1
|
Chen R, Fulton KM, Tran A, Duque D, Kovalchik K, Caron E, Twine SM, Li J. Integrated Immunopeptidomics and Proteomics Study of SARS-CoV-2-Infected Calu-3 Cells Reveals Dynamic Changes in Allele-specific HLA Abundance and Antigen Presentation. Mol Cell Proteomics 2023; 22:100645. [PMID: 37709257 PMCID: PMC10580047 DOI: 10.1016/j.mcpro.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
We present an integrated immunopeptidomics and proteomics study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to comprehensively decipher the changes in host cells in response to viral infection. Immunopeptidomics analysis identified viral antigens presented by host cells through both class I and class II MHC system for recognition by the adaptive immune system. The host proteome changes were characterized by quantitative proteomics and glycoproteomics and from these data, the activation of toll-like receptor 3-interferon pathway was identified. Glycosylation analysis of human leukocyte antigen (HLA) proteins from the elution and flow-through of immunoprecipitation revealed that SARS-CoV-2 infection changed the glycosylation pattern of certain HLA alleles with different HLA alleles, showing distinct dynamic changes in relative abundance. The difference in the glycosylation and abundance of HLA alleles changed the number of strong binding antigens each allele presented, suggesting the impact of SARS-CoV-2 infection on antigen presentation is allele-specific. These results could be further exploited to explain the imbalanced response from innate and adaptive immune system in coronavirus disease 2019 cases, which would be helpful for the development of therapeutics and vaccine for coronavirus disease 2019 and preparation for future pandemic.
Collapse
Affiliation(s)
- Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| | - Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anh Tran
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kevin Kovalchik
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Quebec, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, Pinho SS. Glycans as shapers of tumour microenvironment: A sweet driver of T-cell-mediated anti-tumour immune response. Immunology 2023; 168:217-232. [PMID: 35574724 DOI: 10.1111/imm.13494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.
Collapse
Affiliation(s)
- Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Guilherme Faria
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina S Dantas
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuel M Vicente
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
The Role of Glycosylation in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:265-283. [PMID: 34495540 DOI: 10.1007/978-3-030-70115-4_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diversity of glycan presentation in a cell, tissue and organism is enormous, which reflects the huge amount of important biological information encoded by the glycome which has not been fully understood. A compelling body of evidence has been highlighting the fundamental role of glycans in immunity, such as in development, and in major inflammatory processes such as inflammatory bowel disease, systemic lupus erythematosus and other autoimmune disorders. Glycans play an instrumental role in the immune response, integrating the canonical circuits that regulate innate and adaptive immune responses. The relevance of glycosylation in immunity is demonstrated by the role of glycans as important danger-associated molecular patterns and pathogen-associated molecular patterns associated with the discrimination between self and non-self; also as important regulators of the threshold of T cell activation, modulating receptors signalling and the activity of both T and other immune cells. In addition, glycans are important determinants that regulate the dynamic crosstalk between the microbiome and immune response. In this chapter, the essential role of glycans in the immunopathogenesis of inflammatory disorders will be presented and its potential clinical applications (diagnosis, prognosis and therapeutics) will be highlighted.
Collapse
|
4
|
De Bousser E, Meuris L, Callewaert N, Festjens N. Human T cell glycosylation and implications on immune therapy for cancer. Hum Vaccin Immunother 2020; 16:2374-2388. [PMID: 32186959 PMCID: PMC7644206 DOI: 10.1080/21645515.2020.1730658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is an important post-translational modification, giving rise to a diverse and abundant repertoire of glycans on the cell surface, collectively known as the glycome. When focusing on immunity, glycans are indispensable in virtually all signaling and cell-cell interactions. More specifically, glycans have been shown to regulate key pathophysiological steps within T cell biology such as T cell development, thymocyte selection, T cell activity and signaling as well as T cell differentiation and proliferation. They are of major importance in determining the interaction of human T cells with tumor cells. In this review, we will describe the role of glycosylation of human T cells in more depth, elaborate on the importance of glycosylation in the interaction of human T cells with tumor cells and discuss the potential of cancer immunotherapies that are based on manipulating the glycome functions at the tumor immune interface.1,2
