1
|
Wang C, Lv L, Wu Q, Wang Z, Luo Z, Sui B, Zhou M, Fu ZF, Zhao L. The role of interferon regulatory factor 7 in the pathogenicity and immunogenicity of rabies virus in a mouse model. J Gen Virol 2021; 102. [PMID: 34661517 DOI: 10.1099/jgv.0.001665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rabies is a zoonotic disease caused by the rabies virus (RABV). RABV can lead to fatal encephalitis and is still a serious threat in most parts of the world. Interferon regulatory factor 7 (IRF7) is the main transcriptional regulator of type I IFN, and it is crucial for the induction of IFNα/β and the type I IFN-dependent immune response. In this study, we focused on the role of IRF7 in the pathogenicity and immunogenicity of RABV using an IRF7-/- mouse model. The results showed that the absence of IRF7 made mice more susceptible to RABV, because IRF7 restricted the replication of RABV in the early stage of infection. IRF7 deficiency affected the recruitment of plasmacytoid dendritic cells to the draining lymph nodes (dLNs), reduced the production of type I IFN and expression of IFN-stimulated genes. Furthermore, we found that the ability to produce specific RABV-neutralizing antibody was impaired in IRF7-/- mice. Consistently, IRF7 deficiency affected the recruitment of germinal-centre B cells to dLNs, and the generation of plasma cells and RABV-specific antibody secreting cells. Moreover, the absence of IRF7 downregulated the induction of IFN-γ and reduced type 1 T helper cell (Th1)-dependent antibody production. Collectively, our findings demonstrate that IRF7 promotes humoral immune responses and compromises the pathogenicity of RABV in a mouse model.
Collapse
Affiliation(s)
- Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lei Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhaochen Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
2
|
Brito CVB, Rodrigues ÉDL, Martins FMS, Tavares LD, Lima ALDSN, Ferreira LC, Santana CJL, de Brito JAGDSM, Casseb LMN, Diniz JAP. Immunological impact of tetrahydrobiopterin on the central nervous system in a murine model of rabies virus infection. Rev Inst Med Trop Sao Paulo 2021; 63:e28. [PMID: 33852711 PMCID: PMC8046507 DOI: 10.1590/s1678-9946202163028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
Currently, the Milwaukee protocol presents healing results in human beings affected by the rabies virus. However, there are many points to clarify on the action of drugs and the immune mechanism involved in the evolution of the disease. One of the drugs used is biopterin, which is an important cofactor for nitric oxide, important for preventing vasospasm. Thus, we describe the effect of biopterin on some inflammatory factors in a rabies virus infection developed in an animal model. The immunological mediators studied in animals infected with rabies virus submitted to doses of sapropterin were Anti-RABV, IL-6, IL-2, IL-17a, INF-gamma and Anti-iNOS. It is suggested that the medication in the context of a RABV infection already installed, had the effect of modulating the inflammatory mechanisms mainly linked to the permeability of the blood-brain barrier and the migration of cytotoxic cells.
Collapse
Affiliation(s)
| | - Érika Dayane Leal Rodrigues
- Universidade Federal do Pará, Programa de Biologia e Agente
Infeciosos e Parasitários, Ananindeua, Pará, Brazil
| | | | - Lavinia Dias Tavares
- Instituto Evandro Chagas, Programa de Iniciação Científica,
Ananindeua, Pará, Brazil
| | | | | | | | | | | | | |
Collapse
|
3
|
Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy GB, Panda S, Dhama K. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q 2017. [PMID: 28643547 DOI: 10.1080/01652176.2017.1343516] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a zoonotic, fatal and progressive neurological infection caused by rabies virus of the genus Lyssavirus and family Rhabdoviridae. It affects all warm-blooded animals and the disease is prevalent throughout the world and endemic in many countries except in Islands like Australia and Antarctica. Over 60,000 peoples die every year due to rabies, while approximately 15 million people receive rabies post-exposure prophylaxis (PEP) annually. Bite of rabid animals and saliva of infected host are mainly responsible for transmission and wildlife like raccoons, skunks, bats and foxes are main reservoirs for rabies. The incubation period is highly variable from 2 weeks to 6 years (avg. 2-3 months). Though severe neurologic signs and fatal outcome, neuropathological lesions are relatively mild. Rabies virus exploits various mechanisms to evade the host immune responses. Being a major zoonosis, precise and rapid diagnosis is important for early treatment and effective prevention and control measures. Traditional rapid Seller's staining and histopathological methods are still in use for diagnosis of rabies. Direct immunofluoroscent test (dFAT) is gold standard test and most commonly recommended for diagnosis of rabies in fresh brain tissues of dogs by both OIE and WHO. Mouse inoculation test (MIT) and polymerase chain reaction (PCR) are superior and used for routine diagnosis. Vaccination with live attenuated or inactivated viruses, DNA and recombinant vaccines can be done in endemic areas. This review describes in detail about epidemiology, transmission, pathogenesis, advances in diagnosis, vaccination and therapeutic approaches along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Rajendra Singh
