1
|
Li W, Yang S, Xu P, Zhang D, Tong Y, Chen L, Jia B, Li A, Lian C, Ru D, Zhang B, Liu M, Chen C, Fu W, Yuan S, Gu C, Wang L, Li W, Liang Y, Yang Z, Ren X, Wang S, Zhang X, Song Y, Xie Y, Lu H, Xu J, Wang H, Yu W. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine 2022; 76:103861. [PMID: 35124429 PMCID: PMC8811534 DOI: 10.1016/j.ebiom.2022.103861] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored. METHODS Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients. FINDINGS Five short sequences (24-27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients. INTERPRETATION HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment. FUNDING The National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101), and the National Natural Science Foundation of China (31872814, 32000505).
Collapse
Affiliation(s)
- Wei Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Peng Xu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Ben Jia
- Shanghai Epiprobe Biotechnology Co., Ltd, Shanghai 200233, China
| | - Ang Li
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Cheng Lian
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Daoping Ru
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Baolong Zhang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Mengxing Liu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Cancan Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Weihui Fu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Songhua Yuan
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenxuan Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Ying Liang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Zhicong Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Xiaoguang Ren
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Shaoxuan Wang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Xiaoyan Zhang
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jianqing Xu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China.
| |
Collapse
|
2
|
Genome-wide transcriptomic analysis of highly virulent African swine fever virus infection reveals complex and unique virus host interaction. Vet Microbiol 2021; 261:109211. [PMID: 34481273 DOI: 10.1016/j.vetmic.2021.109211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/15/2021] [Indexed: 01/08/2023]
Abstract
African swine fever virus (ASFV), one of the most devastating emerging swine pathogens in China, causes nearly 100 % mortality in naive herds. Here, whole-transcriptome RNA-seq analysis was conducted in porcine alveolar macrophages (PAMs) infected with Pig/Heilongjiang/2018 (Pig/HLJ/18) ASFV at different time points. Our data suggested that ASFV genes expression demonstrated a time-depended pattern and ASFV early genes were involved in antagonizing host innate immunity. Moreover, viral small RNA (vsRNA) was generated as well. Meanwhile, transcriptome analysis of host genes suggested a strong inhibition host immunity-related genes by ASFV infection in PAMs, while enhanced chemokine-mediated signaling pathways and neutrophil chemotaxis were observed in ASFV infected PAMs. Furthermore, ASFV infection also down-regulated host microRNAs (miRNAs) that putatively targeted viral genes, while also triggering dysregulation of host metabolism that promoted virus replication at transcription level. Most importantly, infection of PAMs with ASFV induced a different transcriptome pattern from that of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV), which is known to trigger a host cytokine storm. In conclusion, our transcriptome data implied that ASFV infection in PAMs appeared to be associated with strong inhibition of host immune responses, dysregulation of host chemokine axis and metabolic pathways.
Collapse
|
3
|
Zhao W, Li Q, Cui F. Potential functional pathways of plant RNA virus-derived small RNAs in a vector insect. Methods 2019; 183:38-42. [PMID: 31654749 DOI: 10.1016/j.ymeth.2019.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
