1
|
YAP1 induces marrow derived suppressor cell recruitment in Chlamydia trachomatis infection. Immunol Lett 2021; 242:8-16. [PMID: 34968530 DOI: 10.1016/j.imlet.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
Chlamydia trachomatis (C. trachomatis) is the most commonly diagnosed bacterial sexually transmitted infection (STI) worldwide. Marrow derived suppressor cells (MDSCs) are a heterogeneous population of immature monocytes and granulocytes, which are effective inhibitors for T cell activation. This study explores the role of MDSCs in the immune escape mechanism of C. trachomatis. We established a vaginal infection model of a BALB/c-Chlamydia trachomatis mouse pneumonia strain (MoPn), and compared the percentages of MDSCs, CD4+T, and CD8+T cells in the spleen and cervix of mice before and after infection. The expression levels of arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS) in MDSCs, and the expression level of transcriptional co-activator yes-associated protein 1 (YAP1) in the cervix were also compared. The results show that the proportion of MDSCs increases, while the proportion of CD4+T and CD8+T cells decreases after C. trachomatis-infection. The expression of Arg-1 and iNOS in MDSCs and YAP1 in host cells is up-regulated. C. trachomatis growth is inhibited after the inhibition of YAP1 in host cells. The proportion of MDSCs decreases after in vivo pharmacological inhibition of YAP1 in the C. trachomatis-infected mouse model. These results demonstrate, for the first time, the participation of MDSC in the immune escape of C. trachomatis under the action of YAP1.
Collapse
|
2
|
Dockterman J, Coers J. Immunopathogenesis of genital Chlamydia infection: insights from mouse models. Pathog Dis 2021; 79:ftab012. [PMID: 33538819 PMCID: PMC8189015 DOI: 10.1093/femspd/ftab012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are pathogenic intracellular bacteria that cause a wide variety of diseases throughout the globe, affecting the eye, lung, coronary arteries and female genital tract. Rather than by direct cellular toxicity, Chlamydia infection generally causes pathology by inducing fibrosis and scarring that is largely mediated by host inflammation. While a robust immune response is required for clearance of the infection, certain elements of that immune response may also damage infected tissue, leading to, in the case of female genital infection, disease sequelae such as pelvic inflammatory disease, infertility and ectopic pregnancy. It has become increasingly clear that the components of the immune system that destroy bacteria and those that cause pathology only partially overlap. In the ongoing quest for a vaccine that prevents Chlamydia-induced disease, it is important to target mechanisms that can achieve protective immunity while preventing mechanisms that damage tissue. This review focuses on mouse models of genital Chlamydia infection and synthesizes recent studies to generate a comprehensive model for immunity in the murine female genital tract, clarifying the respective contributions of various branches of innate and adaptive immunity to both host protection and pathogenic genital scarring.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
| |
Collapse
|
3
|
He C, Xu Y, Huo Z, Wang J, Jia T, Li XD, Zhong G. Regulation of Chlamydia spreading from the small intestine to the large intestine via an immunological barrier. Immunol Cell Biol 2021; 99:611-621. [PMID: 33565158 DOI: 10.1111/imcb.12446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
The obligate intracellular bacterium Chlamydia is a genital tract pathogen that can also colonize the gastrointestinal tract for long periods. The long-lasting colonization is dependent on chlamydial spreading from the small intestine to the large intestine. We previously reported that a mutant Chlamydia was able to activate an intestinal barrier for blocking its own spreading to the large intestine. In the current study, we used the mutant Chlamydia colonization model to confirm the intestinal barrier function and further to determine the immunological basis of the barrier with gene-deficient mice. Recombination activating gene 1-/- mice failed to block the mutant Chlamydia spreading, while mice deficient in toll-like receptors, myeloid differentiation primary response 88 or stimulator of interferon genes still blocked the spreading, suggesting that the intestinal barrier function is dependent on lymphocytes that express antigen receptors. Mice deficient in CD4, but not CD8 nor μ chain failed to prevent the chlamydial spreading, indicating a protective role of CD4+ cells in the intestinal barrier. Consistently, adoptive transfer of CD4+ T cells reconstituted the intestinal barrier in CD4-/- mice. More importantly, CD4+ but not CD8+ T cells nor B cells restored the intestinal barrier function in recombination activating gene 1-/- mice. Thus, CD4+ T cells are necessary and sufficient for maintaining the intestinal barrier function, indicating that the spread of an intracellular bacterium from the small intestine to the large intestine is regulated by an immunological barrier. This study has also laid a foundation for further illuminating the mechanisms by which a CD4+ T cell-dependent intestinal barrier regulates bacterial spreading in the gut.
