1
|
Liu Y, Liu K, Lei L, Wang Q, Wang X, Meng X, Liu Q, Du J, Zhang L, Nazaré M, Hu HY. Aminopeptidase-Responsive NIR Photosensitizer for Precision Targeting and Eradication of Pseudomonas aeruginosa Biofilms. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1-12. [PMID: 39711235 DOI: 10.1021/acsami.4c16028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The emergence of resistance in Pseudomonas aeruginosa represents a significant global health challenge, particularly due to the hurdle of effectively penetrating biofilms with antimicrobials. Moreover, the rise of antibiotic-resistant pathogens has driven the urgent need for developing innovative therapeutic approaches to overcome antibiotic resistance. Antibacterial phototherapy strategies have shown great potential for combating pathogens due to their broad-spectrum antimicrobial activity, spatiotemporal controllability, and relatively low rate of resistance emergence. However, due to the lack of bacterial specificity and penetration, photosensitizers cause considerable damage to mammalian cells and normal tissues and are less effective against bacterial biofilms. Herein, we developed a novel dual-targeting antibacterial strategy to construct a near-infrared photosensitizer, Cy-NEO-Leu. Cy-NEO-Leu showed great bacterial targeting affinity, penetrating and accumulating in biofilms. At the site of infection, it was specifically activated by P. aeruginosa aminopeptidase (PaAP), producing Cy-NEO-NH2, which demonstrated outstanding photothermal (PTT) and photodynamic (PDT) properties, with a photothermal conversion efficiency of up to 70.34%. Both in vitro and in vivo results demonstrated that Cy-NEO-Leu significantly reduced the biofilm biomass and bacterial viability in P. aeruginosa biofilms. Moreover, phototherapy with Cy-NEO-Leu further activated the immune system, enhancing therapeutic efficacy and promoting wound healing. RNA-seq analysis revealed that the antibacterial mechanism of Cy-NEO-Leu-mediated phototherapy involves disruption of the transcriptional and translational processes of P. aeruginosa under laser irradiation. Overall, our results present a promising therapeutic approach against P. aeruginosa biofilms and inspire the development of next-generation antimicrobials.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kaixuan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ling Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiangchuan Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qian Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiacheng Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Herman R, Kinniment-Williams B, Rudden M, James AG, Wilkinson AJ, Murphy B, Thomas GH. Identification of a staphylococcal dipeptidase involved in the production of human body odor. J Biol Chem 2024; 300:107928. [PMID: 39454956 PMCID: PMC11742315 DOI: 10.1016/j.jbc.2024.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The production of human body odor is the result of the action of commensal skin bacteria, including Staphylococcus hominis, acting to biotransform odorless apocrine gland secretions into volatile chemicals like thioalcohols such as 3-methyl-3-sulphanylhexan-1-ol (3M3SH). As the secreted odor precursor Cys-Gly-3M3SH contains a dipeptide, yet the final enzyme in the biotransformation pathway only functions on Cys-3M3SH, we sought to identify the remaining step in this human-adapted biochemical pathway using a novel coupled enzyme assay. Purification of this activity from S. hominis extracts led to the identification of the M20A-family PepV peptidase (ShPepV) as the primary Cys-Gly-3M3SH dipeptidase. To establish whether this was a primary substrate for PepV, the recombinant protein was purified and demonstrated broad activity against diverse dipeptides. The binding site for Cys-Gly-3M3SH was predicted using modeling, which suggested mutations that might accommodate this ligand more favorably. Indeed, a D437A resulted in an almost sixfold increase in the kcat/Km, whereas other introduced mutations reduced or abolished function. Together, these data identify an enzyme capable of catalyzing the missing step in an ancient human-specific biochemical transformation and suggest that the production of 3M3SH uses neither a dedicated transporter nor a peptidase for its breakdown, with only the final cleavage step, catalyzed by PatB cysteine-S-conjugate β-lyase, being a unique enzyme.
Collapse
Affiliation(s)
- Reyme Herman
- Department of Biology, University of York, York, UK; York Biomedical Research Institute, University of York, York, UK
| | - Bethan Kinniment-Williams
- York Biomedical Research Institute, University of York, York, UK; Hull York Medical School, University of York, York, UK
| | - Michelle Rudden
- Department of Biology, University of York, York, UK; School of Life Sciences, University of Hull, Hull, UK
| | | | - Anthony J Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Barry Murphy
- Unilever Research & Development, Port Sunlight Laboratory, Merseyside, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York, UK; York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
3
|
Li ZJ, Wang CY, Xu L, Zhang ZY, Tang YH, Qin TY, Wang YL. Recent Progress of Activity-Based Fluorescent Probes for Imaging Leucine Aminopeptidase. BIOSENSORS 2023; 13:752. [PMID: 37504150 PMCID: PMC10377407 DOI: 10.3390/bios13070752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Leucine aminopeptidase (LAP) is an important protease that can specifically hydrolyze Leucine residues. LAP occurs in microorganisms, plants, animals, and humans and is involved in a variety of physiological processes in the human body. In the physiological system, abnormal levels of LAP are associated with a variety of diseases and pathological processes, such as cancer and drug-induced liver injury; thus, LAP was chosen as the early biochemical marker for many physiological processes, including cancer. Considering the importance of LAP in physiological and pathological processes, it is critical that high-efficiency and dependable technology be developed to monitor LAP levels. Herein, we summarize the organic small molecule fluorescence/chemiluminescence probes used for LAP detection in recent years, which can image LAP in cancer, drug-induced liver injury (DILI), and bacteria. It can also reveal the role of LAP in tumors and differentiate the serum of cirrhotic, drug-induced liver injury and normal models.
