1
|
Sadr S, Ahmadi Simab P, Niazi M, Yousefsani Z, Lotfalizadeh N, Hajjafari A, Borji H. Anti-inflammatory and immunomodulatory effects of mesenchymal stem cell therapy on parasitic drug resistance. Expert Rev Anti Infect Ther 2024; 22:435-451. [PMID: 38804866 DOI: 10.1080/14787210.2024.2360684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The emergence of antiparasitic drug resistance poses a concerning threat to animals and humans. Mesenchymal Stem Cells (MSCs) have been widely used to treat infections in humans, pets, and livestock. Although this is an emerging field of study, the current review outlines possible mechanisms and examines potential synergism in combination therapies and the possible harmful effects of such an approach. AREAS COVERED The present study delved into the latest pre-clinical research on utilizing MSCs to treat parasitic infections. As per investigations, the introduction of MSCs to patients grappling with parasitic diseases like schistosomiasis, malaria, cystic echinococcosis, toxoplasmosis, leishmaniasis, and trypanosomiasis has shown a reduction in parasite prevalence. This intervention also alters the levels of both pro- and anti-inflammatory cytokines. Furthermore, the combined administration of MSCs and antiparasitic drugs has demonstrated enhanced efficacy in combating parasites and modulating the immune response. EXPERT OPINION Mesenchymal stem cells are a potential solution for addressing parasitic drug resistance. This is mainly because of their remarkable immunomodulatory abilities, which can potentially help combat parasites' resistance to drugs.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pouria Ahmadi Simab
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mahta Niazi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Yousefsani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Kian M, Mirzavand S, Sharifzadeh S, Kalantari T, Ashrafmansouri M, Nasri F. Efficacy of Mesenchymal Stem Cells Therapy in Parasitic Infections: Are Anti-parasitic Drugs Combined with MSCs More Effective? Acta Parasitol 2022; 67:1487-1499. [DOI: 10.1007/s11686-022-00620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
3
|
Santos EDS, Silva DKC, dos Reis BPZC, Barreto BC, Cardoso CMA, Ribeiro dos Santos R, Meira CS, Soares MBP. Immunomodulation for the Treatment of Chronic Chagas Disease Cardiomyopathy: A New Approach to an Old Enemy. Front Cell Infect Microbiol 2021; 11:765879. [PMID: 34869068 PMCID: PMC8633308 DOI: 10.3389/fcimb.2021.765879] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Chagas disease is a parasitic infection caused by the intracellular protozoan Trypanosoma cruzi. Chronic Chagas cardiomyopathy (CCC) is the most severe manifestation of the disease, developed by approximately 20-40% of patients and characterized by occurrence of arrhythmias, heart failure and death. Despite having more than 100 years of discovery, Chagas disease remains without an effective treatment, especially for patients with CCC. Since the pathogenesis of CCC depends on a parasite-driven systemic inflammatory profile that leads to cardiac tissue damage, the use of immunomodulators has become a rational alternative for the treatment of CCC. In this context, different classes of drugs, cell therapies with dendritic cells or stem cells and gene therapy have shown potential to modulate systemic inflammation and myocarditis in CCC models. Based on that, the present review provides an overview of current reports regarding the use of immunomodulatory agents in treatment of CCC, bringing the challenges and future directions in this field.
Collapse
Affiliation(s)
- Emanuelle de Souza Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
| | | | | | - Breno Cardim Barreto
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | | | - Ricardo Ribeiro dos Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - Cássio Santana Meira
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| |
Collapse
|
4
|
Mesenchymal Stem Cells Therapies on Fibrotic Heart Diseases. Int J Mol Sci 2021; 22:ijms22147447. [PMID: 34299066 PMCID: PMC8307175 DOI: 10.3390/ijms22147447] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy is a promising alternative approach to heart diseases. The most prevalent source of multipotent stem cells, usually called somatic or adult stem cells (mesenchymal stromal/stem cells, MSCs) used in clinical trials is bone marrow (BM-MSCs), adipose tissue (AT-MSCs), umbilical cord (UC-MSCs) and placenta. Therapeutic use of MSCs in cardiovascular diseases is based on the benefits in reducing cardiac fibrosis and inflammation that compose the cardiac remodeling responsible for the maintenance of normal function, something which may end up causing progressive and irreversible dysfunction. Many factors lead to cardiac fibrosis and failure, and an effective therapy is lacking to reverse or attenuate this condition. Different approaches have been shown to be promising in surpassing the poor survival of transplanted cells in cardiac tissue to provide cardioprotection and prevent cardiac remodeling. This review includes the description of pre-clinical and clinical investigation of the therapeutic potential of MSCs in improving ventricular dysfunction consequent to diverse cardiac diseases.