Collapse
Affiliation(s)
- Conghui He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Immunology, Medical College of Hebei North University, Zhangjiakou, Hebei, China
| | - Ying Xu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Immunology, Xiangya School of Medicine, Central South University, Changsha City, Hunan, China
| | - Zhi Huo
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Immunology, Xiangya School of Medicine, Central South University, Changsha City, Hunan, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha City, Hunan, China
| | - Tianjun Jia
- Department of Immunology, Medical College of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiao-Dong Li
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Gyorke CE, Kollipara A, Allen J, Zhang Y, Ezzell JA, Darville T, Montgomery SA, Nagarajan UM. IL-1α Is Essential for Oviduct Pathology during Genital Chlamydial Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:3037-3049. [PMID: 33087404 DOI: 10.4049/jimmunol.2000600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Chlamydia trachomatis infection of the female genital tract can lead to irreversible fallopian tube scarring. In the mouse model of genital infection using Chlamydia muridarum, IL-1R signaling plays a critical role in oviduct tissue damage. In this study, we investigated the pathologic role of IL-1α, one of the two proinflammatory cytokines that bind to IL-1R. Il1a-/- mice infected with C. muridarum cleared infection at their cervix at the same rate as wild-type (WT) mice, but were significantly protected from end point oviduct damage and fibrosis. The contribution of IL-1α to oviduct pathology was more dramatic than observed in mice deficient for IL-1β. Although chlamydial burden was similar in WT and Il1a-/- oviduct during peak days of infection, levels of IL-1β, IL-6, CSF3, and CXCL2 were reduced in Il1a-/- oviduct lysates. During infection, Il1a-/- oviducts and uterine horns exhibited reduced neutrophil infiltration, and this reduction persisted after the infection resolved. The absence of IL-1α did not compromise CD4 T cell recruitment or function during primary or secondary chlamydial infection. IL-1α is expressed predominantly by luminal cells of the genital tract in response to infection, and low levels of expression persisted after the infection cleared. Ab-mediated depletion of IL-1α in WT mice prevented infection-induced oviduct damage, further supporting a key role for IL-1α in oviduct pathology.
Collapse
Affiliation(s)
- Clare E Gyorke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Avinash Kollipara
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - John Allen
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yugen Zhang
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - J Ashley Ezzell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Uma M Nagarajan
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
5
|
Chlamydia Deficient in Plasmid-Encoded pGP3 Is Prevented from Spreading to Large Intestine. Infect Immun 2020; 88:IAI.00120-20. [PMID: 32205401 DOI: 10.1128/iai.00120-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The cryptic plasmid pCM is critical for chlamydial colonization in the gastrointestinal tract. Nevertheless, orally inoculated plasmid-free Chlamydia sp. was still able to colonize the gut. Surprisingly, orally inoculated Chlamydia sp. deficient in only plasmid-encoded pGP3 was no longer able to colonize the gut. A comparison of live organism recoveries from individual gastrointestinal tissues revealed that pGP3-deficient Chlamydia sp. survived significantly better than plasmid-free Chlamydia sp. in small intestinal tissues. However, the small intestinal pGP3-deficient Chlamydia sp. failed to reach the large intestine, explaining the lack of live pGP3-deficient Chlamydia sp. in rectal swabs following an oral inoculation. Interestingly, pGP3-deficient Chlamydia sp. was able to colonize the colon following an intracolon inoculation, suggesting that pGP3-deficient Chlamydia sp. might be prevented from spreading from the small intestine to the large intestine. This hypothesis is supported by the finding that following an intrajejunal inoculation that bypasses the gastric barrier, pGP3-deficient Chlamydia sp. still failed to reach the large intestine, although similarly inoculated plasmid-free Chlamydia sp. was able to do so. Interestingly, when both types of organisms were intrajejunally coinoculated into the same mouse small intestine, plasmid-free Chlamydia sp. was no longer able to spread to the large intestine, suggesting that pGP3-deficient Chlamydia sp. might be able to activate an intestinal resistance for regulating Chlamydia sp. spreading. Thus, the current study has not only provided evidence for reconciling a previously identified conflicting phenotype but also revealed a potential intestinal resistance to chlamydial spreading. Efforts are under way to further define the mechanism of the putative intestinal resistance.