During infection, RNA viruses can produce two types of virus-derived small RNAs (vsRNAs), small interfering RNA (siRNA) and microRNA (miRNA), that play a key role in RNA silencing-mediated antiviral mechanisms in various hosts by associating with different Argonaute (Ago) proteins. Ago1 has been widely identified as an essential part of the miRNA pathway, while Ago2 is required for the siRNA pathway. Thus, analysis of the interaction between vsRNAs and Ago proteins can provide a clue about which pathway the vsRNA may be involved in. In this study, using rice stripe virus (RSV)-small brown planthoppers (Laodelphax striatellus, Fallen) as an infection model, the interactions of eight vsRNAs derived from four viral genomic RNA fragments and Ago1 or Ago2 were detected via the RNA immunoprecipitation (RIP) method. vsRNA4-1 and vsRNA4-2 derived from RSV RNA4 were significantly enriched in Ago1-immunoprecipitated complexes, whereas vsRNA2-1 and vsRNA3-2 seemed enriched in Ago2-immunoprecipitated complexes. vsRNA1-2 and vsRNA2-2 were detected in both of the two Ago-immunoprecipitated complexes. In contrast, vsRNA1-1 and vsRNA3-1 did not accumulate in either Ago1- or Ago2-immunoprecipitated complexes, indicating that regulatory pathways other than miRNA or siRNA pathways might be employed. In addition, two conserved L. striatellus miRNAs were analysed via the RIP method. Both miRNAs accumulated in Ago1-immunoprecipitated complexes, which was consistent with previous studies, suggesting that our experimental system can be widely used. In conclusion, our study provides an accurate and convenient detection system to determine the potential pathway of vsRNAs, and this method may also be suitable for studying other sRNAs.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Yao L, Zhou Y, Sui Z, Zhang Y, Liu Y, Xie H, Gao H, Fan H, Zhang Y, Liu M, Li S, Tang H. HBV-encoded miR-2 functions as an oncogene by downregulating TRIM35 but upregulating RAN in liver cancer cells. EBioMedicine 2019; 48:117-129. [PMID: 31530503 PMCID: PMC6838411 DOI: 10.1016/j.ebiom.2019.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection has been well established as a high-risk factor for the carcinogenesis of hepatocellular carcinoma (HCC). Cellular microRNA (miRNA) is involved in tumorigenesis by accelerating the malignant phenotype in HCC. However, whether HBV can encode miRNAs that contribute to HCC is not entirely clear. METHODS In this study, an miRNA encoded by HBV (HBV-miR-2) was identified by Solexa sequencing in HBV-positive HCC specimens and further verified in serum samples from HCC patients with HBV infection and in HBV-positive HCC cell lines. To evaluate the roles of HBV-miR-2 in liver cancer cells, we determined cell viability and migration/invasion ability by gain-of-function experiment in HBV(-) liver cancer cells (HepG2 and Huh7) and loss-of-function experiments in Huh7 cells stably expressing HBV-miR-2 (Huh7/HBV-miR-2 cells) and HepG2.2.15 cells. Furthermore, to elucidate the mechanism by which HBV-miR-2 work on cell malignancy, we identified and studied the effect of two target genes (TRIM35 and RAN) of HBV-miR-2 in liver cancer cells. FINDINGS We revealed that HBV-miR-2 promoted HCC cell growth ability by suppressing apoptosis and promoting migration and invasion by enhancing the epithelial-mesenchymal transition (EMT), functioning as an oncogene in the development of HBV-related HCC. Furthermore, we demonstrated that HBV-miR-2 suppresses the expression of TRIM35 but enhances RAN expression by targeting their 3'-untranslated regions (3'UTR) and that the ectopic expression of TRIM35 or knockdown of RAN counteracted the malignant phenotypes induced by HBV-miR-2. INTERPRETATION Our findings indicate that an HBV-encoded miRNA, HBV-miR-2, promotes oncogenic activity by downregulating TRIM35 expression and upregulating RAN expression in liver cancer cells, likely providing insight into tumorigenesis in HBV-related liver cancer. FUND: This work was supported in part by the National Natural Science Foundation of China (No: 81830094; 91629302; 31270818) and the Natural Science Foundation of Tianjin (No: 12JCZDJC25100).
Collapse
Affiliation(s)
- Lili Yao
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Yadi Zhou
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Zhenhua Sui
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Yanling Zhang
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Yankun Liu
- The Cancer Institute, Tangshan People's Hospital, Tangshan 063001, China
| | - Hong Xie
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China.