Collapse
Affiliation(s)
- Ze-Jun Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Cai-Yun Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Liang Xu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Zhen-Yu Zhang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Ying-Hao Tang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Tian-Yi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Torres NJ, Rizzo DN, Reinberg MA, Jobson ME, Totzke BC, Jackson JK, Yu W, Shaw LN. The identification of two M20B family peptidases required for full virulence in Staphylococcus aureus. Front Cell Infect Microbiol 2023; 13:1176769. [PMID: 37538308 PMCID: PMC10394242 DOI: 10.3389/fcimb.2023.1176769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
We have previously demonstrated that deletion of an intracellular leucine aminopeptidase results in attenuated virulence of S. aureus. Herein we explore the role of 10 other aminopeptidases in S. aureus pathogenesis. Using a human blood survival assay we identified mutations in two enzymes from the M20B family (PepT1 and PepT2) as having markedly decreased survival compared to the parent. We further reveal that pepT1, pepT2 and pepT1/2 mutant strains are impaired in their ability to resist phagocytosis by, and engender survival within, human macrophages. Using a co-infection model of murine sepsis, we demonstrate impairment of dissemination and survival for both single mutants that is even more pronounced in the double mutant. We show that these enzymes are localized to the cytosol and membrane but are not necessary for peptide-based nutrition, a hallmark of cell-associated aminopeptidases. Furthermore, none of the survival defects appear to be the result of altered virulence factor production. An exploration of their regulation reveals that both are controlled by known regulators of the S. aureus virulence process, including Agr, Rot and/or SarA, and that this cascade may be mediated by FarR. Structural modeling of PepT1 reveals it bears all the hallmarks of a tripeptidase, whilst PepT2 differs significantly in its catalytic pocket, suggesting a broader substrate preference. In sum, we have identified two M20B aminopeptidases that are integral to S. aureus pathogenesis. The future identification of protein and/or peptide targets for these proteases will be critical to understanding their important virulence impacting functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lindsey N. Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, United States
| |
Collapse
|
5
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
6
|
Choi J, Marshall B, Ko H, Shi H, Singh AK, Thippareddi H, Holladay S, Gogal RM, Kim WK. Antimicrobial and immunomodulatory effects of tannic acid supplementation in broilers infected with Salmonella Typhimurium. Poult Sci 2022; 101:102111. [PMID: 36081234 PMCID: PMC9465346 DOI: 10.1016/j.psj.2022.102111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022] Open
Abstract
Infection by Salmonella Typhimurium, a food-borne pathogen, can reduce the poultry production efficiency. The objective of this study was to investigate the effects of tannic acid (TA) supplementation on growth performance, Salmonella colonization, gut barrier integrity, serum endotoxin levels, antioxidant capacity, gut health, and immune function in broilers infected with the Salmonella enterica serovar Typhimurium nalidixic acid resistant strain (STNR). A total of 546 one-day-old broilers were arbitrarily allocated into 6 treatments including 1) Sham-challenged control (SCC; birds fed a basal diet and administrated peptone water); 2) Challenged control (CC; birds fed a basal diet and inoculated with 108 STNR); 3) Tannic acid 0.25 (TA0.25; CC + 0.25 g/kg TA); 4) TA0.5 (CC + 0.5 g/kg TA); 5) TA1 (CC + 1 g/kg TA); and 6) TA2 (CC + 2 g/kg TA). On D 7, supplemental TA linearly reduced STNR colonization in the ceca (P < 0.01), and TA1 and TA2 group had significantly lower reduced STNR colonization in the ceca (P < 0.01). On D 7 to 21, average daily gain tended to be linearly increased by supplemental TA (P = 0.097). The serum endotoxin levels were quadratically decreased by supplemental TA on D 21 (P < 0.05). Supplemental TA quadratically increased ileal villus height (VH; P < 0.05), and the TA0.25 group had higher ileal VH compared to the CC group (P < 0.05). Supplemental TA linearly increased percentage of peripheral blood CD8+ T cells on D 18 (P < 0.01). The TA0.5 group had significantly lower lymphocyte numbers compared to the CC groups (P < 0.05). The abundance of monocytes linearly increased with TA supplementation (P < 0.01). Therefore, broilers fed TA had reduced STNR colonization, increased growth performance, decreased serum endotoxin levels, enhanced gut health in the broilers, and stimulated the immune system in broilers infected with STNR. Supplementation of TA (1-2 g/kg) enhanced growth performance and gut health via antimicrobial and immunostimulatory effects in broilers infected with STNR.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Brett Marshall
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Amit Kumar Singh
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Steven Holladay
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Robert M Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Wittekind MA, Frey A, Bonsall AE, Briaud P, Keogh RA, Wiemels RE, Shaw LN, Carroll RK. The novel protein ScrA acts through the SaeRS two-component system to regulate virulence gene expression in Staphylococcus aureus. Mol Microbiol 2022; 117:1196-1212. [PMID: 35366366 PMCID: PMC9324805 DOI: 10.1111/mmi.14901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a Gram-positive commensal that can also cause a variety of infections in humans. S. aureus virulence factor gene expression is under tight control by a complex regulatory network, which includes, sigma factors, sRNAs, and two-component systems (TCS). Previous work in our laboratory demonstrated that overexpression of the sRNA tsr37 leads to an increase in bacterial aggregation. Here, we demonstrate that the clumping phenotype is dependent on a previously unannotated 88 amino acid protein encoded within the tsr37 sRNA transcript (which we named ScrA for S. aureus clumping regulator A). To investigate the mechanism of action of ScrA we performed proteomics and transcriptomics in a ScrA overexpressing strain and show that a number of surface adhesins are upregulated, while secreted proteases are downregulated. Results also showed upregulation of the SaeRS TCS, suggesting that ScrA is influencing SaeRS activity. Overexpression of ScrA in a saeR mutant abrogates the clumping phenotype confirming that ScrA functions via the Sae system. Finally, we identified the ArlRS TCS as a positive regulator of scrA expression. Collectively, our results show that ScrA is an activator of the SaeRS system and suggests that ScrA may act as an intermediary between the ArlRS and SaeRS systems.
Collapse
Affiliation(s)
| | - Andrew Frey
- Department of Cell Biology, Microbiology & Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | | | - Paul Briaud
- Department of Biological SciencesOhio UniversityAthensOhioUSA
| | - Rebecca A. Keogh
- Department of Biological SciencesOhio UniversityAthensOhioUSA
- Present address:
Department of Immunology & MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | | | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology & Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Ronan K. Carroll
- Department of Biological SciencesOhio UniversityAthensOhioUSA
- Infectious and Tropical Disease InstituteOhio UniversityAthensOhioUSA
| |
Collapse
|
8
|
Zhang M, Tian Z, Wang J, Tian X, Wang C, Cui J, Huo X, Feng L, Yu Z, Ma X. Visual Analysis and Inhibitor Screening of Leucine Aminopeptidase, a Key Virulence Factor for Pathogenic Bacteria-Associated Infection. ACS Sens 2021; 6:3604-3610. [PMID: 34420297 DOI: 10.1021/acssensors.1c01161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Leucine aminopeptidase (LAP) is a hydrolase for the hydrolysis of peptides or proteins containing a leucine residue at the N-terminal. It is also known to be a key virulence factor for the pathogenic abilities of various pathogens causing infectious diseases, which indicated a new insight into the diagnosis and therapy of pathogenic infections. A new fluorescent probe (S)-2-amino-N-(4-(((6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl)oxy)methyl)phenyl)-4-methylpentanamide (DDBL) containing DDAO as the fluorophore and leucine as the recognition group was developed for LAP. By real-time visual sensing of LAP, six bacteria with LAP expression were identified efficiently from human feces, as well as by sensitive visual analysis using native-PAGE specially stained with DDBL. Furthermore, a high throughput screening system established with DDBL was applied to identify a natural inhibitor (3-acetyl-11-keto-β-boswellic acid, AKBA), which could attenuate mouse sepsis induced by Staphylococcus aureus. Therefore, the visual sensing of LAP by DDBL suggested the application for target bacteria identification and LAP homolog analysis as well as potential inhibitor expounding for treatment of bacterial infections.