Collapse
|
6
|
The Cryptic Plasmid Improves Chlamydia Fitness in Different Regions of the Gastrointestinal Tract. Infect Immun 2020; 88:IAI.00860-19. [PMID: 31871102 DOI: 10.1128/iai.00860-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
The cryptic plasmid is important for chlamydial colonization in the gastrointestinal tract. We used a combination of intragastric, intrajejunal, and intracolon inoculations to reveal the impact of the plasmid on chlamydial colonization in distinct regions of gastrointestinal tract. Following an intragastric inoculation, the plasmid significantly improved chlamydial colonization. At the tissue level, plasmid-positive Chlamydia produced infectious progenies throughout gastrointestinal tract. However, to our surprise, plasmid-deficient Chlamydia failed to produce infectious progenies in small intestine, although infectious progenies were eventually detected in large intestine, indicating a critical role of the plasmid in chlamydial differentiation into infectious particles in small intestine. The noninfectious status may represent persistent infection, since Chlamydia genomes proliferated in the same tissues. Following an intrajejunal inoculation that bypasses the gastric barrier, plasmid-deficient Chlamydia produced infectious progenies in small intestine but was 530-fold less infectious than plasmid-positive Chlamydia, suggesting that (i) the noninfectious status developed after intragastric inoculation might be induced by a combination of gastric and intestinal effectors and (ii) chlamydial colonization in small intestine was highly dependent on plasmid. Finally, following an intracolon inoculation, the dependence of chlamydial colonization on plasmid increased over time. Thus, we have demonstrated that the plasmid may be able to improve chlamydial fitness in different gut regions via different mechanisms, which has laid a foundation to further reveal the specific mechanisms.
Collapse
|
7
|
Kumar R, Gong H, Liu L, Ramos-Solis N, Seye CI, Derbigny WA. TLR3 deficiency exacerbates the loss of epithelial barrier function during genital tract Chlamydia muridarum infection. PLoS One 2019; 14:e0207422. [PMID: 30625140 PMCID: PMC6326510 DOI: 10.1371/journal.pone.0207422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/22/2018] [Indexed: 12/18/2022] Open
Abstract
Problem Chlamydia trachomatis infections are often associated with acute syndromes including cervicitis, urethritis, and endometritis, which can lead to chronic sequelae such as pelvic inflammatory disease (PID), chronic pelvic pain, ectopic pregnancy, and tubal infertility. As epithelial cells are the primary cell type productively infected during genital tract Chlamydia infections, we investigated whether Chlamydia has any impact on the integrity of the host epithelial barrier as a possible mechanism to facilitate the dissemination of infection, and examined whether TLR3 function modulates its impact. Method of study We used wild-type and TLR3-deficient murine oviduct epithelial (OE) cells to ascertain whether C. muridarum infection had any effect on the epithelial barrier integrity of these cells as measured by transepithelial resistance (TER) and cell permeability assays. We next assessed whether infection impacted the transcription and protein function of the cellular tight-junction (TJ) genes for claudins1-4, ZO-1, JAM1 and occludin via quantitative real-time PCR (qPCR) and western blot. Results qPCR, immunoblotting, transwell permeability assays, and TER studies show that Chlamydia compromises cellular TJ function throughout infection in murine OE cells and that TLR3 deficiency significantly exacerbates this effect. Conclusion Our data show that TLR3 plays a role in modulating epithelial barrier function during Chlamydia infection of epithelial cells lining the genital tract. These findings propose a role for TLR3 signaling in maintaining the integrity of epithelial barrier function during genital tract Chlamydia infection, a function that we hypothesize is important in helping limit the chlamydial spread and subsequent genital tract pathology.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haoli Gong
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Luyao Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Nicole Ramos-Solis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Cheikh I. Seye
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
The Genital Tract Virulence Factor pGP3 Is Essential for Chlamydia muridarum Colonization in the Gastrointestinal Tract. Infect Immun 2017; 86:IAI.00429-17. [PMID: 29038127 DOI: 10.1128/iai.00429-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
