1
|
Sun X, Xie Z, Wu Z, Song M, Zhang Y, Zhang Z, Cui X, Liu A, Li K. Mechanisms of HIV-immunologic non-responses and research trends based on gut microbiota. Front Immunol 2024; 15:1378431. [PMID: 39802299 PMCID: PMC11718445 DOI: 10.3389/fimmu.2024.1378431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
With the increasing number of people with HIV (PWH) and the use of antiretroviral treatment (ART) for PWH, HIV has gradually become a chronic infectious disease. However, some infected individuals develop issues with immunologic non-responses (INRs) after receiving ART, which can lead to secondary infections and seriously affect the life expectancy and quality of life of PWH. Disruption of the gut microbiota is an important factor in immune activation and inflammation in HIV/AIDS, thus stabilizing the gut microbiota to reduce immune activation and inflammation and promoting immune reconstitution may become a direction for the treatment of HIV/AIDS. This paper, based on extensive literature review, summarizes the definition, mechanisms, and solutions for INRs, starting from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Xiangbin Sun
- Medical School of Shihezi University, Shihezi, China
| | - Zhanpeng Xie
- Medical School of Shihezi University, Shihezi, China
| | - Zhen Wu
- Medical School of Shihezi University, Shihezi, China
| | - Meiyang Song
- Medical School of Shihezi University, Shihezi, China
| | - Youxian Zhang
- Medical School of Shihezi University, Shihezi, China
| | - Zezhan Zhang
- Medical School of Shihezi University, Shihezi, China
| | - Xinxin Cui
- Medical School of Shihezi University, Shihezi, China
| | - Aodi Liu
- Medical School of Shihezi University, Shihezi, China
| | - Ke Li
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Qurban R, Saeed S, Kanwal W, Junaid K, Rehman A. Potential immune modulatory effect of vitamin D in HIV infection: A review. Clin Nutr ESPEN 2022; 47:1-8. [DOI: 10.1016/j.clnesp.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
|
3
|
Sanlier N, Guney-Coskun M. Vitamin D, the immune system, and its relationship with diseases. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2022; 70:39. [PMCID: PMC9573796 DOI: 10.1186/s43054-022-00135-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background Vitamin D is classified as an immunomodulatory hormone that is synthesized because of skin exposure to sunlight. It is known to come into play during the regulation of hormone secretion, immune functions, cell proliferation, and differentiation. Its deficiency can cause many diseases and their associated pleiotropic effects. In addition, in relation to its eminent function as regards adaptive immune response and innate immune response, vitamin D level is associated with immune tolerance. Methods Literature search prior to May 2021 was conducted through selected websites, including the MEDLINE, Embase, Web of Science, Cochrane Central, www.ClinicalTrials.gov, PubMed, Science Direct, Google Scholar, and EFSA. Results Vitamin D is found effective for the regulation of hormone secretion, immune functions, and cell proliferation along with differentiation. Its role as an immune modulator is based on the presence of receptors on many immune cells and the synthesis of its active metabolite from these cells. Vitamin D, an immune system modulator, inhibits cell proliferation and stimulates cell differentiation. A fair number of immune system diseases, encompassing autoimmune disorders alongside infectious diseases, can occur because of low serum vitamin D levels. Supplementation of vitamin D has positive effects in lessening the severity nature of disease activity; there exists no consensus on the dose to be used. Conclusion It is figured out that a higher number of randomized controlled trials are essential to evaluate efficacy pertaining to clinical cases, treatment duration, type, and dose of supplementation and pathophysiology of diseases, immune system functioning, and the effect of vitamin D to be administered.