| | - Huijie Gao
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Hongxia Fan
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Yi Zhang
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Min Liu
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China
| | - Shengping Li
- State Key Laboratory of Oncology in Southern China, Department of Hepatobiliary Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Hua Tang
- Tianjin Life Science Research Center, Tianjin Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
5
|
Exosome-delivered and Y RNA-derived small RNA suppresses influenza virus replication. J Biomed Sci 2019; 26:58. [PMID: 31416454 PMCID: PMC6694579 DOI: 10.1186/s12929-019-0553-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Multiple interplays between viral and host factors are involved in influenza virus replication and pathogenesis. Several small RNAs have recently emerged as important regulators of host response to viral infections. The aim of this study was to characterize the functional role of hsa-miR-1975, a Y5 RNA-derived small RNA, in defending influenza virus and delineate the mechanisms. Methods We performed high throughput sequencing of small RNAs in influenza virus-infected cells to identify up- or down- regulated small RNA species. The expression of the most abundant RNA species (hsa-miR-1975) was validated by stem-loop reverse transcription-polymerase chain reaction (RT-PCR). Antiviral effects of hsa-miR-1975 were confirmed by Western Blot, RT-PCR and plaque assay. In vitro perturbation of hsa-miR-1975 combined with exosomes isolation was used to elucidate the role and mechanism of hsa-miR-1975 in the context of antiviral immunity. Results Small RNA sequencing revealed that hsa-miR-1975 was the most up-regulated small RNA in influenza virus-infected cells. The amount of intracellular hsa-miR-1975 increased in the late stage of the influenza virus replication cycle. The increased hsa-miR-1975 was at least partially derived from degradation of Y5RNA as a result of cellular apoptosis. Unexpectedly, hsa-miR-1975 mimics inhibited influenza virus replication while hsa-miR-1975 sponges enhanced the virus replication. Moreover, hsa-miR-1975 was secreted in exosomes and taken up by the neighboring cells to induce interferon expression. Conclusions Our findings unravel a critical role of Y-class small RNA in host’s defense against influenza virus infection and reveal its antiviral mechanism through exosome delivery. This may provide a new candidate for targeting influenza virus. Electronic supplementary material The online version of this article (10.1186/s12929-019-0553-6) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Ho T, Panyim S, Udomkit A. Suppression of argonautes compromises viral infection in Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:130-137. [PMID: 30227218 DOI: 10.1016/j.dci.2018.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Argonaute (Ago) proteins, the catalytic component of an RNA-induced silencing complex (RISC) in RNA interference pathway, function in diverse processes, especially in antiviral defense and transposon regulation. So far, cDNAs encoding four members of Argonaute were found in Penaeus monodon (PmAgo1-4). Two PmAgo proteins, PmAgo1 and PmAgo3 shared high percentage of amino acid identity to Ago1 and Ago2, respectively in other Penaeid shrimps. Therefore, the possible roles of PmAgo1 and PmAgo3 upon viral infection in shrimp were characterized in this study. The level of PmAgo1 mRNA expression in shrimp hemolymph was stimulated upon YHV challenge, but not with dsRNA administration. Interestingly, silencing of either PmAgo1 or PmAgo3 using sequence-specific dsRNAs impaired the efficiency of PmRab7-dsRNA to knockdown shrimp endogenous PmRab7 expression. Inhibition of yellow head virus (YHV) replication and delayed mortality rate were also observed in both PmAgo1-and PmAgo3-knockdown shrimp. In addition, silencing of PmAgo3 transcript, but not PmAgo1, revealed partial inhibition of white spot syndrome virus (WSSV) infection and delayed mortality rate. Therefore, our study provides insights into PmAgo1and PmAgo3 functions that are involved in a dsRNA-mediated gene silencing pathway and play roles in YHV and WSSV replication in the shrimp.
Collapse
Affiliation(s)
- Teerapong Ho
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand.
| |
Collapse
|
7
|
Hosaka A, Saito R, Takashima K, Sasaki T, Fu Y, Kawabe A, Ito T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T. Evolution of sequence-specific anti-silencing systems in Arabidopsis. Nat Commun 2017; 8:2161. [PMID: 29255196 PMCID: PMC5735166 DOI: 10.1038/s41467-017-02150-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023] Open
Abstract
The arms race between parasitic sequences and their hosts is a major driving force for evolution of gene control systems. Since transposable elements (TEs) are potentially deleterious, eukaryotes silence them by epigenetic mechanisms such as DNA methylation. Little is known about how TEs counteract silencing to propagate during evolution. Here, we report behavior of sequence-specific anti-silencing proteins used by Arabidopsis TEs and evolution of those proteins and their target sequences. We show that VANC, a TE-encoded anti-silencing protein, induces extensive DNA methylation loss throughout TEs. Related VANC proteins have evolved to hypomethylate TEs of completely different spectra. Targets for VANC proteins often form tandem repeats, which vary considerably between related TEs. We propose that evolution of VANC proteins and their targets allow propagation of TEs while causing minimal host damage. Our findings provide insight into the evolutionary dynamics of these apparently "selfish" sequences. They also provide potential tools to edit epigenomes in a sequence-specific manner.