Collapse
Affiliation(s)
- Elien De Bousser
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| | - Leander Meuris
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| | - Nele Festjens
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| |
Collapse
|
5
|
Silva Z, Ferro T, Almeida D, Soares H, Ferreira JA, Deschepper FM, Hensbergen PJ, Pirro M, van Vliet SJ, Springer S, Videira PA. MHC Class I Stability is Modulated by Cell Surface Sialylation in Human Dendritic Cells. Pharmaceutics 2020; 12:pharmaceutics12030249. [PMID: 32164343 PMCID: PMC7150992 DOI: 10.3390/pharmaceutics12030249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Maturation of human Dendritic Cells (DCs) is characterized by increased expression of antigen presentation molecules, and overall decreased levels of sialic acid at cell surface. Here, we aimed to identify sialylated proteins at DC surface and comprehend their role and modulation. Mass spectrometry analysis of DC’s proteins, pulled down by a sialic acid binding lectin, identified molecules of the major human histocompatibility complex class I (MHC-I), known as human leucocyte antigen (HLA). After desialylation, DCs showed significantly higher reactivity with antibodies specific for properly folded MHC-I-β2-microglobulin complex and for β2-microglobulin but showed significant lower reactivity with an antibody specific for free MHC-I heavy chain. Similar results for antibody reactivities were observed for TAP2-deficient lymphoblastoid T2 cells, which express HLA-A*02:01. Using fluorescent peptide specifically fitting the groove of HLA-A*02:01, instead of antibody staining, also showed higher peptide binding on desialylated cells, confirming higher surface expression of MHC-I complex. A decay assay showed that desialylation doubled the half-life of MHC-I molecules at cell surface in both DCs and T2 cells. The biological impact of DC´s desialylation was evaluated in co-cultures with autologous T cells, showing higher number and earlier immunological synapses, and consequent significantly increased production of IFN-γ by T cells. In summary, sialic acid content modulates the expression and stability of complex MHC-I, which may account for the improved DC-T synapses.
Collapse
Affiliation(s)
- Zélia Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Z.S.); (T.F.); (D.A.); (F.M.D.)
| | - Tiago Ferro
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Z.S.); (T.F.); (D.A.); (F.M.D.)
- CDG & Allies – PPAIN- Congenital Disorders of Glycosylation & Allies - Professionals and Patient Associations International Network, 2829-516 Caparica, Portugal
| | - Danielle Almeida
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Z.S.); (T.F.); (D.A.); (F.M.D.)
| | - Helena Soares
- Human Immunobiology and Pathogenesis, CEDOC-Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal;
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal;
- Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
| | - Fanny M. Deschepper
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Z.S.); (T.F.); (D.A.); (F.M.D.)
| | - Paul J. Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (P.J.H.); (M.P.)
| | - Martina Pirro
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (P.J.H.); (M.P.)
| | - Sandra J. van Vliet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081 HzAmsterdam, The Netherlands;
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany;
| | - Paula A. Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Z.S.); (T.F.); (D.A.); (F.M.D.)
- CDG & Allies – PPAIN- Congenital Disorders of Glycosylation & Allies - Professionals and Patient Associations International Network, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +351-212948530
| |
Collapse
|
6
|
Busold S, Nagy NA, Tas SW, van Ree R, de Jong EC, Geijtenbeek TBH. Various Tastes of Sugar: The Potential of Glycosylation in Targeting and Modulating Human Immunity via C-Type Lectin Receptors. Front Immunol 2020; 11:134. [PMID: 32117281 PMCID: PMC7019010 DOI: 10.3389/fimmu.2020.00134] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
C-type lectin receptors (CLRs) are important in several immune regulatory processes. These receptors recognize glycans expressed by host cells or by pathogens. Whereas pathogens are recognized through their glycans, which leads to protective immunity, aberrant cellular glycans are now increasingly recognized as disease-driving factors in cancer, auto-immunity, and allergy. The vast variety of glycan structures translates into a wide spectrum of effects on the immune system ranging from immune suppression to hyper-inflammatory responses. CLRs have distinct expression patterns on antigen presenting cells (APCs) controlling their role in immunity. CLRs can also be exploited to selectively target specific APCs, modulate immune responses and enhance antigen presentation. Here we will discuss the role of glycans and their receptors in immunity as well as potential strategies for immune modulation. A special focus will be given to different dendritic cell subsets as these APCs are crucial orchestrators of immune responses in infections, cancer, auto-immunity and allergies. Furthermore, we will highlight the potential use of nanoscale lipid bi-layer structures (liposomes) in targeted immunotherapy.