Collapse
Affiliation(s)
- Nevin Sanlier
- Nutrition and Dietetics Department, Faculty of Health Science, Ankara Medipol University, Ankara, 06050 Turkey
| | - Merve Guney-Coskun
- grid.411781.a0000 0004 0471 9346Nutrition and Dietetics Department, Faculty of Health Science, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
4
|
Paria K, Paul D, Chowdhury T, Pyne S, Chakraborty R, Mandal SM. Synergy of melanin and vitamin-D may play a fundamental role in preventing SARS-CoV-2 infections and halt COVID-19 by inactivating furin protease. TRANSLATIONAL MEDICINE COMMUNICATIONS 2020; 5:21. [PMID: 33169107 PMCID: PMC7642579 DOI: 10.1186/s41231-020-00073-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 05/28/2023]
Abstract
Since the birth of Christ, in these 2019 years, the man on earth has never experienced a survival challenge from any acellular protist compared to SARS-CoV-2. No specific drugs yet been approved. The host immunity is the only alternative to prevent and or reduce the infection and mortality rate as well. Here, a novel mechanism of melanin mediated host immunity is proposed having potent biotechnological prospects in health care management of COVID-19. Vitamin D is known to enhance the rate of melanin synthesis; and this may concurrently regulate the expression of furin expression. In silico analyses have revealed that the intermediates of melanin are capable of binding strongly with the active site of furin protease. On the other hand, furin expression is negatively regulated via 1-α-hydroxylase (CYP27B1), that belongs to vitamin-D pathway and controls cellular calcium levels. Here, we have envisaged the availability of biological melanin and elucidated the bio-medical potential. Thus, we propose a possible synergistic application of melanin and the enzyme CYP27B1 (regulates vitamin D biosynthesis) as a novel strategy to prevent viral entry through the inactivation of furin protease and aid in boosting our immunity at the cellular and humoral levels.
Collapse
Affiliation(s)
- Kishalay Paria
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal India
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, Sector 125 201313 India
| | - Trinath Chowdhury
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Smritikana Pyne
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Ranadhir Chakraborty
- Department of Biotechnology, University of North Bengal, Raja Rammohanpur, Darjeeling, West Bengal 734013 India
| | - Santi M. Mandal
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
5
|
Lee C. Controversial Effects of Vitamin D and Related Genes on Viral Infections, Pathogenesis, and Treatment Outcomes. Nutrients 2020; 12:nu12040962. [PMID: 32235600 PMCID: PMC7230640 DOI: 10.3390/nu12040962] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Vitamin D (VD) plays an essential role in mineral homeostasis and bone remodeling. A number of different VD-related genes (VDRG) are required for the metabolic activation of VD and the subsequent induction of its target genes. They include a set of genes that encode for VD-binding protein, metabolic enzymes, and the VD receptor. In addition to its well-characterized skeletal function, the immunoregulatory activities of VD and the related polymorphisms of VDRG have been reported and linked to its therapeutic and preventive actions for the control of several viral diseases. However, in regards to their roles in the progression of viral diseases, inconsistent and, in some cases, contradictory results also exist. To resolve this discrepancy, I conducted an extensive literature search by using relevant keywords on the PubMed website. Based on the volume of hit papers related to a certain viral infection, I summarized and compared the effects of VD and VDRG polymorphism on the infection, pathogenesis, and treatment outcomes of clinically important viral diseases. They include viral hepatitis, respiratory viral infections, acquired immunodeficiency syndrome (AIDS), and other viral diseases, which are caused by herpesviruses, dengue virus, rotavirus, and human papillomavirus. This review will provide the most current information on the nutritional and clinical utilization of VD and VDRG in the management of the key viral diseases. This information should be valuable not only to nutritionists but also to clinicians who wish to provide evidence-based recommendations on the use of VD to virally infected patients.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