The cryptic plasmid is essential for Chlamydia muridarum dissemination from the genital tract to the gastrointestinal (GI) tract. Following intravaginal inoculation, a C. muridarum strain deficient in plasmid-encoded pGP3 or pGP4 but not pGP5, pGP7, or pGP8 failed to spread to the mouse gastrointestinal tract, although mice infected with these strains developed productive genital tract infections. pGP3- or pGP4-deficient strains also failed to colonize the gastrointestinal tract when delivered intragastrically. pGP4 regulates pGP3, while pGP3 does not affect pGP4 expression, indicating that pGP3 is critical for C. muridarum colonization of the gastrointestinal tract. Mutants deficient in GlgA, a chromosome-encoded protein regulated by pGP4, also consistently colonized the mouse gastrointestinal tract. Interestingly, C. muridarum colonization of the gastrointestinal tract positively correlated with pathogenicity in the upper genital tract. pGP3-deficient C. muridarum strains did not induce hydrosalpinx or spread to the GI tract even when delivered to the oviduct by intrabursal inoculation. Thus, the current study not only has revealed that pGP3 is a novel chlamydial colonization factor in the gastrointestinal tract but also has laid a foundation for investigating the significance of gastrointestinal Chlamydia.
Collapse
|
9
|
Zhang Y, Shao L, Li X, Zhong G. Uterotubal junction prevents chlamydial ascension via innate immunity. PLoS One 2017; 12:e0183189. [PMID: 28797102 PMCID: PMC5552320 DOI: 10.1371/journal.pone.0183189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
Ascension to the oviduct is necessary for Chlamydia to induce tubal infertility. Using the Chlamydia muridarum induction of hydrosalpinx mouse model, we have demonstrated a significant role of the uterotubal junction in preventing chlamydial ascending infection. First, delivery of C. muridarum to either side of the uterotubal junction resulted in significant reduction in live organisms from the tissues on the opposite sides. However, the recovery yields remained similar among different sections of the uterine horn. These observations suggest that the uterotubal junction may function as a barrier between the uterine horn and oviduct. Second, deficiency in innate immunity signaling pathways mediated by either MyD88 or STING significantly compromised the uterotubal junction barrier function, permitting C. muridarum to spread freely between uterine horn and oviduct. Finally, transcervical inoculation of C. muridarum led to significantly higher incidence of bilateral hydrosalpinges in the STING-deficient mice while the same inoculation mainly induced unilateral hydrosalpinx in the wild type mice, suggesting that the STING pathway-dependent uterotubal junction plays a significant role in preventing tubal pathology. Thus, we have demonstrated for the first time that the uterotubal junction is a functional barrier for preventing tubal infection by a sexually transmitted agent, providing the first in vivo evidence for detecting chlamydial infection by the STING pathway.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Texas, United States of America
| | - Lili Shao
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Texas, United States of America
| | - Xiaodong Li
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Texas, United States of America
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chlamydia muridarum with Mutations in Chromosomal Genes tc0237 and/or tc0668 Is Deficient in Colonizing the Mouse Gastrointestinal Tract. Infect Immun 2017; 85:IAI.00321-17. [PMID: 28584162 PMCID: PMC5520443 DOI: 10.1128/iai.00321-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022] Open
Abstract
Chlamydiae colonize the gastrointestinal tracts of both animals and humans. However, their medical significance remains unknown. We have previously shown that wild-type Chlamydia muridarum spreads to and establishes stable colonization of the gastrointestinal tract following intravaginal inoculation. In the present study, we found that C. muridarum with mutations in chromosomal genes tc0237 and/or tc0668 was defective in spreading to the mouse gastrointestinal tract, which correlated with its attenuated pathogenicity in the upper genital tract. This correlation was more consistent than that of chlamydial pathogenicity with ascending infection in the genital tract, since attenuated C. muridarum spread significantly less to the gastrointestinal tract but maintained robust ascending infection of the upper genital tract. Transcervical inoculation further confirmed the correlation between C. muridarum spreading to the gastrointestinal tract and its pathogenicity in the upper genital tract. Finally, defective spreading of C. muridarum mutants was due to their inability to colonize the gastrointestinal tract since intragastric inoculation did not rescue the mutants' colonization. Thus, promoting C. muridarum colonization of the gastrointestinal tract may represent a primary function of the TC0237 and TC0668 proteins. Correlation of chlamydial colonization of the gastrointestinal tract with chlamydial pathogenicity in the upper genital tract suggests a potential role for gastrointestinal chlamydiae in genital tract pathogenicity.