Collapse
|
5
|
Campos de Carvalho AC, Kasai-Brunswick TH, Bastos Carvalho A. Cell-Based Therapies for Heart Failure. Front Pharmacol 2021; 12:641116. [PMID: 33912054 PMCID: PMC8072383 DOI: 10.3389/fphar.2021.641116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/11/2021] [Indexed: 02/05/2023] Open
Abstract
Heart failure has reached epidemic proportions with the advances in cardiovascular therapies for ischemic heart diseases and the progressive aging of the world population. Efficient pharmacological therapies are available for treating heart failure, but unfortunately, even with optimized therapy, prognosis is often poor. Their last therapeutic option is, therefore, a heart transplantation with limited organ supply and complications related to immunosuppression. In this setting, cell therapies have emerged as an alternative. Many clinical trials have now been performed using different cell types and injection routes. In this perspective, we will analyze the results of such trials and discuss future perspectives for cell therapies as an efficacious treatment of heart failure.
Collapse
Affiliation(s)
- Antonio Carlos Campos de Carvalho
- Laboratory of Cellular and Molecular Cardiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tais H. Kasai-Brunswick
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Bastos Carvalho
- Laboratory of Cellular and Molecular Cardiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
In Vitro Labeling Mesenchymal Stem Cells with Superparamagnetic Iron Oxide Nanoparticles: Efficacy and Cytotoxicity. Methods Mol Biol 2021; 2118:235-250. [PMID: 32152984 DOI: 10.1007/978-1-0716-0319-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a potential therapeutic option for several diseases due to their unique properties of releasing important bioactive factors. Despite the advances in stem cell therapy, it is still difficult to accurately determine the mechanisms of cell activities after in vivo transplantation. The application of noninvasive cell tracking approaches is important to determine tissue distribution and the lifetime of stem cells following their injection, which consequently provides knowledge about the mechanisms of stem cell tissue repair. Superparamagnetic iron oxide nanoparticles (SPION) can provide a very useful tool for labeling and tracking stem cells by magnetic resonance imaging without causing toxic cellular effects and do not elicit any other side effects. Here we describe how to use SPIONs to label mesenchymal stem cells and evaluate efficacy and potential cytotoxicity in vitro.
Collapse
|
7
|
Brasil GV, Silva dos Santos D, Mendonça EA, Mesquita FCP, Kasai-Brunswick TH, da Cunha ST, Pimentel CF, de Vasconcelos-dos-Santos A, Mendez-Otero R, de Azevedo Filho CF, Goldenberg RCDS, Campos de Carvalho AC. Therapy with Cardiomyocytes Derived from Pluripotent Cells in Chronic Chagasic Cardiomyopathy. Cells 2020; 9:1629. [PMID: 32645832 PMCID: PMC7408395 DOI: 10.3390/cells9071629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023] Open
Abstract
Chagas disease discovered more than a century ago remains an incurable disease. The objective of this work was to investigate the therapeutic potential of cardiomyocytes derived from mouse embryonic stem cells (CM-mESC) in a model of chronic Chagasic cardiomyopathy (CCC). Mouse embryonic stem cells (mESC) were characterized, transduced with luciferase, and submitted to cardiac differentiation. CM-mESC were labeled with superparamagnetic iron oxide particles. To induce CCC, mice were infected with Brazil strain trypomastigotes. At 150 days post-infection (dpi), infected animals were treated with CM-mESC or PBS. Cells were detected by magnetic resonance imaging (MRI) and bioluminescence. Cardiac function was evaluated by MRI and electrocardiogram at 150 and 196 dpi. CCC mice showed significant differences in MRI and ECG parameters compared to non-infected mice. However, no differences were observed in contractile and electrical parameters between cell and PBS injected groups, 45 days after cell transplantation. Cells were detected 24 h after transplantation by MRI. CM-mESC bioluminescence tracking demonstrated over 90% decrease in signal 8 days after treatment. Nevertheless, the Infected + CM-mESC group showed a significant reduction in the percentage of collagen fibers when compared to the Infected + PBS group. In conclusion, CM-mESC therapy was not effective in reversing cardiac functional changes induced by Chagas disease despite some improvement in myocardial fibrosis.
