in the intestinal lumen induced by infection was abrogated by pretreating with both lactobacilli. In addition, liver and small intestine histological scores and, translocation of Salmonella cells to liver and spleen, indicated that these strains did not confer protection against the infection. So, the IL-12:IL-18àIFN-g axis, essential for an effective immune response against Salmonella, was not favored with L38 or L36 strains. However, increased expression of IL-10 in different portions of the gastrointestinal tract of L38-fed animals is indicative of anti-inflammatory effect to be explored furthermore.
Collapse
Affiliation(s)
- Raphael S. Steinberg
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| | - Lilian C. S. Silva
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| | - Tássia C. Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Maurício T. Lima
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Nayara L. G. de Oliveira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Leda Q. Vieira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mail:
| | - Rosa M. E. Arantes
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mail:
| | - Anderson Miyoshi
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| | - Jacques R. Nicoli
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Elisabeth Neumann
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Álvaro C. Nunes
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| |
Collapse
|
11
|
Tian P, Xu B, Sun H, Li X, Li Z, Wei P. Isolation and gut microbiota modulation of antibiotic-resistant probiotics from human feces. Diagn Microbiol Infect Dis 2014; 79:405-12. [PMID: 24820193 DOI: 10.1016/j.diagmicrobio.2014.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/27/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
Antibiotic-resistant probiotics may be advantageous for antibiotic-induced gut microbiota imbalance. In this article, we aimed to isolate antibiotic-resistant bacteria as potential probiotics. Feces from 3 healthy adults and 2 infants were used to isolate the antibiotic-resistant bacteria. Then we established gut microbiota imbalance mice model by antibiotics treatment and used it to assess the effect of the probiotics. Finally, we identified 8 isolates, and 6 of them were used as probiotics cocktail. Number of anaerobe, lactobacilli, and Bifidobacterium in feces were higher in the probiotic group (9.47±0.35 log10CFU/g, 8.74±0.18 log10CFU/g, 7.24±0.38 log10CFU/g, respectively) compared with model group (P<0.05). Richness and diversity index of probiotic group (19.79±0.29 and 2.95±0.06, respectively) were larger than model group (P<0.05). Diarrhea and mucosal edema had been alleviated during probiotic treatment. Our results validated that bacteriotherapy was available to treat gut microbiota imbalance.
Collapse
Affiliation(s)
- Peng Tian
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Bo Xu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Xiuying Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhi Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Pijin Wei
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Sagaya FM, Hacin B, Tompa G, Ihan A, Špela Š, Černe M, Hurrell RF, Matijašić BB, Rogelj I, Vergères G. Lactobacillus gasseri K7 modulates the blood cell transcriptome of conventional mice infected with Escherichia coli O157:H7. J Appl Microbiol 2014; 116:1282-96. [PMID: 24779582 DOI: 10.1111/jam.12440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 01/30/2023]
Abstract
AIMS As the immune cells underlying the intestinal barrier sense luminal microbial signals, blood cell transcriptomics may identify subclinical changes triggered by gut bacteria that may otherwise not be detected. We have therefore investigated how Lactobacillus gasseri K7 and enterohemorrhagic Escherichia coli O157:H7 modulate the blood cell transcriptome of mice possessing an intact microbiota. METHODS AND RESULTS We have analysed the transcriptome of five groups of C57BL/6J mice: (i) control, (ii) inoculated with a single dose of E. coli, (iii) inoculated during 2 weeks with Lact. gasseri, (iv) co-inoculated with E. coli and Lact. gasseri, (v) inoculated with Lact. gasseri prior to E. coli infection. The transcriptome could distinguish between the five treatment groups. Gene characteristics of bacterial infection, in particular inflammation, were upregulated in the mice inoculated with E. coli. Lact. gasseri had only mild effects on the transcriptome but modified the gene expression induced by E. coli. CONCLUSIONS The transcriptome differentiates mice inoculated orally with E. coli, Lact. gasseri and combinations of these two strains. SIGNIFICANCE AND IMPACT OF THE STUDY These results suggest that the blood cell transcriptome can be used as a source of biomarkers to monitor the impact of probiotics in subclinical models of infectious disease.
Collapse
Affiliation(s)
- F M Sagaya
- Institute of Food Science, Agroscope, Berne, Switzerland; Institute of Food Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gilbert NM, Lewis WG, Lewis AL. Clinical features of bacterial vaginosis in a murine model of vaginal infection with Gardnerella vaginalis. PLoS One 2013; 8:e59539. [PMID: 23527214 PMCID: PMC3602284 DOI: 10.1371/journal.pone.0059539] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/15/2013] [Indexed: 02/03/2023] Open
Abstract
Bacterial vaginosis (BV) is a dysbiosis of the vaginal flora characterized by a shift from a Lactobacillus-dominant environment to a polymicrobial mixture including Actinobacteria and Gram-negative bacilli. BV is a common vaginal condition in women and is associated with increased risk of sexually transmitted infection and adverse pregnancy outcomes such as preterm birth. Gardnerella vaginalis is one of the most frequently isolated bacterial species in BV. However, there has been much debate in the literature concerning the contribution of G. vaginalis to the etiology of BV, since it is also present in a significant proportion of healthy women. Here we present a new murine vaginal infection model with a clinical isolate of G. vaginalis. Our data demonstrate that this model displays key features used clinically to diagnose BV, including the presence of sialidase activity and exfoliated epithelial cells with adherent bacteria (reminiscent of clue cells). G. vaginalis was capable of ascending uterine infection, which correlated with the degree of vaginal infection and level of vaginal sialidase activity. The host response to G. vaginalis infection was characterized by robust vaginal epithelial cell exfoliation in the absence of histological inflammation. Our analyses of clinical specimens from women with BV revealed a measureable epithelial exfoliation response compared to women with normal flora, a phenotype that, to our knowledge, is measured here for the first time. The results of this study demonstrate that G. vaginalis is sufficient to cause BV phenotypes and suggest that this organism may contribute to BV etiology and associated complications. This is the first time vaginal infection by a BV associated bacterium in an animal has been shown to parallel the human disease with regard to clinical diagnostic features. Future studies with this model should facilitate investigation of important questions regarding BV etiology, pathogenesis and associated complications.
Collapse
Affiliation(s)
- Nicole M. Gilbert
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Warren G. Lewis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amanda L. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Obstetrics and Gynecology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Fagundes CT, Amaral FA, Teixeira AL, Souza DG, Teixeira MM. Adapting to environmental stresses: the role of the microbiota in controlling innate immunity and behavioral responses. Immunol Rev 2012; 245:250-64. [PMID: 22168425 DOI: 10.1111/j.1600-065x.2011.01077.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammals are subject to colonization by an astronomical number of mutualistic and commensal microorganisms on their environmental exposed surfaces. These mutualistic species build up a complex community, called the indigenous microbiota, which aid their hosts in several physiological activities. In this review, we show that the transition between a non-colonized and a colonized state is associated with modification on the pattern of host inflammatory and behavioral responsiveness. There is a shift from innate anti-inflammatory cytokine production to efficient release of proinflammatory mediators and rapid mobilization of leukocytes upon infection or other stimuli. In addition, host responses to hypernociceptive and stressful stimuli are modulated by indigenous microbiota, partly due to the altered pattern of innate and acquired immune responsiveness of the non-colonized host. These altered responses ultimately lead to significant alteration in host behavior to environmental threats. Therefore, host colonization by indigenous microbiota modifies the way the host perceives and reacts to environmental stimuli, improving resilience of the entire host-microorganism consortium to environmental stresses.
Collapse
Affiliation(s)
- Caio T Fagundes
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|