6
|
Fenizia C, Saulle I, Clerici M, Biasin M. Genetic and epigenetic regulation of natural resistance to HIV-1 infection: new approaches to unveil the HESN secret. Expert Rev Clin Immunol 2020; 16:429-445. [PMID: 32085689 DOI: 10.1080/1744666x.2020.1732820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Since the identification of HIV, several studies reported the unusual case of small groups of subjects showing natural resistance to HIV infection. These subjects are referred to as HIV-1-exposed seronegative (HESN) individuals and include people located in different areas, with diverse ethnic backgrounds and routes of exposure. The mechanism/s responsible for protection from infection in HESN individuals are basically indefinite and most likely are multifactorial.Areas covered: Host factors, including genetic background as well as natural and acquired immunity, have all been associated with this phenomenon. Recently, epigenetic factors have been investigated as possible determinants of reduced susceptibility to HIV infection. With the advent of the OMICS era, the availability of techniques such as GWAS, RNAseq, and exome-sequencing in both bulk cell populations and single cells will likely lead to great strides in the understanding of the HESN mystery.Expert opinion: The employment of increasingly sophisticated techniques is allowing the gathering of enormous amounts of data. The integration of such information will provide important hints that could lead to the identification of viral and host correlates of protection against HIV infection, allowing the development of more effective preventative and therapeutic regimens.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
7
|
Martínez-Moreno J, Hernandez JC, Urcuqui-Inchima S. Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Mol Cell Biochem 2019; 464:169-180. [PMID: 31758375 DOI: 10.1007/s11010-019-03658-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 01/18/2023]
Abstract
Dengue, caused by dengue virus (DENV) infection, is a public health problem worldwide. Although DENV pathogenesis has not yet been fully elucidated, the inflammatory response is a hallmark feature in severe DENV infection. Although vitamin D (vitD) can promote the innate immune response against virus infection, no studies have evaluated the effects of vitD on DENV infection, dendritic cells (DCs), and inflammatory response regulation. This study aimed to assess the impact of oral vitD supplementation on DENV-2 infection, Toll-like receptor (TLR) expression, and both pro- and anti-inflammatory cytokine production in monocyte-derived DCs (MDDCs). To accomplish this, 20 healthy donors were randomly divided into two groups and received either 1000 or 4000 international units (IU)/day of vitD for 10 days. During pre- and post-vitD supplementation, peripheral blood samples were taken to obtain MDDCs, which were challenged with DENV-2. We found that MDDCs from donors who received 4000 IU/day of vitD were less susceptible to DENV-2 infection than MDDCs from donors who received 1000 IU/day of vitD. Moreover, these cells showed decreased mRNA expression of TLR3, 7, and 9; downregulation of IL-12/IL-8 production; and increased IL-10 secretion in response to DENV-2 infection. In conclusion, the administration of 4000 IU/day of vitD decreased DENV-2 infection. Our findings support a possible role of vitD in improving the innate immune response against DENV. However, further studies are necessary to determine the role of vitD on DENV replication and its innate immune response modulation in MDDCs.
Collapse
Affiliation(s)
- Jahnnyer Martínez-Moreno
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010, Medellín, Colombia.