Collapse
Affiliation(s)
- Ming Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiayue Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiangge Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaokui Huo
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
| | - Lei Feng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhenlong Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
| | - Xiaochi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian 116044, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
9
|
González-Bacerio J, Izquierdo M, Aguado ME, Varela AC, González-Matos M, Del Rivero MA. Using microbial metalo-aminopeptidases as targets in human infectious diseases. MICROBIAL CELL 2021; 8:239-246. [PMID: 34692819 PMCID: PMC8485470 DOI: 10.15698/mic2021.10.761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022]
Abstract
Several microbial metalo-aminopeptidases are emerging as novel targets for the treatment of human infectious diseases. Some of them are well validated as targets and some are not; some are essential enzymes and others are important for virulence and pathogenesis. For another group, it is not clear if their enzymatic activity is involved in the critical functions that they mediate. But one aspect has been established: they display relevant roles in bacteria and protozoa that could be targeted for therapeutic purposes. This work aims to describe these biological functions for several microbial metalo-aminopeptidases.
Collapse
Affiliation(s)
- Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.,Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maday Alonso Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
10
|
Phosphinotripeptidic Inhibitors of Leucylaminopeptidases. Int J Mol Sci 2021; 22:ijms22105090. [PMID: 34065004 PMCID: PMC8151835 DOI: 10.3390/ijms22105090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/02/2022] Open
Abstract
Phosphinate pseudopeptide are analogs of peptides containing phosphinate moiety in a place of the amide bond. Due to this, the organophosphorus fragment resembles the tetrahedral transition state of the amide bond hydrolysis. Additionally, it is also capable of coordinating metal ions, for example, zinc or magnesium ions. These two properties of phosphinate pseudopeptides make them an ideal candidate for metal-related protease inhibitors. This research investigates the influence of additional residue in the P2 position on the inhibitory properties of phosphinopeptides. The synthetic strategy is proposed, based on retrosynthetic analysis. The N-C-P bond formation in the desired compounds is conveniently available from the three-component condensation of appropriate amino components, aldehydes, and hypophosphorous acid. One of the crucial synthetic steps is the careful selection of the protecting groups for all the functionals. Determination of the inhibitor activity of the obtained compounds has been done using UV-Vis spectroscopy and standard substrate L-Leu-p-nitroanilide toward the enzymes isolated from the porcine kidney (SsLAP, Sus scrofa Leucine aminopeptidase) and barley seeds (HvLAP, Hordeum vulgare Leucine aminopeptidase). An efficient procedure for the preparation of phosphinotripeptides has been performed. Activity test shown that introduction of additional residue into P2 position obtains the micromolar range inhibitors of SsLAP and HvLAP. Moreover, careful selection of the residue in the P2 position should improve its selectivity toward mammalian and plant leucyl aminopeptidases.
Collapse
|
11
|
Abstract
Staphylococcus aureus controls the progression of infection through the coordinated production of extracellular proteases, which selectively modulate virulence determinant stability. This is evidenced by our previous finding that a protease-null strain has a hypervirulent phenotype in a murine model of sepsis, resulting from the unchecked accumulation of virulence factors. Here, we dissect the individual roles of these proteases by constructing and assessing the pathogenic potential of a combinatorial protease mutant library. When strains were constructed bearing increasing numbers of secreted proteases, we observed a variable impact on infectious capacity, where some exhibited hypervirulence, while others phenocopied the wild-type. The common thread for hypervirulent strains was that each lacked both aureolysin and staphopain A. Upon assessment, we found that the combined loss of these two enzymes alone was necessary and sufficient to engender hypervirulence. Using proteomics, we identified a number of important secreted factors, including SPIN, LukA, Sbi, SEK, and PSMα4, as well as an uncharacterized chitinase-related protein (SAUSA300_0964), to be overrepresented in both the aur scpA and the protease-null mutants. When assessing the virulence of aur scpA SAUSA300_0964 and aur scpA lukA mutants, we found that hypervirulence was completely eliminated, whereas aur scpA spn and aur scpA sek strains elicited aggressive infections akin to the protease double mutant. Collectively, our findings shed light on the influence of extracellular proteases in controlling the infectious process and identifies SAUSA300_0964 as an important new component of the S. aureus virulence factor arsenal.IMPORTANCE A key feature of the pathogenic success of S. aureus is the myriad virulence factors encoded within its genome. These are subject to multifactorial control, ensuring their timely production only within an intended infectious niche. A key node in this network of control is the secreted proteases of S. aureus, who specifically and selectively modulate virulence factor stability. In our previous work we demonstrated that deletion of all 10 secreted proteases results in hypervirulence, since virulence factors exist unchecked, leading to overly aggressive infections. Here, using a combinatorial collection of protease mutants, we reveal that deletion of aureolysin and staphopain A is necessary and sufficient to elicit hypervirulence. Using proteomic techniques, we identify the collection of virulence factors that accumulate in hypervirulent protease mutants, and demonstrate that a well-known toxin (LukA) and an entirely novel secreted element (SAUSA300_0964) are the leading contributors to deadly infections observed in protease-lacking strains.
Collapse
|
12
|
Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoS One 2020; 15:e0227657. [PMID: 33216751 PMCID: PMC7679012 DOI: 10.1371/journal.pone.0227657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
When oral bacteria accidentally enter the bloodstream due to transient tissue damage during dental procedures, they have the potential to attach to the endocardium or an equivalent surface of an indwelling prosthesis and cause infection. Many bacterial species produce extracellular vesicles (EVs) as part of normal physiology, but also use it as a virulence strategy. In this study, it was hypothesized that Granulicatella adiacens produce EVs that possibly help it in virulence. Therefore, the objectives were to isolate and characterize EVs produced by G. adiacens and to investigate its immune-stimulatory effects. The reference strain G. adiacens CCUG 27809 was cultured on chocolate blood agar for 2 days. From subsequent broth culture, the EVs were isolated using differential centrifugation and filtration protocol and then observed using scanning electron microscopy. Proteins in the vesicle preparation were identified by nano LC-ESI-MS/MS. The EVs proteome was analyzed and characterized using different bioinformatics tools. The immune-stimulatory effect of the EVs was studied via ELISA quantification of IL-8, IL-1β and CCL5, major proinflammatory cytokines, produced from stimulated human PBMCs. It was revealed that G. adiacens produced EVs, ranging in diameter from 30 to 250 nm. Overall, G. adiacens EVs contained 112 proteins. The proteome consists of several ribosomal proteins, DNA associated proteins, binding proteins, and metabolic enzymes. It was also shown that these EVs carry putative virulence factors including moonlighting proteins. These EVs were able to induce the production of IL-8, IL-1β and CCL5 from human PBMCs. Further functional characterization of the G. adiacens EVs may provide new insights into virulence mechanisms of this important but less studied oral bacterial species.