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Karam Pal Singh
- b Centre for Animal Disease Research and Diagnosis (CADRAD) , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Susan Cherian
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Mani Saminathan
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Sanjay Kapoor
- c Department of Veterinary Microbiology , LLR University of Veterinary and Animal Sciences , Hisar , Haryana , India
| | - G B Manjunatha Reddy
- d ICAR-National Institute of Veterinary Epidemiology and Disease Informatics , Bengaluru , Karnataka , India
| | - Shibani Panda
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Kuldeep Dhama
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| |
Collapse
|
4
|
Immunological aspects of rabies: a literature review. Arch Virol 2017; 162:3251-3268. [PMID: 28726129 DOI: 10.1007/s00705-017-3484-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023]
Abstract
Rabies is a lethal disease caused by the neurotropic virus rabies virus (RABV), and it remains an important public health problem globally. It is known that the host immune response is important for control of viral infection and promoting viral clearance. In this context, it is well documented that, in addition to RABV neutralizing antibody, interferons and cell-mediated immunity also have an important role in preventing the establishment of disease. On the other hand, RABV suppresses host immunity through different mechanisms, for example, direct inhibition of host gene expression, sequestration of pathogen-associated molecular patterns, or modification of cytokine signalling pathways, which hinder the protective host immune responses to RABV infection. Here, we review the immunological aspects of rabies, highlighting innate and adaptive immunity, as well as the host evasion immune mechanisms used by the virus. Finally, we briefly discuss how this knowledge can direct new research and be harnessed for future therapeutic strategies.
Collapse
|
5
|
Impact of caspase-1/11, -3, -7, or IL-1 β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease. Cell Death Discov 2017; 3:17012. [PMID: 28280602 PMCID: PMC5339016 DOI: 10.1038/cddiscovery.2017.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn–Rotnycki–Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection.
Collapse
|
6
|
PATHOLOGY AND MOLECULAR DETECTION OF RABIES VIRUS IN FERRET BADGERS ASSOCIATED WITH A RABIES OUTBREAK IN TAIWAN. J Wildl Dis 2015; 52:57-69. [PMID: 26560756 DOI: 10.7589/2015-01-007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Until Rabies virus (RABV) infection in Taiwan ferret badgers (TWFB; Melogale moschata subaurantiaca) was diagnosed in mid-June 2013, Taiwan had been considered rabies free for >50 yr. Although rabies has also been reported in ferret badgers in China, the pathologic changes and distribution of viral antigens of ferret badger-associated rabies have not been described. We performed a comprehensive pathologic study and molecular detection of rabies virus in three necropsied rabid TWFBs and evaluated archival paraffin-embedded tissue blocks of six other TWFBs necropsied during 2004 and 2012. As in other RABV-infected species, the characteristic pathologic changes in TWFBs were nonsuppurative meningoencephalomyelitis, ganglionitis, and the formation of typical intracytoplasmic Negri bodies, with the brain stem most affected. There was also variable spongiform degeneration, primarily in the perikaryon of neurons and neuropil, in the cerebral cortex, thalamus, and brain stem. In nonnervous system tissues, representative lesions included adrenal necrosis and lymphocytic interstitial sialadenitis. Immunohistochemical staining and fluorescent antibody test demonstrated viral antigens in the perikaryon of the neurons and axonal or dendritic processes throughout the nervous tissue and in the macrophages in various tissues. Similar to raccoons (Procyon lotor) and skunks (Mephitidae), the nervous tissue of rabid TWFBs displayed widely dispersed lesions, RABV antigens, and large numbers of Negri bodies. We traced the earliest rabid TWFB case back to 2004.
Collapse
|