Collapse
Affiliation(s)
- Stefanie Busold
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Noémi A Nagy
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Dutta D, Mukherjee D, Mukherjee IA, Maiti TK, Basak A, Das AK. Staphylococcal superantigen-like proteins interact with human MAP kinase signaling protein ERK2. FEBS Lett 2019; 594:266-277. [PMID: 31468523 DOI: 10.1002/1873-3468.13590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
Abstract
This study aimed to identify the intracellular binding partner of a unique class of staphylococcal secreted exotoxins called superantigen-like proteins (SSL) from human macrophage and keratinocyte cell lysates. Here, we report that SSL1 specifically binds to human extracellular signal-regulated kinase 2 (hERK2), an important stress-activated kinase in mitogen-activated protein kinase signaling pathways. Western blot and in vitro binding studies with recombinant hERK2 confirmed the binding interaction of SSL1, SSL7, and SSL10 with hERK2. Moreover, the SSLs-hERK2 interaction was validated biochemically by ELISA. Our finding shows that SSLs play a novel role by binding with host cell MAP kinase signaling pathway protein. Understanding the SSL-hERK2 interaction will also provide a basis for designing SSL-based peptide inhibitors of hERK2 in cancer therapy.
Collapse
Affiliation(s)
- Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India
| | - Devdeep Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | | | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
8
|
Yang S, Chen L, Chan DW, Li QK, Zhang H. Protein signatures of molecular pathways in non-small cell lung carcinoma (NSCLC): comparison of glycoproteomics and global proteomics. Clin Proteomics 2017; 14:31. [PMID: 28814946 PMCID: PMC5557576 DOI: 10.1186/s12014-017-9166-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/05/2017] [Indexed: 12/18/2022] Open
Abstract
Background Non-small cell lung carcinoma (NSCLC) remains the leading cause of cancer deaths in the United States. More than half of NSCLC patients have clinical presentations with locally advanced or metastatic disease at the time of diagnosis. The large-scale genomic analysis of NSCLC has demonstrated that molecular alterations are substantially different between adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). However, a comprehensive analysis of proteins and glycoproteins in different subtypes of NSCLC using advanced proteomic approaches has not yet been conducted. Methods We applied mass spectrometry (MS) technology featuring proteomics and glycoproteomics to analyze six primary lung SqCCs and eleven ADCs, and we compared the expression level of proteins and glycoproteins in tumors using quantitative proteomics. Glycoproteins were analyzed by enrichment using a chemoenzymatic method, solid-phase extraction of glycopeptides, and quantified by iTRAQ-LC–MS/MS. Protein quantitation was further annotated via Ingenuity Pathway Analysis. Results Over 6000 global proteins and 480 glycoproteins were quantitatively identified in both SqCC and ADC. ADC proteins (8337) consisted of enzymes (22.11%), kinases (5.11%), transcription factors (6.85%), transporters (6.79%), and peptidases (3.30%). SqCC proteins (6967) had a very similar distribution. The identified glycoproteins, in order of relative abundance, included membrane (42%) and extracellular matrix (>33%) glycoproteins. Oncogene-coded proteins (82) increased 1.5-fold among 1047 oncogenes identified in ADC, while 124 proteins from SqCC were up-regulated in tumor tissues among a total of 827 proteins. We identified 680 and 563 tumor suppressor genes from ADC and SqCC, respectively. Conclusion Our systematic analysis of proteins and glycoproteins demonstrates changes of protein and glycoprotein relative abundance in SqCC (TP53, U2AF1, and RXR) and in ADC (SMARCA4, NOTCH1, PTEN, and MST1). Among them, eleven glycoproteins were upregulated in both ADC and SqCC. Two glycoproteins (ELANE and IGFBP3) were only increased in SqCC, and six glycoproteins (ACAN, LAMC2, THBS1, LTBP1, PSAP and COL1A2) were increased in ADC. Ingenuity Pathway Analysis (IPA) showed that several crucial pathways were activated in SqCC and ADC tumor tissues. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9166-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| |
Collapse
|
9
|
Serena M, Parolini F, Biswas P, Sironi F, Blanco Miranda A, Zoratti E, Scupoli MT, Ziglio S, Valenzuela-Fernandez A, Gibellini D, Romanelli MG, Siccardi A, Malnati M, Beretta A, Zipeto D. HIV-1 Env associates with HLA-C free-chains at the cell membrane modulating viral infectivity. Sci Rep 2017; 7:40037. [PMID: 28051183 PMCID: PMC5209703 DOI: 10.1038/srep40037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
HLA-C has been demonstrated to associate with HIV-1 envelope glycoprotein (Env). Virions lacking HLA-C have reduced infectivity and increased susceptibility to neutralizing antibodies. Like all others MHC-I molecules, HLA-C requires β2-microglobulin (β2m) for appropriate folding and expression on the cell membrane but this association is weaker, thus generating HLA-C free-chains on the cell surface. In this study, we deepen the understanding of HLA-C and Env association by showing that HIV-1 specifically increases the amount of HLA-C free chains, not bound to β2m, on the membrane of infected cells. The association between Env and HLA-C takes place at the cell membrane requiring β2m to occur. We report that the enhanced infectivity conferred to HIV-1 by HLA-C specifically involves HLA-C free chain molecules that have been correctly assembled with β2m. HIV-1 Env-pseudotyped viruses produced in the absence of β2m are less infectious than those produced in the presence of β2m. We hypothesize that the conformation and surface expression of HLA-C molecules could be a discriminant for the association with Env. Binding stability to β2m may confer to HLA-C the ability to preferentially act either as a conventional immune-competent molecule or as an accessory molecule involved in HIV-1 infectivity.