Collapse
|
13
|
Zhang X, Guan C, Hang Y, Liu F, Sun J, Yu H, Gan L, Zeng H, Zhu Y, Chen Z, Song H, Cheng C. An M29 Aminopeptidase from Listeria Monocytogenes Contributes to In Vitro Bacterial Growth but not to Intracellular Infection. Microorganisms 2020; 8:microorganisms8010110. [PMID: 31941013 PMCID: PMC7023490 DOI: 10.3390/microorganisms8010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Aminopeptidases that catalyze the removal of N-terminal residues from polypeptides or proteins are crucial for physiological processes. Here, we explore the biological functions of an M29 family aminopeptidase II from Listeria monocytogenes (LmAmpII). We show that LmAmpII contains a conserved catalytic motif (EEHYHD) that is essential for its enzymatic activity and LmAmpII has a substrate preference for arginine and leucine. Studies on biological roles indicate that LmAmpII is required for in vitro growth in a chemically defined medium for optimal growth of L. monocytogenes but is not required for bacterial intracellular infection in epithelial cells and macrophages, as well as cell-to-cell spreading in fibroblasts. Moreover, LmAmpII is found as dispensable for bacterial pathogenicity in mice. Taken together, we conclude that LmAmpII, an M29 family aminopeptidase, can efficiently hydrolyze a wide range of substrates and is required for in vitro bacterial growth, which lays a foundation for in-depth investigations of aminopeptidases as potential targets to defend Listeria infection.
Collapse
Affiliation(s)
- Xian Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Chiyu Guan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Yi Hang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Fengdan Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Huifei Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Li Gan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Huan Zeng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Yiran Zhu
- Jixian Honors College of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China;
| | - Zhongwei Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
- Correspondence: (H.S.); (C.C.)
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
- Correspondence: (H.S.); (C.C.)
| |
Collapse
|
14
|
Drinkwater N, Malcolm TR, McGowan S. M17 aminopeptidases diversify function by moderating their macromolecular assemblies and active site environment. Biochimie 2019; 166:38-51. [DOI: 10.1016/j.biochi.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
|
15
|
Abstract
The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus. A primary function of the extracellular proteases of Staphylococcus aureus is to control the progression of infection by selectively modulating the stability of virulence factors. Consequently, a regulatory network exists to titrate protease abundance/activity to influence the accumulation, or lack thereof, of individual virulence factors. Herein, we comprehensively map this system, exploring the regulation of the four protease loci by known and novel factors. In so doing, we determined that seven major elements (SarS, SarR, Rot, MgrA, CodY, SaeR, and SarA) form the primary network of control, with the latter three being the most powerful. We note that expression of aureolysin is largely repressed by these factors, while the spl operon is subject to the strongest upregulation of any protease loci, particularly by SarR and SaeR. Furthermore, when exploring scpA expression, we find it to be profoundly influenced in opposing fashions by SarA (repressor) and SarR (activator). We also present the screening of >100 regulator mutants of S. aureus, identifying 7 additional factors (ArgR2, AtlR, MntR, Rex, XdrA, Rbf, and SarU) that form a secondary circuit of protease control. Primarily, these elements serve as activators, although we reveal XdrA as a new repressor of protease expression. With the exception or ArgR2, each of the new effectors appears to work through the primary network of regulation to influence protease production. Collectively, we present a comprehensive regulatory circuit that emphasizes the complexity of protease regulation and suggest that its existence speaks to the importance of these enzymes to S. aureus physiology and pathogenic potential. IMPORTANCE The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus.
Collapse
|
16
|
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome. Front Cell Infect Microbiol 2019; 9:104. [PMID: 31069174 PMCID: PMC6491454 DOI: 10.3389/fcimb.2019.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Ali Tiss
- Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
17
|
The Small RNA Teg41 Regulates Expression of the Alpha Phenol-Soluble Modulins and Is Required for Virulence in Staphylococcus aureus. mBio 2019; 10:mBio.02484-18. [PMID: 30723124 PMCID: PMC6428751 DOI: 10.1128/mbio.02484-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The alpha phenol-soluble modulins (αPSMs) are among the most potent toxins produced by Staphylococcus aureus. Their biological role during infection has been studied in detail; however, the way they are produced by the bacterial cell is not well understood. In this work, we identify a small RNA molecule called Teg41 that plays an important role in αPSM production by S. aureus. Teg41 positively influences αPSM production. The importance of Teg41 is highlighted by the fact that a strain containing a deletion in the 3′ end of Teg41 produces significantly less αPSMs and is attenuated for virulence in a mouse abscess model of infection. As the search for new therapeutic strategies to combat S. aureus infection proceeds, Teg41 may represent a novel target. Small RNAs (sRNAs) remain an understudied class of regulatory molecules in bacteria in general and in Gram-positive bacteria in particular. In the major human pathogen Staphylococcus aureus, hundreds of sRNAs have been identified; however, only a few have been characterized in detail. In this study, we investigate the role of the sRNA Teg41 in S. aureus virulence. We demonstrate that Teg41, an sRNA divergently transcribed from the locus that encodes the cytolytic alpha phenol-soluble modulin (αPSM) peptides, plays a critical role in αPSM production. Overproduction of Teg41 leads to an increase in αPSM levels and a corresponding increase in hemolytic activity from S. aureus cells and cell-free culture supernatants. To identify regions of Teg41 important for its function, we performed an in silico RNA-RNA interaction analysis which predicted an interaction between the 3′ end of Teg41 and the αPSM transcript. Deleting a 24-nucleotide region from the S. aureus genome, corresponding to the 3′ end of Teg41, led to a 10-fold reduction in αPSM-dependent hemolytic activity and attenuation of virulence in a murine abscess model of infection. Restoration of hemolytic activity in the Teg41Δ3′ strain was possible by expressing full-length Teg41 in trans. Restoration of hemolytic activity was also possible by expressing the 3′ end of Teg41, suggesting that this region of Teg41 is necessary and sufficient for αPSM-dependent hemolysis. Our results show that Teg41 is positively influencing αPSM production, demonstrating for the first time regulation of the αPSM peptides by an sRNA in S. aureus.
Collapse
|
18
|
Miller HK, Burda WN, Carroll RK, Shaw LN. Identification of a unique transcriptional architecture for the sigS operon in Staphylococcus aureus. FEMS Microbiol Lett 2018; 365:4983123. [PMID: 29688345 DOI: 10.1093/femsle/fny108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/21/2018] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus possess three alternative σ factors, including a lone extracytoplasmic function σ factor, σS. Our group previously identified and characterized this element, mapping three sigS promoters, demonstrating its inducibility during stress and virulence inducing conditions and demonstrating a role for this factor in disease causation. In the present study, we identify a fourth promoter of the sigS operon, termed P4, located in a unique position internal to the sigS coding region. Transcriptional profiling revealed that expression from P4 is dominant to the three upstream promoters, particularly upon exposure to chemical stressors that elicit DNA damage and disrupt cell wall stability; each of which have previously been shown to stimulate sigS expression. Importantly, expression of this fourth promoter, followed by at least one or more of the upstream promoters, is induced during growth in serum and upon phagocytosis by RAW 264.7 murine macrophage-like cells. Finally, we demonstrate that a downstream gene, SACOL1829, bears a large 3΄ UTR that spans the sigS-SACOL1828 coding region, and may serve to compete with the P4 transcript to inhibit σS production. Collectively, these findings reveal a unique operon architecture for the sigS locus that indicates the potential for novel regulatory mechanisms governing its expression.