| |
Collapse
|
8
|
Vitamin D treatment of peripheral blood mononuclear cells modulated immune activation and reduced susceptibility to HIV-1 infection of CD4+ T lymphocytes. PLoS One 2019; 14:e0222878. [PMID: 31550271 PMCID: PMC6759150 DOI: 10.1371/journal.pone.0222878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Mucosal immune activation, in the context of sexual transmission of HIV-1 infection, is crucial, as the increased presence of activated T cells enhance susceptibility to infection. In this regard, it has been proposed that immunomodulatory compounds capable of modulating immune activation, such as Vitamin D (VitD) may reduce HIV-1 transmission and might be used as a safe and cost-effective strategy for prevention. Considering this, we examined the in vitro effect of the treatment of peripheral blood mononuclear cells (PBMCs) with the active form of VitD, calcitriol, on cellular activation, function and susceptibility of CD4+ T cells to HIV-1 infection. METHODS We treated PBMCs from healthy HIV unexposed individuals (Co-HC) and frequently exposed, HIV-1 seronegative individuals (HESNs) from Colombia and from healthy non-exposed individuals from Canada (Ca-HC) with calcitriol and performed in vitro HIV-1 infection assays using X4- and R5-tropic HIV-1 strains respectively. In addition, we evaluated the activation and function of T cells and the expression of viral co-receptors, and select antiviral genes following calcitriol treatment. RESULTS Calcitriol reduced the frequency of infected CD4+ T cells and the number of viral particles per cell, for both, X4- and R5-tropic viruses tested in the Co-HC and the Ca-HC, respectively, but not in HESNs. Furthermore, in the Co-HC, calcitriol reduced the frequency of polyclonally activated T cells expressing the activation markers HLA-DR and CD38, and those HLA-DR+CD38-, whereas increased the subpopulation HLA-DR-CD38+. Calcitriol treatment also decreased production of granzyme, IL-2 and MIP-1β by T cells and increased the transcriptional expression of the inhibitor of NF-kB and the antiviral genes cathelicidin (CAMP) and APOBEC3G in PBMCs from Co-HC. CONCLUSION Our in vitro findings suggest that VitD treatment could reduce HIV-1 transmission through a specific modulation of the activation levels and function of T cells, and the production of antiviral factors. In conclusion, VitD remains as an interesting potential strategy to prevent HIV-1 transmission that should be further explored.
Collapse
|
9
|
Xu B, Ding MY, Weng Z, Li ZQ, Li F, Sun X, Chen QL, Wang YT, Wang Y, Zhou GC. Discovery of fused bicyclic derivatives of 1H-pyrrolo[1,2-c]imidazol-1-one as VDR signaling regulators. Bioorg Med Chem 2019; 27:3879-3888. [DOI: 10.1016/j.bmc.2019.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
|
10
|
Missailidis C, Sørensen N, Ashenafi S, Amogne W, Kassa E, Bekele A, Getachew M, Gebreselassie N, Aseffa A, Aderaye G, Andersson J, Brighenti S, Bergman P. Vitamin D and Phenylbutyrate Supplementation Does Not Modulate Gut Derived Immune Activation in HIV-1. Nutrients 2019; 11:nu11071675. [PMID: 31330899 PMCID: PMC6682943 DOI: 10.3390/nu11071675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Dysbiosis and a dysregulated gut immune barrier function contributes to chronic immune activation in HIV-1 infection. We investigated if nutritional supplementation with vitamin D and phenylbutyrate could improve gut-derived inflammation, selected microbial metabolites, and composition of the gut microbiota. Treatment-naïve HIV-1-infected individuals (n = 167) were included from a double-blind, randomized, and placebo-controlled trial of daily 5000 IU vitamin D and 500 mg phenylbutyrate for 16 weeks (Clinicaltrials.gov NCT01702974). Baseline and per-protocol plasma samples at week 16 were analysed for soluble CD14, the antimicrobial peptide LL-37, kynurenine/tryptophan-ratio, TMAO, choline, and betaine. Assessment of the gut microbiota involved 16S rRNA gene sequencing of colonic biopsies. Vitamin D + phenylbutyrate treatment significantly increased 25-hydroxyvitamin D levels (p < 0.001) but had no effects on sCD14, the kynurenine/tryptophan-ratio, TMAO, or choline levels. Subgroup-analyses of vitamin D insufficient subjects demonstrated a significant increase of LL-37 in the treatment group (p = 0.02), whereas treatment failed to significantly impact LL-37-levels in multiple regression analysis. Further, no effects on the microbiota was found in number of operational taxonomic units (p = 0.71), Shannon microbial diversity index (p = 0.82), or in principal component analyses (p = 0.83). Nutritional supplementation with vitamin D + phenylbutyrate did not modulate gut-derived inflammatory markers or microbial composition in treatment-naïve HIV-1 individuals with active viral replication.