Collapse
Affiliation(s)
- Guilherme Visconde Brasil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Danúbia Silva dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Elias Ataide Mendonça
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Fernanda Cristina Paccola Mesquita
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Tais Hanae Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
| | - Sandro Torrentes da Cunha
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Cibele Ferreira Pimentel
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Andréia de Vasconcelos-dos-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Rosália Mendez-Otero
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
| | | | - Regina Coeli dos Santos Goldenberg
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
| | - Antonio Carlos Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
| |
Collapse
|
8
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
9
|
Castro BBAD, Carmo WB, Oliveira RSMF, Peters VM, Jorgetti V, Custodio MR, Sanders-Pinheiro H. Digital radiography as an alternative method in the evaluation of bone density in uremic rats. J Bras Nefrol 2020; 42:8-17. [PMID: 31419270 PMCID: PMC7213932 DOI: 10.1590/2175-8239-jbn-2019-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Digital radiography (DRx) may provide a suitable alternative to investigate mineral and bone disorder (MBD) and loss of bone density (BD) in rodent models of chronic kidney disease (CKD). The objective of this study was to use DRx to evaluate BD in CKD rats, and to evaluate the correlation between DRx findings and serum MBD markers and bone histomorphometry. METHODS Uremia was induced by feeding Wistar rats an adenine-enriched diet (0.75% for 4 weeks/0.10% for 3 weeks); outcomes were compared to a control group at experimental weeks 3, 4, and 7. The following biochemical markers were measured: creatinine clearance (CrC), phosphate (P), calcium (Ca), fractional excretion of P (FeP), alkaline phosphatase (ALP), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH). DRx imaging was performed and histomorphometry analysis was conducted using the left femur. RESULTS As expected, at week 7, uremic rats presented with reduced CrC and higher levels of P, FeP, and ALP compared to controls. DRx confirmed the lower BD in uremic animals (0.57±0.07 vs. 0.68 ± 0.06 a.u.; p = 0.016) compared to controls at the end of week 7, when MBD was more prominent. A severe form of high-turnover bone disease accompanied these biochemical changes. BD measured on DRx correlated to P (r=-0.81; p = 0.002), ALP (r = -0.69, p = 0.01), PTH (r = -0.83, p = 0.01), OS/BS (r = -0.70; p = 0.02), and ObS/BS (r = -0.70; p = 0.02). CONCLUSION BD quantified by DRx was associated with the typical complications of MBD in CKD and showed to be viable in the evaluation of bone alterations in CKD.
Collapse
Affiliation(s)
- Bárbara Bruna Abreu de Castro
- Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Wander Barros Carmo
- Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | | | - Vera Maria Peters
- Centro de Biologia da Reprodução, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Vanda Jorgetti
- Laboratório de Fisiopatologia Renal, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Melani Ribeiro Custodio
- Laboratório de Fisiopatologia Renal, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Helady Sanders-Pinheiro
- Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| |
Collapse
|
10
|
Matthews H, Noulin F. Unexpected encounter of the parasitic kind. World J Stem Cells 2019; 11:904-919. [PMID: 31768219 PMCID: PMC6851008 DOI: 10.4252/wjsc.v11.i11.904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/10/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Both parasitology and stem cell research are important disciplines in their own right. Parasites are a real threat to human health causing a broad spectrum of diseases and significant annual rates morbidity and mortality globally. Stem cell research, on the other hand, focuses on the potential for regenerative medicine for a range of diseases including cancer and regenerative therapies. Though these two topics might appear distant, there are some “unexpected encounters”. In this review, we summarise the various links between parasites and stem cells. First, we discuss how parasites’ own stem cells represent interesting models of regeneration that can be translated to human stem cell regeneration. Second, we explore the interactions between parasites and host stem cells during the course of infection. Third, we investigate from a clinical perspective, how stem cell regeneration can be exploited to help circumvent the damage induced by parasitic infection and its potential to serve as treatment options for parasitic diseases in the future. Finally, we discuss the importance of screening for pathogens during organ transplantation by presenting some clinical cases of parasitic infection following stem cell therapy.
Collapse
Affiliation(s)
- Holly Matthews
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele ST5 5BG, United Kingdom
| | - Florian Noulin
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele ST5 5BG, United Kingdom
| |
Collapse
|
11
|
Carvalho EB, Ramos IPR, Nascimento AFS, Brasil GV, Mello DB, Oti M, Sammeth M, Bahia MT, Campos de Carvalho AC, Carvalho AB. Echocardiographic Measurements in a Preclinical Model of Chronic Chagasic Cardiomyopathy in Dogs: Validation and Reproducibility. Front Cell Infect Microbiol 2019; 9:332. [PMID: 31616643 PMCID: PMC6768978 DOI: 10.3389/fcimb.2019.00332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023] Open
Abstract
Background: The failure to translate preclinical results to the clinical setting is the rule, not the exception. One reason that is frequently overlooked is whether the animal model reproduces distinctive features of human disease. Another is the reproducibility of the method used to measure treatment effects in preclinical studies. Left ventricular (LV) function improvement is the most common endpoint in preclinical cardiovascular disease studies, while echocardiography is the most frequently used method to evaluate LV function. In this work, we conducted a robust echocardiographic evaluation of LV size and function in dogs chronically infected by Trypanosoma cruzi. Methods and Results: Echocardiography was performed blindly by two distinct observers in mongrel dogs before and between 6 and 9 months post infection. Parameters analyzed included end-systolic volume (ESV), end-diastolic volume (EDV), ejection fraction (EF), and fractional shortening (FS). We observed a significant LVEF and FS reduction in infected animals compared to controls, with no significant variation in volumes. However, the effect of chronic infection in systolic function was quite variable, with EF ranging from 17 to 66%. Using the cut-off value of EF ≤ 40%, established for dilated cardiomyopathy (DCM) in dogs, only 28% of the infected dogs were affected by the chronic infection. Conclusions: The canine model of CCC mimics human disease, reproducing the percentage of individuals that develop heart failure during the chronic infection. It is thus mandatory to establish inclusion criteria in the experimental design of canine preclinical studies to account for the variable effect that chronic infection has on systolic function.