Collapse
Affiliation(s)
- Halie K Miller
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Whittney N Burda
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| |
Collapse
|
19
|
Sierra EM, Pereira MR, Maester TC, Gomes-Pepe ES, Mendoza ER, Lemos EGDM. Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis. Sci Rep 2017; 7:10684. [PMID: 28878230 PMCID: PMC5587760 DOI: 10.1038/s41598-017-10932-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/16/2017] [Indexed: 12/04/2022] Open
Abstract
The aminopeptidase gene from Mesorhizobium SEMIA3007 was cloned and overexpressed in Escherichia coli. The enzyme called MesoAmp exhibited optimum activity at pH 8.5 and 45 °C and was strongly activated by Co2+ and Mn2+. Under these reaction conditions, the enzyme displayed Km and kcat values of 0.2364 ± 0.018 mM and 712.1 ± 88.12 s−1, respectively. Additionally, the enzyme showed remarkable stability in organic solvents and was active at high concentrations of NaCl, suggesting that the enzyme might be suitable for use in biotechnology. MesoAmp is responsible for 40% of the organism’s aminopeptidase activity. However, the enzyme’s absence does not affect bacterial growth in synthetic broth, although it interfered with biofilm synthesis and osmoregulation. To the best of our knowledge, this report describes the first detailed characterization of aminopeptidase from Mesorhizobium and suggests its importance in biofilm formation and osmotic stress tolerance. In summary, this work lays the foundation for potential biotechnological applications and/or the development of environmentally friendly technologies and describes the first solvent- and halo-tolerant aminopeptidases identified from the Mesorhizobium genus and its importance in bacterial metabolism.
Collapse
Affiliation(s)
- Elwi Machado Sierra
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil.,Universidad Simón Bolívar, Barranquilla, Colombia
| | | | | | - Elisangela Soares Gomes-Pepe
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil.,Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, Brazil
| | - Elkin Rodas Mendoza
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil
| | - Eliana G de Macedo Lemos
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil. .,Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, Brazil. .,Av. Prof. Paulo Donato Castellane, s/n. Jaboticabal, Post code 14884-900, São Paulo State, Brazil.
| |
Collapse
|
20
|
Figueiredo AMS. What is behind the epidemiological difference between community-acquired and health-care associated methicillin-resistant Staphylococcus aureus? Virulence 2017. [PMID: 28632426 DOI: 10.1080/21505594.2017.1335847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Agnes M S Figueiredo
- a Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro , Instituto de Microbiologia Paulo de Góes , Rio de Janeiro , Brazil
| |
Collapse
|
21
|
Peña-Diaz P, Vancová M, Resl C, Field MC, Lukeš J. A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006310. [PMID: 28388690 PMCID: PMC5397073 DOI: 10.1371/journal.ppat.1006310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 04/19/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022] Open
Abstract
The kinetoplast (k), the uniquely packaged mitochondrial DNA of trypanosomatid protists is formed by a catenated network of minicircles and maxicircles that divide and segregate once each cell cycle. Although many proteins involved in kDNA replication and segregation are now known, several key steps in the replication mechanism remain uncharacterized at the molecular level, one of which is the nabelschnur or umbilicus, a prominent structure which in the mammalian parasite Trypanosoma brucei connects the daughter kDNA networks prior to their segregation. Here we characterize an M17 family leucyl aminopeptidase metalloprotease, termed TbLAP1, which specifically localizes to the kDNA disk and the nabelschur and represents the first described protein found in this structure. We show that TbLAP1 is required for correct segregation of kDNA, with knockdown resulting in delayed cytokinesis and ectopic expression leading to kDNA loss and decreased cell proliferation. We propose that TbLAP1 is required for efficient kDNA division and specifically participates in the separation of daughter kDNA networks.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Christian Resl
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
22
|
Correa AF, Bastos IMD, Neves D, Kipnis A, Junqueira-Kipnis AP, de Santana JM. The Activity of a Hexameric M17 Metallo-Aminopeptidase Is Associated With Survival of Mycobacterium tuberculosis. Front Microbiol 2017; 8:504. [PMID: 28396657 PMCID: PMC5366330 DOI: 10.3389/fmicb.2017.00504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/10/2017] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis is one of the most prevalent human pathogens causing millions of deaths in the last years. Moreover, tuberculosis (TB) treatment has become increasingly challenging owing to the emergence of multidrug resistant M. tuberculosis strains. Thus, there is an immediate need for the development of new anti-TB drugs. Proteases appear to be a promising approach and may lead to shortened and effective treatments for drug-resistant TB. Although the M. tuberculosis genome predicts more than 100 genes encoding proteases, only a few of them have been studied. Aminopeptidases constitute a set of proteases that selectively remove amino acids from the N-terminus of proteins and peptides and may act as virulence factors, essential for survival and maintenance of many microbial pathogens. Here, we characterized a leucine aminopeptidase of M. tuberculosis (MtLAP) as a cytosolic oligomeric metallo-aminopeptidase. Molecular and enzymatic properties lead us to classify MtLAP as a typical member of the peptidase family M17. Furthermore, the aminopeptidase inhibitor bestatin strongly inhibited MtLAP activity, in vitro M. tuberculosis growth and macrophage infection. In murine model of TB, bestatin treatment reduced bacterial burden and lesion in the lungs of infected mice. Thus, our data suggest that MtLAP participates in important metabolic pathways of M. tuberculosis necessary for its survival and virulence and consequently may be a promising target for new anti-TB drugs.