Collapse
Affiliation(s)
- Aoi Hosaka
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan.
| | - Raku Saito
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan
| | - Kazuya Takashima
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
| | - Taku Sasaki
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yu Fu
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan
| | - Akira Kawabe
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama Kamigamo, Kyoto, 606-8555, Japan
| | - Tasuku Ito
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Center for Information Biology, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
8
|
Zhou Y, Geng P, Liu Y, Wu J, Qiao H, Xie Y, Yin N, Chen L, Lin X, Liu Y, Yi S, Zhang G, Li H, Sun M. Rotavirus-encoded virus-like small RNA triggers autophagy by targeting IGF1R via the PI3K/Akt/mTOR pathway. Biochim Biophys Acta Mol Basis Dis 2017; 1864:60-68. [PMID: 29017894 DOI: 10.1016/j.bbadis.2017.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/04/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023]
Abstract
Rotaviruses are double-stranded RNA viruses that are a major cause of viral diarrhea in infants. Examining virus-host cell interaction is important for elucidating mechanisms of virus proliferation in host cells. Viruses can create an environment that promotes their survival and self-proliferation by encoding miRNAs or miRNA-like molecules that target various host cell. However, it remains unclear whether RNA viruses encode viral miRNAs, and their regulation mechanisms are largely unknown. We previously performed deep sequencing analysis to investigate rotavirus-encoded miRNAs, and identified the small RNA molecule Chr17_1755, which we named RV-vsRNA1755. In our present study, we determined that RV-vsRNA1755 is encoded by the rotavirus NSP4 gene and that it targets the host cell IGF1R, which is part of the PI3K/Akt pathway. We further explored the biological characteristics and functions of RV-vsRNA1755.Our results suggest that rotavirus adapts to manipulate PI3K/Akt signaling at early phases of infection. RV-vsRNA1755 targets IGF1R, blockading the PI3K/Akt pathway and triggering autophagy, but it ultimately inhibits autophagy maturation. A mechanism through which rotavirus encodes a virus-like small RNA (RV-vsRNA1755) that triggers autophagy by targeting the host cell IGF1R gene was revealed. These data provide a theoretical basis for therapeutic drug screening targeting RV-vsRNA1755.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Panpan Geng
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Yalin Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Hongtu Qiao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Yuping Xie
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Na Yin
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Linlin Chen
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Xiaochen Lin
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Yang Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Shan Yi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Guangming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China.
| | - Maosheng Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China.
| |
Collapse
|
9
|
Li ML, Weng KF, Shih SR, Brewer G. The evolving world of small RNAs from RNA viruses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:575-88. [PMID: 27046163 DOI: 10.1002/wrna.1351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 11/10/2022]
Abstract
RNA virus infection in plants and invertebrates can produce virus-derived small RNAs. These RNAs share features with host endogenous small interfering RNAs (siRNAs). They can potentially mediate RNA interference (RNAi) and related RNA silencing pathways, resulting in specific antiviral defense. Although most RNA silencing components such as Dicer, Ago2, and RISC are conserved among eukaryotic hosts, whether RNA virus infection in mammals can generate functional small RNAs that act in antiviral defense remains under discussion. Here, we review recent studies on the molecular and biochemical features of viral siRNAs and other virus-derived small RNAs from infected plants, arthropods, nematodes, and vertebrates and discuss the genetic pathways for their biogenesis and their roles in antiviral activity. WIREs RNA 2016, 7:575-588. doi: 10.1002/wrna.1351 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Clinical Virology Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gary Brewer
- Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|