Collapse
Affiliation(s)
- Eduardo B. Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isalira P. R. Ramos
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Guilherme V. Brasil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora B. Mello
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martin Oti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael Sammeth
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria T. Bahia
- School of Medicine, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Antonio C. Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana B. Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Brychtova M, Thiele JA, Lysak D, Holubova M, Kralickova M, Vistejnova L. Mesenchymal stem cells as the near future of cardiology medicine - truth or wish? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:8-18. [PMID: 30439932 DOI: 10.5507/bp.2018.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022] Open
Abstract
Cardiac damage is one of major cause of worldwide morbidity and mortality. Despite the development in pharmacotherapy, cardiosurgery and interventional cardiology, many patients remain at increased risk of developing adverse cardiac remodeling. An alternative treatment approach is the application of stem cells. Mesenchymal stem cells are among the most promising cell types usable for cardiac regeneration. Their homing to the damaged area, differentiation into cardiomyocytes, paracrine and/or immunomodulatory effect on cardiac tissue was investigated extensively. Despite promising preclinical reports, clinical trials on human patients are not convincing. Meta-analyses of these trials open many questions and show that routine clinical application of mesenchymal stem cells as a cardiac treatment may be not as helpful as expected. This review summarizes contemporary knowledge about mesenchymal stem cells role in cardiac tissue repair and discusses the problems and perspectives of this experimental therapeutical approach.
Collapse
Affiliation(s)
- Michaela Brychtova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jana-Aletta Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Daniel Lysak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Monika Holubova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Milena Kralickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
13
|
Ascari IJ, Martins SC, Camargo LSA, Mendez-Otero R. Development of bovine embryos in vitro in coculture with murine mesenchymal stem cells and embryonic fibroblasts. Mol Biol Rep 2018; 45:1827-1837. [PMID: 30145640 DOI: 10.1007/s11033-018-4329-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
Despite the progress on development of new culture media, in vitro-produced embryos still display lower quality when compared to the in vivo-produced counterparts. Coculture has been reconsidered as an alternative to improve embryo quality. Mesenchymal stem cells (MSC) and murine embryonic fibroblasts (MEF) have been extensively used as feeder layers due to their capacity to release growth factors. In the present study we investigated the effect of these feeder layers in oocyte maturation and/or embryo development under in vitro conditions. Oocytes were matured in control (CTRL) conditions or in coculture with MSC or MEF. In vitro fertilization and embryo culture until fourth day were performed in CTRL condition for all groups. Embryos from fourth day on were then cultured until the eighth day in CTRL or in coculture system. No significant differences for metaphase II stage and apoptosis in oocytes were found among the groups. There was also no difference among the groups when we evaluated blastocyst formation on the seventh and eighth day, with exception of a higher hatched blastocyst rate in the group maturated and cultivated in CTRL condition when compared to the group matured and cocultured with MSC. Also no difference was observed in the number of cells in the whole embryos, in the inner cell mass, in the trophoblast and at apoptotic stage on the eighth day. We conclude that coculture with MSC or MEF during maturation and/or embryo development do not enhance the in vitro production of bovine embryos.
Collapse
Affiliation(s)
- Ivan J Ascari
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Sávio C Martins
- Departamento de Medicina Veterinária, Universidade José do Rosário Vellano, Alfenas, Minas Gerais, Brazil
| | | | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio De Janeiro, Brazil
| |
Collapse
|
14
|
IGF-1-Overexpressing Mesenchymal Stem/Stromal Cells Promote Immunomodulatory and Proregenerative Effects in Chronic Experimental Chagas Disease. Stem Cells Int 2018; 2018:9108681. [PMID: 30140292 PMCID: PMC6081563 DOI: 10.1155/2018/9108681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been investigated for the treatment of diseases that affect the cardiovascular system, including Chagas disease. MSCs are able to promote their beneficial actions through the secretion of proregenerative and immunomodulatory factors, including insulin-like growth factor-1 (IGF-1), which has proregenerative actions in the heart and skeletal muscle. Here, we evaluated the therapeutic potential of IGF-1-overexpressing MSCs (MSC_IGF-1) in a mouse model of chronic Chagas disease. C57BL/6 mice were infected with Colombian strain Trypanosoma cruzi and treated with MSCs, MSC_IGF-1, or vehicle (saline) six months after infection. RT-qPCR analysis confirmed the presence of transplanted cells in both the heart and skeletal muscle tissues. Transplantation of either MSCs or MSC_IGF-1 reduced the number of inflammatory cells in the heart when compared to saline controls. Moreover, treatment with MSCs or MSC_IGF-1 significantly reduced TNF-α, but only MSC treatment reduced IFN-γ production compared to the saline group. Skeletal muscle sections of both MSC- and MSC_IGF-1-treated mice showed a reduction in fibrosis compared to saline controls. Importantly, the myofiber area was reduced in T. cruzi-infected mice, and this was recovered after treatment with MSC_IGF-1. Gene expression analysis in the skeletal muscle showed a higher expression of pro- and anti-inflammatory molecules in MSC_IGF-1-treated mice compared to MSCs alone, which significantly reduced the expression of TNF-α and IL-1β. In conclusion, our results indicate the therapeutic potential of MSC_IGF-1, with combined immunomodulatory and proregenerative actions to the cardiac and skeletal muscles.