Collapse
Affiliation(s)
- Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Francesca Parolini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Priscilla Biswas
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Francesca Sironi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Almudena Blanco Miranda
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Elisa Zoratti
- University Laboratory of Medical Research, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| | - Maria Teresa Scupoli
- University Laboratory of Medical Research, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| | - Serena Ziglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.,Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, Tenerife, Spain
| | - Agustin Valenzuela-Fernandez
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, Tenerife, Spain
| | - Davide Gibellini
- Department of Diagnostics and Public Health, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Antonio Siccardi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Mauro Malnati
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Alberto Beretta
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| |
Collapse
|
10
|
Delannoy CP, Rombouts Y, Groux-Degroote S, Holst S, Coddeville B, Harduin-Lepers A, Wuhrer M, Elass-Rochard E, Guérardel Y. Glycosylation Changes Triggered by the Differentiation of Monocytic THP-1 Cell Line into Macrophages. J Proteome Res 2016; 16:156-169. [DOI: 10.1021/acs.jproteome.6b00161] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Clément P. Delannoy
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Yoann Rombouts
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Sophie Groux-Degroote
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Stephanie Holst
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Bernadette Coddeville
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Elisabeth Elass-Rochard
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité
de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| |
Collapse
|
11
|
Gale P, Hill A, Kelly L, Bassett J, McClure P, Le Marc Y, Soumpasis I. Applications of omics approaches to the development of microbiological risk assessment using RNA virus dose-response models as a case study. J Appl Microbiol 2014; 117:1537-48. [PMID: 25269811 PMCID: PMC7166579 DOI: 10.1111/jam.12656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/26/2014] [Indexed: 12/27/2022]
Abstract
T e in the amount of ‘omics’ data available and in our ability to interpret those data. The aim of this paper was to consider how omics techniques can be used to improve and refine microbiological risk assessment, using dose–response models for RNA viruses, with particular reference to norovirus through the oral route as the case study. The dose–response model for initial infection in the gastrointestinal tract is broken down into the component steps at the molecular level and the feasibility of assigning probabilities to each step assessed. The molecular mechanisms are not sufficiently well understood at present to enable quantitative estimation of probabilities on the basis of omics data. At present, the great strength of gene sequence data appears to be in giving information on the distribution and proportion of susceptible genotypes (for example due to the presence of the appropriate pathogen‐binding receptor) in the host population rather than in predicting specificities from the amino acid sequences concurrently obtained. The nature of the mutant spectrum in RNA viruses greatly complicates the application of omics approaches to the development of mechanistic dose–response models and prevents prediction of risks of disease progression (given infection has occurred) at the level of the individual host. However, molecular markers in the host and virus may enable more broad predictions to be made about the consequences of exposure in a population. In an alternative approach, comparing the results of deep sequencing of RNA viruses in the faeces/vomitus from donor humans with those from their infected recipients may enable direct estimates of the average probability of infection per virion to be made.
Collapse
Affiliation(s)
- P Gale
- Animal Health and Veterinary Laboratories Agency, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Immunomodulatory glycan lacto-N-fucopentaose III requires clathrin-mediated endocytosis to induce alternative activation of antigen-presenting cells. Infect Immun 2014; 82:1891-903. [PMID: 24566617 DOI: 10.1128/iai.01293-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of alternative activation of antigen-presenting cells (APCs) is largely unknown. Lacto-N-fucopentaose III (LNFPIII) is a biologically conserved pentasaccharide that contains the Lewis(x) trisaccharide. LNFPIII conjugates and schistosome egg antigens, which contain the Lewis(x) trisaccharide, drive alternative activation of APCs and induce anti-inflammatory responses in vivo, preventing inflammation-based diseases, including psoriasis, transplant organ rejection, and metabolic disease. In this study, we show that LNFPIII conjugates and schistosome egg antigens interact with APCs via a receptor-mediated process, requiring internalization of these molecules through a clathrin/dynamin-dependent but caveolus-independent endocytic pathway. Using inhibitors/small interfering RNA (siRNA) against dynamin and clathrin, we show for the first time that endocytosis of Lewis(x)-containing glycans is required to drive alternative maturation of antigen-presenting cells and Th2 immune responses. We identified mouse SIGNR-1 as a cell surface receptor for LNFPIII conjugates. Elimination of SIGNR-1 showed no effect on uptake of LNFPIII conjugates, suggesting that other receptors bind to and facilitate uptake of LNFPIII conjugates. We demonstrate that disruption of actin filaments partially prevented the entry of LNFPIII conjugates into APCs and that LNFPIII colocalizes with both early and late endosomal markers and follows the classical endosomal pathway leading to lysosome maturation. The results of this study show that the ability of LNFPIII to induce alternative activation utilizes a receptor-mediated process that requires a dynamin-dependent endocytosis. Thus, key steps have been defined in the previously unknown mechanism of alternative activation that ultimately leads to induction of anti-inflammatory responses.