Collapse
|
11
|
Shao L, Melero J, Zhang N, Arulanandam B, Baseman J, Liu Q, Zhong G. The cryptic plasmid is more important for Chlamydia muridarum to colonize the mouse gastrointestinal tract than to infect the genital tract. PLoS One 2017; 12:e0177691. [PMID: 28542376 PMCID: PMC5444651 DOI: 10.1371/journal.pone.0177691] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Chlamydia has been detected in the gastrointestinal tracts of both animals and humans. However, the mechanism by which Chlamydia colonizes the gut remains unclear. Chlamydia muridarum is known to spread from the genital to the gastrointestinal tracts hematogenously. The C. muridarum plasmid is a key pathogenic determinant in the mouse upper genital tract although plasmid-deficient C. muridarum is still able to colonize the upper genital tract. We now report that plasmid-deficient C. muridarum exhibits significantly delayed/reduced spreading from the mouse genital to the gastrointestinal tracts. C. muridarum with or without plasmid maintained similar levels in the mouse circulatory system following intravenous inoculation but the hematogenous plasmid-deficient C. muridarum was significantly less efficient in colonizing the gastrointestinal tract. Consistently, plasmid-deficient C. muridarum failed to restore normal colonization in the gastrointestinal tract even after intragastric inoculation at a high dose. Thus, we have demonstrated a plasmid-dependent colonization of C. muridarum in the gastrointestinal tract, supporting the concept that C. muridarum may have acquired the plasmid for adaptation to the mouse gastrointestinal tract during oral-fecal transmission. Since the plasmid is more important for C. muridarum to colonize the gastrointestinal tract than to infect the genital tract, the current study has laid a foundation for further defining the host pathways targeted by the plasmid-encoded or -regulated chlamydial effectors.
Collapse
Affiliation(s)
- Lili Shao
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jose Melero
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nu Zhang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Bernard Arulanandam
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Joel Baseman
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Quanzhong Liu
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
12
|
Intravenous Inoculation with Chlamydia muridarum Leads to a Long-Lasting Infection Restricted to the Gastrointestinal Tract. Infect Immun 2016; 84:2382-2388. [PMID: 27271744 DOI: 10.1128/iai.00432-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 12/16/2022] Open
Abstract
Chlamydia has been detected in the gastrointestinal tracts of both animals and humans. However, it remains unclear whether the chlamydial organisms can be introduced into the gastrointestinal tract via pathways independent of the oral and anal routes. We have recently shown that Chlamydia muridarum spreads from the genital tract to the gastrointestinal tract potentially via the circulatory system. To test whether hematogenous C. muridarum can spread to and establish a long-lasting colonization in the mouse gastrointestinal tract, we inoculated mice intravenously with a luciferase-expressing C. muridarum strain and monitored its distribution. After tail vein inoculation, most luciferase-generated bioluminescence signals were detected in the mouse abdominal area throughout the experiment. The ex vivo imaging revealed that the abdominal signals came from the gastrointestinal tract tissues. Simultaneous monitoring of chlamydial organisms in individual organs or tissues revealed an initial stage of systemic spreading followed by a long-lasting infection in the gastrointestinal tract. A retro-orbital vein inoculation of the C. muridarum organisms at a lower dose in a different mouse strain also led to colonization of the gastrointestinal tract. We have demonstrated that intravenous C. muridarum inoculation can result in colonization of the gastrointestinal tract, suggesting that the chlamydial organisms may use the sexual behavior-independent circulation pathway to infect the gastrointestinal tract.
Collapse
|