Collapse
Affiliation(s)
- Andre F Correa
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Biologia Universidade de BrasíliaBrasília, Brazil; Instituto de Patologia Tropical e Saúde Pública Universidade Federal de GoiásGoiânia, Brazil
| | - Izabela M D Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Biologia Universidade de Brasília Brasília, Brazil
| | - David Neves
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Biologia Universidade de Brasília Brasília, Brazil
| | - Andre Kipnis
- Instituto de Patologia Tropical e Saúde Pública Universidade Federal de Goiás Goiânia, Brazil
| | - Ana P Junqueira-Kipnis
- Instituto de Patologia Tropical e Saúde Pública Universidade Federal de Goiás Goiânia, Brazil
| | - Jaime M de Santana
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Biologia Universidade de Brasília Brasília, Brazil
| |
Collapse
|
23
|
The ω Subunit Governs RNA Polymerase Stability and Transcriptional Specificity in Staphylococcus aureus. J Bacteriol 2016; 199:JB.00459-16. [PMID: 27799328 DOI: 10.1128/jb.00459-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/26/2016] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that causes infection in a wide variety of sites within the human body. Its ability to adapt to the human host and to produce a successful infection requires precise orchestration of gene expression. While DNA-dependent RNA polymerase (RNAP) is generally well characterized, the roles of several small accessory subunits within the complex have yet to be fully explored. This is particularly true for the omega (ω or RpoZ) subunit, which has been extensively studied in Gram-negative bacteria but largely neglected in Gram-positive counterparts. In Escherichia coli, it has been shown that ppGpp binding, and thus control of the stringent response, is facilitated by ω. Interestingly, key residues that facilitate ppGpp binding by ω are not conserved in S. aureus, and consequently, survival under starvation conditions is unaffected by rpoZ deletion. Further to this, ω-lacking strains of S. aureus display structural changes in the RNAP complex, which result from increased degradation and misfolding of the β' subunit, alterations in δ and σ factor abundance, and a general dissociation of RNAP in the absence of ω. Through RNA sequencing analysis we detected a variety of transcriptional changes in the rpoZ-deficient strain, presumably as a response to the negative effects of ω depletion on the transcription machinery. These transcriptional changes translated to an impaired ability of the rpoZ mutant to resist stress and to fully form a biofilm. Collectively, our data underline, for the first time, the importance of ω for RNAP stability, function, and cellular physiology in S. aureus IMPORTANCE: In order for bacteria to adjust to changing environments, such as within the host, the transcriptional process must be tightly controlled. Transcription is carried out by DNA-dependent RNA polymerase (RNAP). In addition to its major subunits (α2ββ') a fifth, smaller subunit, ω, is present in all forms of life. Although this small subunit is well studied in eukaryotes and Gram-negative bacteria, only limited information is available for Gram-positive and pathogenic species. In this study, we investigated the structural and functional importance of ω, revealing key roles in subunit folding/stability, complex assembly, and maintenance of transcriptional integrity. Collectively, our data underline, for the first time, the importance of ω for RNAP function and cellular harmony in S. aureus.
Collapse
|
24
|
Carroll RK, Weiss A, Broach WH, Wiemels RE, Mogen AB, Rice KC, Shaw LN. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus. mBio 2016; 7:e01990-15. [PMID: 26861020 PMCID: PMC4752604 DOI: 10.1128/mbio.01990-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions. IMPORTANCE Despite a large number of studies identifying regulatory or small RNA (sRNA) genes in Staphylococcus aureus, their annotation is notably lacking in available genome files. In addition to this, there has been a considerable lack of cross-referencing in the wealth of studies identifying these elements, often leading to the same sRNA being identified multiple times and bearing multiple names. In this work, we have consolidated and curated known sRNA genes from the literature and mapped them to their position on the S. aureus genome, creating new genome annotation files. These files can now be used by the scientific community at large in experiments to search for previously undiscovered sRNA genes and to monitor sRNA gene expression by transcriptome sequencing (RNA-seq). We demonstrate this application, identifying 39 new sRNAs and studying their expression during S. aureus growth in human serum.
Collapse
Affiliation(s)
- Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Andy Weiss
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - William H Broach
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Richard E Wiemels
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Austin B Mogen
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
25
|
Gong Q, Shi W, Li L, Ma H. Leucine aminopeptidase may contribute to the intrinsic resistance of cancer cells toward cisplatin as revealed by an ultrasensitive fluorescent probe. Chem Sci 2016; 7:788-792. [PMID: 28966770 PMCID: PMC5580032 DOI: 10.1039/c5sc03600c] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
Cisplatin, a typical anticancer drug, is often used to treat different cancers, and leucine aminopeptidase (LAP) is known to be widely distributed in organisms from bacteria to humans, including various cancer cells. However, cancer cells display different intrinsic or acquired resistance toward cisplatin, and it is unclear whether intracellular LAP plays a role in the intrinsic drug resistance, mainly due to the lack of a sensitive detection approach for LAP because this enzyme usually exists at trace levels in cancer cells. Herein, by developing an ultrasensitive LAP fluorescent probe (detection limit 0.42 ng mL-1) and combining it with confocal fluorescence imaging, we analyze the concentration change of LAP in cancer cells such as HepG2 and A549 cells under cisplatin treatment. We find that a large increase in the LAP concentration occurs in HepG2 rather than in A549 cells. These different changes are further confirmed by an ELISA kit. A cell viability assay reveals that HepG2 cells with a higher level of LAP have much stronger resistance toward cisplatin than A549 cells, suggesting that LAP may serve as a simple indicator to reflect the relative resistance of different cancer cells. Importantly, inhibiting the expression of LAP with siRNA further decreases cell viability. These findings support that LAP may contribute to the intrinsic resistance of cancer cells toward cisplatin. In addition, the proposed probe may find more uses in studying the cellular LAP function, and improving chemotherapeutic cancer treatment.