Collapse
|
13
|
Adaptive immune activation: glycosylation does matter. Nat Chem Biol 2014; 9:776-84. [PMID: 24231619 DOI: 10.1038/nchembio.1403] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class I and II are glycoproteins that can present antigenic peptides at the cell surface for recognition and activation of circulating T lymphocytes. Here, the importance of the modification of protein antigens by glycans on cellular uptake, proteolytic processing, presentation by MHC and subsequent T-cell priming is reviewed. Antigen glycosylation is important for a number of diseases and vaccine design. All of the key proteins involved in antigen recognition and the orchestration of downstream effector functions are glycosylated. The influence of protein glycosylation on immune function and disease is covered.
Collapse
|
14
|
Malaspina A, Collins BS, Dell A, Alter G, Onami TM. Conference report: "Functional Glycomics in HIV Type 1 Vaccine Design" workshop report, Bethesda, Maryland, April 30-May 1, 2012. AIDS Res Hum Retroviruses 2013; 29:1407-17. [PMID: 23767872 DOI: 10.1089/aid.2013.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A vital part of the renewed hope for a vaccine against the human immunodeficiency virus (HIV-1) is based on recent studies that have highlighted major sites of HIV-1 vulnerability that could be effectively targeted by a preventive vaccine. One of these potential vulnerabilities includes the dense cluster of carbohydrates surrounding HIV-1's envelope glycoproteins gp120 and gp41, typically referred to as the "glycan shield." Recent data from several laboratories have shown that glycans on the HIV-1 envelope form key epitopes for broadly neutralizing antibodies (bNAb). Moreover, HIV-1 envelope glycans play an important role in viral transmission, antigenicity, and immunogenicity. The recent availability of novel tools and technologies has now allowed investigators to leverage glycomic structure-function relationships in the design of candidate HIV-1 vaccines. Additionally, glycans modulate the immune response, playing an essential role in Fc receptor and complement activity. To promote cross-disciplinary collaboration and promote synergistic HIV-1- glycomics research, the National Institutes of Health (NIH) cosponsored and convened a 1.5-day workshop entitled "Functional Glycomics in HIV-1 Vaccine Design." The meeting focused on the role of glycan interactions with neutralizing antibodies, the influence of immunoglobulin G (IgG) Fc receptor glycosylation, newly available glycomics technologies, and how new information on the role of glycans could be applied in HIV-1 immunogen design strategies. This report summarizes the discussions of this workshop.
Collapse
Affiliation(s)
- Angela Malaspina
- Preclinical Research and Development Branch, Division of AIDS, U.S. National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Brenda S. Collins
- HJF-DAIDS, a Division of The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Contractor to NIAID, NIH, DHHS, Bethesda, Maryland
| | - Anne Dell
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Charlestown, Massachusetts
| | - Thandi M. Onami
- Vaccine Clinical Research Branch, Division of AIDS, U.S. National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
15
|
The regulatory power of glycans and their binding partners in immunity. Trends Immunol 2013; 34:290-8. [PMID: 23485517 DOI: 10.1016/j.it.2013.01.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
Glycans and glycan-binding proteins are central to a properly functioning immune system. Perhaps the best known example of this is the selectin family of surface proteins that are primarily found on leukocytes, and which bind to endothelial glycans near sites of infection or inflammation and enable extravasation into tissues. In the past decade, however, several other immune pathways that are dependent on or sensitive to changes in glycan-mediated mechanisms have been revealed. These include antibody function, apoptosis, T helper (Th)1 versus Th2 skewing, T cell receptor signaling, and MHC class II antigen presentation. Here, we highlight how regulated changes in protein glycosylation both at the cell surface and on secreted glycoproteins can positively and negatively modulate the immune response.
Collapse
|