Collapse
|
15
|
Silva DN, Souza BSF, Vasconcelos JF, Azevedo CM, Valim CXR, Paredes BD, Rocha VPC, Carvalho GB, Daltro PS, Macambira SG, Nonaka CKV, Ribeiro-Dos-Santos R, Soares MBP. Granulocyte-Colony Stimulating Factor-Overexpressing Mesenchymal Stem Cells Exhibit Enhanced Immunomodulatory Actions Through the Recruitment of Suppressor Cells in Experimental Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:1449. [PMID: 30013550 PMCID: PMC6036245 DOI: 10.3389/fimmu.2018.01449] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022] Open
Abstract
Genetic modification of mesenchymal stem cells (MSCs) is a promising strategy to improve their therapeutic effects. Granulocyte-colony stimulating factor (G-CSF) is a growth factor widely used in the clinical practice with known regenerative and immunomodulatory actions, including the mobilization of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Here we evaluated the therapeutic potential of MSCs overexpressing G-CSF (MSC_G-CSF) in a model of inflammatory cardiomyopathy due to chronic Chagas disease. C57BL/6 mice were treated with wild-type MSCs, MSC_G-CSF, or vehicle (saline) 6 months after infection with Trypanosoma cruzi. Transplantation of MSC_G-CSF caused an increase in the number of circulating leukocytes compared to wild-type MSCs. Moreover, G-CSF overexpression caused an increase in migration capacity of MSCs to the hearts of infected mice. Transplantation of either MSCs or MSC_G-CSF improved exercise capacity, when compared to saline-treated chagasic mice. MSC_G-CSF mice, however, were more potent than MSCs in reducing the number of infiltrating leukocytes and fibrosis in the heart. Similarly, MSC_G-CSF-treated mice presented significantly lower levels of inflammatory mediators, such as IFNγ, TNFα, and Tbet, with increased IL-10 production. A marked increase in the percentage of Tregs and MDSCs in the hearts of infected mice was seen after administration of MSC_G-CSF, but not MSCs. Moreover, Tregs were positive for IL-10 in the hearts of T. cruzi-infected mice. In vitro analysis showed that recombinant hG-CSF and conditioned medium of MSC_G-CSF, but not wild-type MSCs, induce chemoattraction of MDSCs in a transwell assay. Finally, MDSCs purified from hearts of MSC_G-CSF transplanted mice inhibited the proliferation of activated splenocytes in a co-culture assay. Our results demonstrate that G-CSF overexpression by MSCs potentiates their immunomodulatory effects in our model of Chagas disease and suggest that mobilization of suppressor cell populations such as Tregs and MDSCs as a promising strategy for the treatment of chronic Chagas disease. Finally, our results reinforce the therapeutic potential of genetic modification of MSCs, aiming at increasing their paracrine actions.