Collapse
Affiliation(s)
- Catharina Missailidis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14152 Stockholm, Sweden.
| | | | - Senait Ashenafi
- Center for Infectious Medicine (CIM), F59, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
| | - Wondwossen Amogne
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Endale Kassa
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Amsalu Bekele
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Meron Getachew
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | | | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), 1005 Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Jan Andersson
- Center for Infectious Medicine (CIM), F59, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), F59, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14152 Stockholm, Sweden
| |
Collapse
|
11
|
Aguilar-Jimenez W, Zapata W, Rivero-Juárez A, Pineda JA, Laplana M, Taborda NA, Biasin M, Clerici M, Caruz A, Fibla J, Rugeles MT. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. INFECTION GENETICS AND EVOLUTION 2019; 73:276-286. [PMID: 31103723 DOI: 10.1016/j.meegid.2019.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
Vitamin D (VitD) may modulate anti-HIV-1 responses modifying the risk to acquire the HIV-1-infection. We performed a nested case-control exploratory study involving 413 individuals; HIV-1-exposed seropositives (cases) and seronegatives (HESN) (controls) from three cohorts: sexually-exposed from Colombia and Italy and parenterally-exposed from Spain. The association and interactions of 139 variants in 9 VitD pathway genes, and in 14 antiviral genes with resistance/susceptibility (R/S) to HIV-1 infection was evaluated. Associations between variants and mRNA levels were also analyzed in the Colombian samples. Variants and haplotypes in genes of VitD and antiviral pathways were associated with R/S, but specific associations were not reproduced in all cohorts. Allelic heterogeneity could explain such inconsistency since the associations found in all cohorts were consistently in the same genes: VDR and RXRA of the VitD pathway genes and in TLR2 and RNASE4. Remarkably, the multi-locus genotypes (interacting variants) observed in genes of VitD and antiviral pathways were present in most HESNs of all cohorts. Finally, HESNs carrying resistance-associated variants had higher levels of VitD in plasma, of VDR mRNA in blood cells, and of ELAFIN and defensins mRNA in the oral mucosa. In conclusion, despite allelic heterogeneity, most likely due to differences in the genetic history of the populations, the associations were locus dependent suggesting that genes of the VitD pathway might act in concert with antiviral genes modulating the resistance phenotype of the HESNs. Although these associations were significant after permutation test, only haplotype results remained statistically significant after Bonferroni test, requiring further replications in larger cohorts and functional analyzes to validate these conclusions.
Collapse
Affiliation(s)
- Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia.
| | - Wildeman Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia; Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012 Medellín, Colombia
| | - Antonio Rivero-Juárez
- Unidad Clínica de Enfermedades Infecciosas, Instituto Maimonides para la Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Juan A Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, 41014 Seville, Spain
| | - Marina Laplana
- Unitat de Genètica Humana, Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia; Grupo de Investigaciones Biomédicas UniRemington, Facultad de Medicina, Corporación Universitaria Remington, 050010 Medellín, Colombia
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche-L. Sacco, Università Degli Studi di Milano, 20157 Milan, Italy.
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20100 Milan, Italy; Fondazione Don C, Gnocchi IRCCS, 20100 Milan, Italy.
| | - Antonio Caruz
- Unidad de Inmunogenética, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain.
| | - Joan Fibla
- Unitat de Genètica Humana, Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| | - María T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia.
| |
Collapse
|
12
|
Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev Med Virol 2019; 29:e2032. [PMID: 30614127 DOI: 10.1002/rmv.2032] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
The pleiotropic role of vitamin D has been explored over the past decades and there is compelling evidence for an epidemiological association between poor vitamin D status and a variety of diseases. While the potential anti-viral effect of vitamin D has recently been described, the underlying mechanisms by which vitamin D deficiency could contribute to viral disease development remain poorly understood. The possible interactions between viral infections and vitamin D appear to be more complex than previously thought. Recent findings indicate a complex interplay between viral infections and vitamin D, including the induction of anti-viral state, functional immunoregulatory features, interaction with cellular and viral factors, induction of autophagy and apoptosis, and genetic and epigenetic alterations. While crosstalk between vitamin D and intracellular signalling pathways may provide an essential modulatory effect on viral gene transcription, the immunomodulatory effect of vitamin D on viral infections appears to be transient. The interplay between viral infections and vitamin D remains an intriguing concept, and the global imprint that vitamin D can have on the immune signature in the context of viral infections is an area of growing interest.