Collapse
Affiliation(s)
- Qiuyu Gong
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| |
Collapse
|
26
|
Cheng C, Wang X, Dong Z, Shao C, Yang Y, Fang W, Fang C, Wang H, Yang M, Jiang L, Zhou X, Song H. Aminopeptidase T of M29 Family Acts as A Novel Intracellular Virulence Factor for Listeria monocytogenes Infection. Sci Rep 2015; 5:17370. [PMID: 26610705 PMCID: PMC4661694 DOI: 10.1038/srep17370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/29/2015] [Indexed: 01/18/2023] Open
Abstract
The foodborne pathogen Listeria monocytogenes employs a number of virulence determinants including metalloproteases to infect hosts. Here for the first time, we identified an M29 family aminopeptidase T (encoded by lmo1603) from L. monocytogenes that possesses a typical feature to catalyze the cleavage of amino acids from peptide substrates, with a preference for arginine. The purified recombinant Lmo1603 was activated by Fe3+, Zn2+ and Mn2+, but strongly stimulated by Co2+, indicating that Lmo1603 is a cobalt-dependent aminopeptidase. Single mutation at any of the Glu216, Glu281, His308, Tyr315, His327, and Asp329 completely abolished the enzymatic activity of Lmo1603. More importantly, we showed that Lmo1603 was mainly involved in Listeria infection, but not required for growth in rich laboratory medium and minimal defined medium. Disruption of Lmo1603 resulted in almost complete attenuation of Listeria virulence in a mouse infection model. In addition, we demonstrated that Lmo1603 was mainly localized in the bacterial cytosol and required for invasion and survival inside human epithelial cells and murine macrophages. We conclude that Lmo1603 encodes a functional aminopeptidase T of M29 family, which acts as a novel intracellular virulence factor essential in the successful establishment of L. monocytogenes infections in a mouse model.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Xiaowen Wang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Zhimei Dong
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Chunyan Shao
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Yongchun Yang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Weihuan Fang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China.,Zhejiang University Institute of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Chun Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Hang Wang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Menghua Yang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Lingli Jiang
- Zhoushan Entry-Exit Inspection and Quarantine Bureau, 555 Haijing Road, Zhoushan, Zhejiang 316000, P. R. China
| | - Xiangyang Zhou
- Zhoushan Entry-Exit Inspection and Quarantine Bureau, 555 Haijing Road, Zhoushan, Zhejiang 316000, P. R. China
| | - Houhui Song
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| |
Collapse
|
27
|
Patel D, Ellington MJ, Hope R, Reynolds R, Arnold C, Desai M. Identification of genetic variation exclusive to specific lineages associated with Staphylococcus aureus bacteraemia. J Hosp Infect 2015; 91:136-45. [PMID: 26320614 DOI: 10.1016/j.jhin.2015.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/08/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Meticillin-resistant Staphylococcus aureus (MRSA) bacteraemia cases have declined since 2003, and have mostly been due to two epidemic (E) strains, E15 (multi-locus sequence type clonal complex CC22) and E16 (CC30). By contrast, the incidence of meticillin-susceptible S. aureus (MSSA) bacteraemia has remained largely unchanged and our understanding of these isolates has remained poor. AIM To investigate the distribution and nucleotide sequence of heterogeneous regions between successful lineages using the 2009 British Society for Antimicrobial Chemotherapy (BSAC) Bacteraemia Resistance Surveillance Programme collection of S. aureus. METHODS S. aureus isolates (N = 202) comprised of 103 MRSA and 99 MSSA isolates were analysed using fluorescent amplified fragment length polymorphism (FAFLP) to detect nucleotide variations due to lineage-specific sequence motifs as well as differences in the distribution of mobile genetic elements between lineages. FINDINGS E15 and E16 MRSA strains comprised 79% and 6% of the collection in 2009 respectively. Six lineages, including CC22 and CC30, were associated with MRSA bacteraemia in the UK and Ireland. MSSA isolates were more diverse with 19 different lineages detected. FAFLP revealed lineage-specific sequence variations in loci encoding factors such as proteases or factors involved in haem biosynthesis, both of which may affect the success of major S. aureus lineages. Proteins encoded on certain mobile genetic elements or involved in cobalamin biosynthesis were found to be exclusive to CC8, CC22, or CC30. CONCLUSION Overall, the genetic diversity among regions of the core genome and mobile genetic elements may alter antimicrobial resistance and the production of virulence or fitness factors that may be linked to strain success.
Collapse
Affiliation(s)
- D Patel
- Genomic Services and Development Unit, Microbiology Services Colindale, Public Health England, London, UK
| | - M J Ellington
- Microbiology Services Cambridge, Public Health England, Addenbrooke's Hospital, Cambridge, UK
| | - R Hope
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Microbiology Services Colindale, Public Health England, London, UK
| | - R Reynolds
- Infection Sciences, North Bristol NHS Trust, Bristol, UK; British Society of Antimicrobial Chemotherapy, Birmingham, UK
| | - C Arnold
- Genomic Services and Development Unit, Microbiology Services Colindale, Public Health England, London, UK
| | - M Desai
- Genomic Services and Development Unit, Microbiology Services Colindale, Public Health England, London, UK.
| |
Collapse
|
28
|
Krute CN, Bell-Temin H, Miller HK, Rivera FE, Weiss A, Stevens SM, Shaw LN. The membrane protein PrsS mimics σS in protecting Staphylococcus aureus against cell wall-targeting antibiotics and DNA-damaging agents. MICROBIOLOGY-SGM 2015; 161:1136-1148. [PMID: 25741016 DOI: 10.1099/mic.0.000065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/02/2015] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus possesses a lone extracytoplasmic function (ECF) sigma factor, σ(S). In Bacillus subtilis, the ECF sigma factor, σ(W), is activated through a proteolytic cascade that begins with cleavage of the RsiW anti-sigma factor by a site-1 protease (S1P), PrsW. We have identified a PrsW homologue in S. aureus (termed PrsS) and explored its role in σ(S) regulation. Herein, we demonstrate that although a cognate σ(S) anti-sigma factor currently remains elusive, prsS phenocopies sigS in a wealth of regards. Specifically, prsS expression mimics the upregulation observed for sigS in response to DNA-damaging agents, cell wall-targeting antibiotics and during ex vivo growth in human serum and murine macrophages. prsS mutants also display the same sensitivities of sigS mutants to the DNA-damaging agents methyl methane sulfonate (MMS) and hydrogen peroxide, and the cell wall-targeting antibiotics ampicillin, bacitracin and penicillin-G. These phenotypes appear to be explained by alterations in abundance of proteins involved in drug resistance (Pbp2a, FemB, HmrA) and the response to DNA damage (BmrA, Hpt, Tag). Our findings seem to be mediated by putative proteolytic activity of PrsS, as site-directed mutagenesis of predicted catalytic residues fails to rescue the sensitivity of the mutant to H2O2 and MMS. Finally, a role for PrsS in S. aureus virulence was identified using human and murine models of infection. Collectively, our data indicate that PrsS and σ(S) function in a similar manner, and perhaps mediate virulence and resistance to DNA damage and cell wall-targeting antibiotics, via a common pathway.