Collapse
Affiliation(s)
- Daniela N Silva
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Bruno S F Souza
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Juliana F Vasconcelos
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Carine M Azevedo
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Clarissa X R Valim
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | - Bruno D Paredes
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Vinicius P C Rocha
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Gisele B Carvalho
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | - Pamela S Daltro
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | - Simone G Macambira
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Federal University of Bahia (UFBA), Salvador, Brazil
| | - Carolina K V Nonaka
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Ricardo Ribeiro-Dos-Santos
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Milena B P Soares
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Carvalho AB, Goldenberg RCDS, Campos de Carvalho AC. Cell therapies for Chagas disease. Cytotherapy 2017; 19:1339-1349. [PMID: 28887011 DOI: 10.1016/j.jcyt.2017.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023]
Abstract
In this review of cell therapies in Chagas disease, we cover aspects related to the disease, its treatment and world demographics, before proceeding to describe the preclinical and clinical trials performed using cell therapies in the search for an alternative therapy for the most severe and lethal form of this disease, chronic chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Regina Coeli Dos Santos Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Antonio Carlos Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Reyes B, Coca MI, Codinach M, López-Lucas MD, Del Mazo-Barbara A, Caminal M, Oliver-Vila I, Cabañas V, Lope-Piedrafita S, García-López J, Moraleda JM, Fontecha CG, Vives J. Assessment of biodistribution using mesenchymal stromal cells: Algorithm for study design and challenges in detection methodologies. Cytotherapy 2017; 19:1060-1069. [PMID: 28734679 DOI: 10.1016/j.jcyt.2017.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 06/16/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Biodistribution of candidate cell-based therapeutics is a critical safety concern that must be addressed in the preclinical development program. We aimed to design a decision tree based on a series of studies included in actual dossiers approved by competent regulatory authorities, noting that the design, execution and interpretation of pharmacokinetics studies using this type of therapy is not straightforward and presents a challenge for both developers and regulators. METHODS Eight studies were evaluated for the definition of a decision tree, in which mesenchymal stromal cells (MSCs) were administered to mouse, rat and sheep models using diverse routes (local or systemic), cell labeling (chemical or genetic) and detection methodologies (polymerase chain reaction [PCR], immunohistochemistry [IHC], fluorescence bioimaging, and magnetic resonance imaging [MRI]). Moreover, labeling and detection methodologies were compared in terms of cost, throughput, speed, sensitivity and specificity. RESULTS A decision tree was defined based on the model chosen: (i) small immunodeficient animals receiving heterologous MSC products for assessing biodistribution and other safety aspects and (ii) large animals receiving homologous labeled products; this contributed to gathering data not only on biodistribution but also on pharmacodynamics. PCR emerged as the most convenient technique despite the loss of spatial information on cell distribution that can be further assessed by IHC. DISCUSSION This work contributes to the standardization in the design of biodistribution studies by improving methods for accurate assessment of safety. The evaluation of different animal models and screening of target organs through a combination of techniques is a cost-effective and timely strategy.
Collapse
Affiliation(s)
- Blanca Reyes
- Servei de Teràpia Cellular, Banc de Sang i Teixits, Barcelona, Spain
| | - Maria Isabel Coca
- Servei de Teràpia Cellular, Banc de Sang i Teixits, Barcelona, Spain
| | | | - María Dolores López-Lucas
- Unidad de Terapia Celular y Trasplante Hematopoyético, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB, Murcia, Spain
| | | | - Marta Caminal
- Servei de Teràpia Cellular, Banc de Sang i Teixits, Barcelona, Spain
| | - Irene Oliver-Vila
- Servei de Teràpia Cellular, Banc de Sang i Teixits, Barcelona, Spain
| | - Valentín Cabañas
- Unidad de Terapia Celular y Trasplante Hematopoyético, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB, Murcia, Spain
| | - Silvia Lope-Piedrafita
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Joan García-López
- Servei de Teràpia Cellular, Banc de Sang i Teixits, Barcelona, Spain; Chair of Transfusion Medicine and Cellular and Tissue Therapies, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - José M Moraleda
- Unidad de Terapia Celular y Trasplante Hematopoyético, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB, Murcia, Spain
| | - Cesar G Fontecha
- Reconstructive Surgery of the Locomotor System, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Vives
- Servei de Teràpia Cellular, Banc de Sang i Teixits, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain; Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
18
|
Galectin-3 Knockdown Impairs Survival, Migration, and Immunomodulatory Actions of Mesenchymal Stromal Cells in a Mouse Model of Chagas Disease Cardiomyopathy. Stem Cells Int 2017; 2017:3282656. [PMID: 28769980 PMCID: PMC5523546 DOI: 10.1155/2017/3282656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/27/2017] [Accepted: 06/05/2017] [Indexed: 01/13/2023] Open
Abstract
Therapies based on transplantation of mesenchymal stromal cells (MSC) hold promise for the management of inflammatory disorders. In chronic Chagas disease cardiomyopathy (CCC), caused by chronic infection with Trypanosoma cruzi, the exacerbated immune response plays a critical pathophysiological role and can be modulated by MSC. Here, we investigated the role of galectin-3 (Gal-3), a beta-galactoside-binding lectin with several actions on immune responses and repair process, on the immunomodulatory potential of MSC. Gal-3 knockdown in MSC did not affect the immunophenotype or differentiation potential. However, Gal-3 knockdown MSC showed decreased proliferation, survival, and migration. Additionally, when injected intraperitoneally into mice with CCC, Gal-3 knockdown MSC showed impaired migration in vivo. Transplantation of control MSC into mice with CCC caused a suppression of cardiac inflammation and fibrosis, reducing expression levels of CD45, TNFα, IL-1β, IL-6, IFNγ, and type I collagen. In contrast, Gal-3 knockdown MSC were unable to suppress the immune response or collagen synthesis in the hearts of mice with CCC. Finally, infection with T. cruzi demonstrated parasite survival in wild-type but not in Gal-3 knockdown MSC. These findings demonstrate that Gal-3 plays a critical role in MSC survival, proliferation, migration, and therapeutic potential in CCC.