Collapse
Affiliation(s)
- Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018; 10:nu10111656. [PMID: 30400332 PMCID: PMC6266123 DOI: 10.3390/nu10111656] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
The classical functions of vitamin D are to regulate calcium-phosphorus homeostasis and control bone metabolism. However, vitamin D deficiency has been reported in several chronic conditions associated with increased inflammation and deregulation of the immune system, such as diabetes, asthma, and rheumatoid arthritis. These observations, together with experimental studies, suggest a critical role for vitamin D in the modulation of immune function. This leads to the hypothesis of a disease-specific alteration of vitamin D metabolism and reinforces the role of vitamin D in maintaining a healthy immune system. Two key observations validate this important non-classical action of vitamin D: first, vitamin D receptor (VDR) is expressed by the majority of immune cells, including B and T lymphocytes, monocytes, macrophages, and dendritic cells; second, there is an active vitamin D metabolism by immune cells that is able to locally convert 25(OH)D3 into 1,25(OH)2D3, its active form. Vitamin D and VDR signaling together have a suppressive role on autoimmunity and an anti-inflammatory effect, promoting dendritic cell and regulatory T-cell differentiation and reducing T helper Th 17 cell response and inflammatory cytokines secretion. This review summarizes experimental data and clinical observations on the potential immunomodulating properties of vitamin D.
Collapse
|
14
|
Jiménez-Sousa MÁ, Martínez I, Medrano LM, Fernández-Rodríguez A, Resino S. Vitamin D in Human Immunodeficiency Virus Infection: Influence on Immunity and Disease. Front Immunol 2018; 9:458. [PMID: 29593721 PMCID: PMC5857570 DOI: 10.3389/fimmu.2018.00458] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
People living with human immunodeficiency virus (HIV) infection typically have hypovitaminosis D, which is linked to a large number of pathologies, including immune disorders and infectious diseases. Vitamin D (VitD) is a key regulator of host defense against infections by activating genes and pathways that enhance innate and adaptive immunity. VitD mediates its biological effects by binding to the Vitamin D receptor (VDR), and activating and regulating multiple cellular pathways. Single nucleotide polymorphisms in genes from those pathways have been associated with protection from HIV-1 infection. High levels of VitD and VDR expression are also associated with natural resistance to HIV-1 infection. Conversely, VitD deficiency is linked to more inflammation and immune activation, low peripheral blood CD4+ T-cells, faster progression of HIV disease, and shorter survival time in HIV-infected patients. VitD supplementation and restoration to normal values in HIV-infected patients may improve immunologic recovery during combination antiretroviral therapy, reduce levels of inflammation and immune activation, and increase immunity against pathogens. Additionally, VitD may protect against the development of immune reconstitution inflammatory syndrome events, pulmonary tuberculosis, and mortality among HIV-infected patients. In summary, this review suggests that VitD deficiency may contribute to the pathogenesis of HIV infection. Also, VitD supplementation seems to reverse some alterations of the immune system, supporting the use of VitD supplementation as prophylaxis, especially in individuals with more severe VitD deficiency.