Collapse
Affiliation(s)
- Christina N Krute
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Harris Bell-Temin
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Halie K Miller
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Frances E Rivera
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Andy Weiss
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
29
|
Burda WN, Miller HK, Krute CN, Leighton SL, Carroll RK, Shaw LN. Investigating the genetic regulation of the ECF sigma factor σS in Staphylococcus aureus. BMC Microbiol 2014; 14:280. [PMID: 25433799 PMCID: PMC4265319 DOI: 10.1186/s12866-014-0280-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/30/2014] [Indexed: 01/06/2023] Open
Abstract
Background We previously identified an ECF sigma factor, σS, that is important in the stress and virulence response of Staphylococcus aureus. Transcriptional profiling of sigS revealed that it is differentially expressed in many laboratory and clinical isolates, suggesting the existence of regulatory networks that modulates its expression. Results To identify regulators of sigS, we performed a pull down assay using S. aureus lysates and the sigS promoter. Through this we identified CymR as a negative effector of sigS expression. Electrophoretic mobility shift assays (EMSAs) revealed that CymR directly binds to the sigS promoter and negatively effects transcription. To more globally explore genetic regulation of sigS, a Tn551 transposon screen was performed, and identified insertions in genes that are involved in amino acid biosynthesis, DNA replication, recombination and repair pathways, and transcriptional regulators. In efforts to identify gain of function mutations, methyl nitro-nitrosoguanidine mutagenesis was performed on a sigS-lacZ reporter fusion strain. From this a number of clones displaying sigS upregulation were subject to whole genome sequencing, leading to the identification of the lactose phosphotransferase repressor, lacR, and the membrane histidine kinase, kdpD, as central regulators of sigS expression. Again using EMSAs we determined that LacR is an indirect regulator of sigS expression, while the response regulator, KdpE, directly binds to the promoter region of sigS. Conclusions Collectively, our work suggests a complex regulatory network exists in S. aureus that modulates expression of the ECF sigma factor, σS. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0280-9) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Savijoki K, Iivanainen A, Siljamäki P, Laine PK, Paulin L, Karonen T, Pyörälä S, Kankainen M, Nyman TA, Salomäki T, Koskinen P, Holm L, Simojoki H, Taponen S, Sukura A, Kalkkinen N, Auvinen P, Varmanen P. Genomics and Proteomics Provide New Insight into the Commensal and Pathogenic Lifestyles of Bovine- and Human-Associated Staphylococcus epidermidis Strains. J Proteome Res 2014; 13:3748-3762. [DOI: 10.1021/pr500322d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Carroll RK, Rivera FE, Cavaco CK, Johnson GM, Martin D, Shaw LN. The lone S41 family C-terminal processing protease in Staphylococcus aureus is localized to the cell wall and contributes to virulence. MICROBIOLOGY-SGM 2014; 160:1737-1748. [PMID: 24928312 DOI: 10.1099/mic.0.079798-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Staphylococcus aureus is a versatile pathogen of humans and a continued public health concern due to the rise and spread of multidrug-resistant strains. As part of an ongoing investigation into the pathogenic mechanisms of this organism we previously demonstrated that an intracellular N-terminal processing protease is required for S. aureus virulence. Following on from this, here we examine the role of CtpA, the lone C-terminal processing protease of S. aureus. CtpA, a member of the S41 family, is a serine protease whose homologues in Gram-negative bacteria have been implicated in a range of biological functions, including pathogenesis. We demonstrate that S. aureus CtpA is localized to the bacterial cell wall and expression of the ctpA gene is maximal upon exposure to conditions encountered during infection. Disruption of the ctpA gene leads to decreased heat tolerance and increased sensitivity when exposed to components of the host immune system. Finally we demonstrate that the ctpA(-) mutant strain is attenuated for virulence in a murine model of infection. Our results represent the first characterization of a C-terminal processing protease in a pathogenic Gram-positive bacterium and show that it plays a critical role during infection.
Collapse
Affiliation(s)
- Ronan K Carroll
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Frances E Rivera
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Courtney K Cavaco
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Grant M Johnson
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - David Martin
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
32
|
Carroll RK, Veillard F, Gagne DT, Lindenmuth JM, Poreba M, Drag M, Potempa J, Shaw LN. The Staphylococcus aureus leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine. Biol Chem 2014; 394:791-803. [PMID: 23241672 DOI: 10.1515/hsz-2012-0308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/12/2012] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is a potent pathogen of humans exhibiting a broad disease range, in part due to an extensive repertoire of secreted virulence factors, including proteases. Recently, we identified the first example of an intracellular protease (leucine aminopeptidase, LAP) that is required for virulence in S. aureus. Disruption of pepZ, the gene encoding LAP, had no affect on the growth rate of bacteria; however, in systemic and localized infection models the pepZ mutant had significantly attenuated virulence. Recently, a contradictory report was published suggesting that LAP is an extracellular enzyme and it is required for growth in S. aureus. Here, we investigate these results and confirm our previous findings that LAP is localized to the bacterial cytosol and is not required for growth. In addition, we conduct a biochemical investigation of purified recombinant LAP, identifying optimal conditions for enzymatic activity and substrate preference for hydrolysis. Our results show that LAP has a broad substrate range, including activity against the dipeptide cysteine-glycine, and that leucine is not the primary target of LAP.
Collapse
Affiliation(s)
- Ronan K Carroll
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
The δ subunit of RNA polymerase guides promoter selectivity and virulence in Staphylococcus aureus. Infect Immun 2014; 82:1424-35. [PMID: 24491578 DOI: 10.1128/iai.01508-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Gram-positive bacteria, and particularly the Firmicutes, the DNA-dependent RNA polymerase (RNAP) complex contains an additional subunit, termed the δ factor, or RpoE. This enigmatic protein has been studied for more than 30 years for various organisms, but its function is still not well understood. In this study, we investigated its role in the major human pathogen Staphylococcus aureus. We showed conservation of important structural regions of RpoE in S. aureus and other species and demonstrated binding to core RNAP that is mediated by the β and/or β' subunits. To identify the impact of the δ subunit on transcription, we performed transcriptome sequencing (RNA-seq) analysis and observed 191 differentially expressed genes in the rpoE mutant. Ontological analysis revealed, quite strikingly, that many of the downregulated genes were known virulence factors, while several mobile genetic elements (SaPI5 and prophage SA3usa) were strongly upregulated. Phenotypically, the rpoE mutant had decreased accumulation and/or activity of a number of key virulence factors, including alpha toxin, secreted proteases, and Panton-Valentine leukocidin (PVL). We further observed significantly decreased survival of the mutant in whole human blood, increased phagocytosis by human leukocytes, and impaired virulence in a murine model of infection. Collectively, our results demonstrate that the δ subunit of RNAP is a critical component of the S. aureus transcription machinery and plays an important role during infection.
Collapse
|
34
|
Kolar SL, Ibarra JA, Rivera FE, Mootz JM, Davenport JE, Stevens SM, Horswill AR, Shaw LN. Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen 2012; 2:18-34. [PMID: 23233325 PMCID: PMC3584211 DOI: 10.1002/mbo3.55] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/17/2012] [Accepted: 11/01/2012] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus aureus is a highly virulent and successful pathogen that causes a diverse array of diseases. Recently, an increase of severe infections in healthy subjects has been observed, caused by community-associated methicillin-resistant S. aureus (CA-MRSA). The reason for enhanced CA-MRSA virulence is unclear; however, work suggests that it results from hypersecretion of agr-regulated toxins, including secreted proteases. In this study, we explore the contribution of exo-proteases to CA-MRSA pathogenesis using a mutant lacking all 10 enzymes. We show that they are required for growth in peptide-rich environments, serum, in the presence of antimicrobial peptides (AMPs), and in human blood. We also reveal that extracellular proteases are important for resisting phagocytosis by human leukocytes. Using murine infection models, we reveal contrasting roles for the proteases in morbidity and mortality. Upon exo-protease deletion, we observed decreases in abscess formation, and impairment during organ invasion. In contrast, we observed hypervirulence of the protease-null strain in the context of mortality. This dichotomy is explained by proteomic analyses, which demonstrates exo-proteases to be key mediators of virulence-determinant stability. Specifically, increased abundance of both secreted (e.g. α-toxin, Psms, LukAB, LukE, PVL, Sbi, γ-hemolysin) and surface-associated (e.g. ClfA+B, FnbA+B, IsdA, Spa) proteins was observed upon protease deletion. Collectively, our findings provide a unique insight into the progression of CA-MRSA infections, and the role of secreted proteolytic enzymes.
Collapse
Affiliation(s)
- Stacey L Kolar
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|