Collapse
|
19
|
Prockop DJ, Oh JY, Lee RH. Data against a Common Assumption: Xenogeneic Mouse Models Can Be Used to Assay Suppression of Immunity by Human MSCs. Mol Ther 2017. [PMID: 28647464 DOI: 10.1016/j.ymthe.2017.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Much of what we know about immunology suggests that little is to be gained from experiments in which human cells are administered to immunocompetent mice. Multiple reports have demonstrated that this common assumption does not hold for experiments with human mesenchymal stem/stromal cells (hMSCs). The data demonstrate that hMSCs can suppress immune responses to a variety of stimuli in immunocompetent mice by a range of different mechanisms that are similar to those employed by mouse MSCs. Therefore, further experiments with hMSCs in mice will make it possible to generate preclinical data that will improve both the efficacy and safety of the clinical trials with the cells that are now in progress.
Collapse
Affiliation(s)
- Darwin J Prockop
- Institute for Regenerative Medicine, College of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77845, USA.
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - Ryang Hwa Lee
- Institute for Regenerative Medicine, College of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77845, USA
| |
Collapse
|
20
|
Jasmin, de Souza GT, Louzada RA, Rosado-de-Castro PH, Mendez-Otero R, Campos de Carvalho AC. Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. Int J Nanomedicine 2017; 12:779-793. [PMID: 28182122 PMCID: PMC5279820 DOI: 10.2147/ijn.s126530] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been used for diagnoses in biomedical applications, due to their unique properties and their apparent safety for humans. In general, SPIONs do not seem to produce cell damage, although their long-term in vivo effects continue to be investigated. The possibility of efficiently labeling cells with these magnetic nanoparticles has stimulated their use to noninvasively track cells by magnetic resonance imaging after transplantation. SPIONs are attracting increasing attention and are one of the preferred methods for cell labeling and tracking in preclinical and clinical studies. For clinical protocol approval of magnetic-labeled cell tracking, it is essential to expand our knowledge of the time course of SPIONs after cell incorporation and transplantation. This review focuses on the recent advances in tracking SPION-labeled stem cells, analyzing the possibilities and limitations of their use, not only focusing on myocardial infarction but also discussing other models.
Collapse
Affiliation(s)
- Jasmin
- NUMPEX-Bio, Federal University of Rio de Janeiro, Duque de Caxias, RJ
| | - Gustavo Torres de Souza
- Laboratory of Animal Reproduction, Embrapa Dairy Cattle, Juiz de Fora, MG
- Laboratory of Genetics, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ruy Andrade Louzada
- Institute Gustave-Roussy of Oncology, Paris-Sud University, Villejuif, France
| | | | - Rosalia Mendez-Otero
- Institute Carlos Chagas Filho of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
21
|
Liu Z, Li S, Liu L, Guo Z, Wang P. Internal associations and dynamic expression of c-kit and nanog genes in ventricular remodelling induced by adriamycin. Exp Ther Med 2016; 12:1657-1662. [PMID: 27588087 PMCID: PMC4998031 DOI: 10.3892/etm.2016.3522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/15/2016] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to investigate the dynamic expression of the c-kit and nanog genes in rats with left ventricular remodelling induced by adriamycin (ADR), and explore its internal association and mechanism of action. Sprague-Dawley male rats were randomly divided into a normal control group and a heart failure model group. Heart failure was induced by a single intraperitoneal injection of ADR (4 mg/kg) weekly for six weeks. The normal control group was given the same amount of saline. At the eighth week, rat cardiac function was examined to demonstrate the formation of heart failure. The rat hearts were harvested frozen and sectioned, and the expression levels of the nanog and c-kit genes in the myocardial tissue samples were detected using immunohistochemistry, immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). Hematoxylin and eosin staining demonstrated various pathological changes in the myocardial cells in the heart failure model group, whereas myocardial infarction was not observed in the normal control group. Immunohistochemistry and immunofluorescence demonstrated that nanog-positive cells were predominantly expressed in the vascular endothelium, with a few myocardial cells and stem cells in normal myocardium. The expression levels of c-kit and nanog in the myocardium of the rats with heart failure decreased significantly. c-kit-positive cells clustered together in the epicardium and its vicinity, and c-kit expression significantly decreased in the myocardium of rats with heart failure, as compared with normal rats. In both groups, some cells co-expressed both the c-kit and nanog genes. The RT-PCR results demonstrated that the expression levels of the two genes in the heart failure model group were significantly lower compared with those in the normal control group (P<0.05). In conclusion, the c-kit- and nanog-positive stem cells decreased in the myocardium of the rats with left ventricular remodelling induced by ADR. Their abnormal expression was significantly correlated with left ventricular remodelling, thereby indicating an internal association (influences of two indexes in the experimental group and control group) between them.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453003, P.R. China
| | - Shuo Li
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453003, P.R. China
| | - Lingling Liu
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453003, P.R. China
| | - Zhikun Guo
- Key Laboratory for Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Pengfei Wang
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
22
|
Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 2016; 7:7. [PMID: 26753925 PMCID: PMC4709937 DOI: 10.1186/s13287-015-0271-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are increasingly used as an intravenously applied cellular therapeutic. They were found to be potent in situations such as tissue repair or severe inflammation. Still, data are lacking with regard to the biodistribution of MSCs, their cellular or molecular target structures, and the mechanisms by which MSCs reach these targets. This review discusses current hypotheses for how MSCs can reach tissue sites. Both preclinical and clinical studies using MSCs applied intravenously or intra-arterially are discussed in the context of our current understanding of how MSCs might work in physiological and pathological situations.