Collapse
Affiliation(s)
- María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Luz María Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
15
|
Ruiz MJ, Salido J, Abusamra L, Ghiglione Y, Cevallos C, Damilano G, Rodriguez AM, Trifone C, Laufer N, Giavedoni LD, Sued O, Salomón H, Gherardi MM, Turk G. Evaluation of Different Parameters of Humoral and Cellular Immune Responses in HIV Serodiscordant Heterosexual Couples: Humoral Response Potentially Implicated in Modulating Transmission Rates. EBioMedicine 2017; 26:25-37. [PMID: 29129698 PMCID: PMC5832641 DOI: 10.1016/j.ebiom.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023] Open
Abstract
As the HIV/AIDS pandemic still progresses, understanding the mechanisms governing viral transmission as well as protection from HIV acquisition is fundamental. In this context, cohorts of HIV serodiscordant heterosexual couples (SDC) represent a unique tool. The present study was aimed to evaluate specific parameters of innate, cellular and humoral immune responses in SDC. Specifically, plasma levels of cytokines and chemokines, HIV-specific T-cell responses, gp120-specific IgG and IgA antibodies, and HIV-specific antibody-dependent cellular cytotoxicity (ADCC) activity were assessed in nine HIV-exposed seronegative individuals (ESN) and their corresponding HIV seropositive partners (HIV+-P), in eighteen chronically infected HIV subjects (C), nine chronically infected subjects known to be HIV transmitters (CT) and ten healthy HIV− donors (HD). Very low magnitude HIV-specific cellular responses were found in two out of six ESN. Interestingly, HIV+-P had the highest ADCC magnitude, the lowest IgA levels and the highest IgG/IgA ratio, all compared to CT. Positive correlations between CD4+ T-cell counts and both IgG/IgA ratios and %ADCC killing uniquely distinguished HIV+-P. Additionally, evidence of IgA interference with ADCC responses from HIV+-P and CT is provided. These data suggest for the first time a potential role of ADCC and/or gp120-specific IgG/IgA balance in modulating heterosexual transmission. In sum, this study provides key information to understand the host factors that influence viral transmission, which should be considered in both the development of prophylactic vaccines and novel immunotherapies for HIV-1 infection. The evaluation of different immune parameters in HIV serodiscordant couples helped identify factors shaping transmission. Innate and cellular immune responses were apparently not involved in this scenario. HIV-specific ADCC, IgA titer and IgG/IgA balance were identified as factors involved in modulating viral transmission.
The existence of individuals that remain HIV negative despite being repeatedly exposed to the virus has long been described. To date, only homozygosis for a 32-base pair deletion in the ccr5 gene has been consistently shown to be a determinant of HIV resistance. Still, subjects bearing the WT ccr5 gene have also been described as resistant or less susceptible to HIV. Thus, other mechanisms must be involved in this phenomenon. The results presented here postulate ADCC and IgG/IgA ratio as potential mechanisms involved in modulating HIV transmission in the context of serodiscordant couples and inspire further investigations.
Collapse
Affiliation(s)
- María Julia Ruiz
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Jimena Salido
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - Yanina Ghiglione
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Cintia Cevallos
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriel Damilano
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Ana María Rodriguez
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - César Trifone
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina; Hospital Juan A. Fernández, Unidad Enfermedades Infecciosas, Buenos Aires, Argentina
| | - Luis D Giavedoni
- Department of Virology and Immunology, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina; Hospital Juan A. Fernández, Unidad Enfermedades Infecciosas, Buenos Aires, Argentina
| | - Horacio Salomón
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Magdalena Gherardi
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Abstract
BACKGROUND Although the anti-HIV-1 effects of vitamin D (VitD) have been reported, mechanisms behind such protection remain largely unexplored. METHODS The effects of two precursor forms (cholecalciferol/calciol at 0.01, 1 and 100 nM and calcidiol at 100 and 250 nM) on HIV-1 infection, immune activation, and gene expression were analyzed in vitro in cells of Colombian and Italian healthy donors. We quantified levels of released p24 by enzyme-linked immunosorbent assay, of intracellular p24 and cell-surface expression of CD38 and HLA-DR by flow cytometry, and mRNA expression of antiviral and immunoregulatory genes by real-time reverse transcription-polymerase chain reaction. RESULTS Cholecalciferol decreased the frequency of HIV-1-infected p24CD4 T cells and levels of p24 in supernatants in a dose-dependent manner. Moreover, the CD4CD38HLA-DR and CD4CD38HLA-DR subpopulations were more susceptible to infection but displayed the greatest cholecalciferol-induced decreases in infection rate by an X4-tropic strain. Likewise, cholecalciferol at its highest concentration decreased the frequency of CD38HLA-DR but not of CD38HLA-DR T-cell subsets. Analyzing the effects of calcidiol, the main VitD source for immune cells and an R5-tropic strain as the most frequently transmitted virus, a reduction in HIV-1 productive infection was also observed. In addition, an increase in mRNA expression of APOBEC3G and PI3 and a reduction of TRIM22 and CCR5 expression, this latter positively correlated with p24 levels, was noted. CONCLUSIONS VitD reduces HIV-1 infection in T cells possibly by inducing antiviral gene expression, reducing the viral co-receptor CCR5 and, at least at the highest cholecalciferol concentration, by promoting an HIV-1-restrictive CD38HLA-DR immunophenotype.