Collapse
Affiliation(s)
- Johannes Leibacher
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, Frankfurt, Germany
| | - Reinhard Henschler
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, Frankfurt, Germany. .,Blood Donor Center Zürich, Swiss Red Cross, Zürich, Switzerland.
| |
Collapse
|
23
|
Organ-specific migration of mesenchymal stromal cells: Who, when, where and why? Immunol Lett 2015; 168:159-69. [DOI: 10.1016/j.imlet.2015.06.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022]
|
24
|
Tanowitz HB, Machado FS, Spray DC, Friedman JM, Weiss OS, Lora JN, Nagajyothi J, Moraes DN, Garg NJ, Nunes MCP, Ribeiro ALP. Developments in the management of Chagas cardiomyopathy. Expert Rev Cardiovasc Ther 2015; 13:1393-409. [PMID: 26496376 DOI: 10.1586/14779072.2015.1103648] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over 100 years have elapsed since the discovery of Chagas disease and there is still much to learn regarding pathogenesis and treatment. Although there are antiparasitic drugs available, such as benznidazole and nifurtimox, they are not totally reliable and often toxic. A recently released negative clinical trial with benznidazole in patients with chronic Chagas cardiomyopathy further reinforces the concerns regarding its effectiveness. New drugs and new delivery systems, including those based on nanotechnology, are being sought. Although vaccine development is still in its infancy, the reality of a therapeutic vaccine remains a challenge. New ECG methods may help to recognize patients prone to developing malignant ventricular arrhythmias. The management of heart failure, stroke and arrhythmias also remains a challenge. Although animal experiments have suggested that stem cell based therapy may be therapeutic in the management of heart failure in Chagas cardiomyopathy, clinical trials have not been promising.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA.,b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Fabiana S Machado
- c Department of Biochemistry and Immunology, Institute of Biological Science , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - David C Spray
- b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA.,e Dominick P. Purpura Department of Neuroscience , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Joel M Friedman
- f Department of Physiology & Biophysics , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Oren S Weiss
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jose N Lora
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jyothi Nagajyothi
- g Public Health Research Institute, New Jersey Medical School , Rutgers University , Newark , NJ , USA
| | - Diego N Moraes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Nisha Jain Garg
- i Department of Microbiology & Immunology and Institute for Human Infections and Immunity , University of Texas Medical Branch , Galveston , TX , USA
| | - Maria Carmo P Nunes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Antonio Luiz P Ribeiro
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
25
|
Mello DB, Ramos IP, Mesquita FCP, Brasil GV, Rocha NN, Takiya CM, Lima APCA, Campos de Carvalho AC, Goldenberg RS, Carvalho AB. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity. PLoS Negl Trop Dis 2015; 9:e0003945. [PMID: 26248209 PMCID: PMC4527728 DOI: 10.1371/journal.pntd.0003945] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/01/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. METHODOLOGY/PRINCIPAL FINDINGS ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. CONCLUSIONS/SIGNIFICANCE In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.
Collapse
Affiliation(s)
- Debora B. Mello
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isalira P. Ramos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda C. P. Mesquita
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme V. Brasil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth N. Rocha
- Universidade Federal Fluminense, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M. Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula C. A. Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio C. Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Cardiologia, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Regina S. Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana B. Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Campos de Carvalho AC, Bastos Carvalho A. Stem Cell-Based Therapies in Chagasic Cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:436314. [PMID: 26161401 PMCID: PMC4486210 DOI: 10.1155/2015/436314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/27/2015] [Indexed: 02/08/2023]
Abstract
Chagas disease is caused by Trypanosoma cruzi and can lead to a dilated cardiomyopathy decades after the prime infection by the parasite. As with other dilated cardiomyopathies, conventional pharmacologic therapies are not always effective and as heart failure progresses patients need heart transplantation. Therefore alternative therapies are highly desirable and cell-based therapies have been investigated in preclinical and clinical studies. In this paper we review the main findings of such studies and discuss future directions for stem cell-based therapies in chronic chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Antonio Carlos Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rua Carlos Chagas Filho 373, 21949-900 Rio de Janeiro, RJ, Brazil
| | - Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rua Carlos Chagas Filho 373, 21949-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|