Collapse
|
17
|
Villegas-Ospina S, Aguilar-Jimenez W, Gonzalez SM, Rugeles MT. Vitamin D modulates the expression of HLA-DR and CD38 after in vitro activation of T-cells. Horm Mol Biol Clin Investig 2017; 29:93-103. [PMID: 28222027 DOI: 10.1515/hmbci-2016-0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 12/29/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Vitamin D (VitD) is an anti-inflammatory hormone; however, some evidence shows that VitD may induce the expression of activation markers, such as CD38 and HLA-DR. We explored its effect on the expression of these markers on CD4+ and CD8+ T-cells in vitro, and their potential correlations in vivo. MATERIALS AND METHODS CD38 and HLA-DR expression was measured by flow cytometry in PHA/IL-2-activated mononuclear cells cultured under VitD precursors: three cholecalciferol (10-11M, 10-9M, 10-7M; n=11) and two calcidiol (40 ng/mL, 80 ng/mL; n=9) concentrations. The correlation between the expression of these markers in freshly isolated blood cells and serum levels of calcidiol was also explored (n=10). RESULTS Cholecalciferol at 10-7M increased the proportion of CD4+ CD38+ and CD8+ CD38+ cells, and decreased CD8+HLA-DR+ cells. As co-expression, it increased the CD38+HLA-DR- and decreased CD38-HLA-DR+ subpopulations in both CD4+ and CD8+ T-cells, and decreased CD4+CD38-HLA-DR- and CD8+ CD38+HLA-DR+; whereas both calcidiol concentrations decreased the proliferation of CD38-HLA-DR- and CD38-HLA-DR+ subpopulations. Both forms of VitD increased the number of CD38 molecules per cell. In contrast, there was a positive but non-significant correlation between serum calcidiol levels and the expression of CD38 and HLA-DR in CD4+ and CD8+ T-cells. CONCLUSION Although no significant correlations were observed in vivo in healthy subjects, VitD treatment in vitro modulated immune activation by increasing the expression of CD38 and decreasing the proliferation of HLA-DR+ and resting cells, which may correlate with improved effector and decreased proliferative capabilities. These results highlight the potential use of VitD as therapeutic strategy in immune disorders.
Collapse
|
18
|
Aguilar-Jimenez W, Saulle I, Trabattoni D, Vichi F, Lo Caputo S, Mazzotta F, Rugeles MT, Clerici M, Biasin M. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals. Front Immunol 2017; 8:136. [PMID: 28243241 PMCID: PMC5303892 DOI: 10.3389/fimmu.2017.00136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1, of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G, and of immunoregulators ERAP2 and HAVCR2, but reduced the mRNA expression of VitD receptor (VDR) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI, and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection.
Collapse
Affiliation(s)
- Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia; Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
| | - Irma Saulle
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| | - Daria Trabattoni
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| | | | | | | | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín , Colombia
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy; Fondazione Don C. Gnocchi, IRCCS, Milan, Italy
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| |
Collapse
|