1
|
Grijsen ML, Nguyen TH, Pinheiro RO, Singh P, Lambert SM, Walker SL, Geluk A. Leprosy. Nat Rev Dis Primers 2024; 10:90. [PMID: 39609422 DOI: 10.1038/s41572-024-00575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Leprosy, a neglected tropical disease, causes significant morbidity in marginalized communities. Before the COVID-19 pandemic, annual new case detection plateaued for over a decade at ~200,000 new cases. The clinical phenotypes of leprosy strongly parallel host immunity to its causative agents Mycobacterium leprae and Mycobacterium lepromatosis. The resulting spectrum spans from paucibacillary leprosy, characterized by vigorous pro-inflammatory immunity with few bacteria, to multibacillary leprosy, harbouring large numbers of bacteria with high levels of seemingly non-protective, anti-M. leprae antibodies. Leprosy diagnosis remains clinical, leaving asymptomatic individuals with infection undetected. Antimicrobial treatment is effective with recommended multidrug therapy for 6 months for paucibacillary leprosy and 12 months for multibacillary leprosy. The incubation period ranges from 2 to 6 years, although longer periods have been described. Given this lengthy incubation period and dwindling clinical expertise, there is an urgent need to create innovative, low-complexity diagnostic tools for detection of M. leprae infection. Such advancements are vital for enabling swift therapeutic and preventive interventions, ultimately transforming patient outcomes. National health-care programmes should prioritize early case detection and consider post-exposure prophylaxis for individuals in close contact with affected persons. These measures will help interrupt transmission, prevent disease progression, and mitigate the risk of nerve damage and disabilities to achieve the WHO goal 'Towards Zero Leprosy' and reduce the burden of leprosy.
Collapse
Affiliation(s)
- Marlous L Grijsen
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Thuan H Nguyen
- University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Pushpendra Singh
- Microbial Pathogenesis & Genomics Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Saba M Lambert
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
- Africa Leprosy, Tuberculosis, Rehabilitation and Training (ALERT) Hospital, Addis Ababa, Ethiopia
| | - Stephen L Walker
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
| | - Annemieke Geluk
- Leiden University Center of Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Wang Z, Liu T, Wang Z, Mi Z, Zhang Y, Wang C, Sun L, Ma S, Xue X, Liu H, Zhang F. CYBB-Mediated Ferroptosis Associated with Immunosuppression in Mycobacterium leprae-Infected Monocyte-Derived Macrophages. J Invest Dermatol 2024; 144:874-887.e2. [PMID: 37925067 DOI: 10.1016/j.jid.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
Mycobacterium leprae-infected macrophages preferentially exhibit the regulatory M2 phenotype in vitro, which helps the immune escape unabated growth of M leprae in host cells. The mechanism that triggers macrophage polarization is still unknown. In this study, we performed single-cell RNA sequencing to determine the initial responses of human monocyte-derived macrophages against M leprae infection of 4 healthy individuals and found an increase in a major alternative-activated macrophage type that overexpressed NEAT1, CCL2, and CD163. Importantly, further functional analysis showed that ferroptosis was positively correlated with M2 polarization of macrophages, and in vitro experiments have shown that inhibition of ferroptosis promotes the survival of M leprae within macrophages. In addition, further joint analysis of our results with mutisequencing data from patients with leprosy and in vitro validation identified that CYBB was the pivotal molecule for ferroptosis that could promote the M2 polarization of M leprae-infected macrophages, resulting in the immune escape and unabated growth of pathogenic bacteria. Overall, our results suggest that M leprae facilitated its survival by inducing CYBB-mediated macrophage ferroptosis leading to its alternative activation and might reveal the potential for a new therapeutic strategy of leprosy.
Collapse
Affiliation(s)
- Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Ma
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
3
|
Peng R, Xu C, Zhang L, Liu X, Peng D, Chen X, Liu D, Li R. M2 macrophages participate in ILC2 activation induced by Helicobacter pylori infection. Gut Microbes 2024; 16:2347025. [PMID: 38693666 PMCID: PMC11067991 DOI: 10.1080/19490976.2024.2347025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/30/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Helicobacter pylori (H. pylori) causes a diversity of gastric diseases. The host immune response evoked by H. pylori infection is complicated and can influence the development and progression of diseases. We have reported that the Group 2 innate lymphocytes (ILC2) were promoted and took part in building type-2 immunity in H. pylori infection-related gastric diseases. Therefore, in the present study, we aim to clarify how H. pylori infection induces the activation of ILC2. It was found that macrophages were necessary for activating ILC2 in H. pylori infection. Mechanistically, H. pylori infection up-regulated the expression of indoleamine 2,3-dioxygenase (IDO) in macrophages to induce M2 polarization, and the latter secreted the alarmin cytokine Thymic Stromal Lymphopoietin (TSLP) to arouse ILC2.
Collapse
Affiliation(s)
- Ruyi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan Province, China
| | - Linfang Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan Province, China
| | - Dongzi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Xingcen Chen
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Deliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Rong Li
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Ferreira H, Leal-Calvo T, Mendes MA, Avanzi C, Busso P, Benjak A, Sales AM, Ferreira CP, de Berrêdo-Pinho M, Cole ST, Sarno EN, Moraes MO, Pinheiro RO. Gene expression patterns associated with multidrug therapy in multibacillary leprosy. Front Cell Infect Microbiol 2022; 12:917282. [PMID: 35937686 PMCID: PMC9354612 DOI: 10.3389/fcimb.2022.917282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Multidrug therapy (MDT) has been successfully used in the treatment of leprosy. However, although patients are cured after the completion of MDT, leprosy reactions, permanent disability, and occasional relapse/reinfection are frequently observed in patients. The immune system of multibacillary patients (MB) is not able to mount an effective cellular immune response against M. leprae. Consequently, clearance of bacilli from the body is a slow process and after 12 doses of MDT not all MB patients reduce bacillary index (BI). In this context, we recruited MB patients at the uptake and after 12-month of MDT. Patients were stratified according to the level of reduction of the BI after 12 doses MDT. A reduction of at least one log in BI was necessary to be considered a responder patient. We evaluated the pattern of host gene expression in skin samples with RNA sequencing before and after MDT and between samples from patients with or without one log reduction in BI. Our results demonstrated that after 12 doses of MDT there was a reduction in genes associated with lipid metabolism, inflammatory response, and cellular immune response among responders (APOBEC3A, LGALS17A, CXCL13, CXCL9, CALHM6, and IFNG). Also, by comparing MB patients with lower BI reduction versus responder patients, we identified high expression of CDH19, TMPRSS4, PAX3, FA2H, HLA-V, FABP7, and SERPINA11 before MDT. From the most differentially expressed genes, we observed that MDT modulates pathways related to immune response and lipid metabolism in skin cells from MB patients after MDT, with higher expression of genes like CYP11A1, that are associated with cholesterol metabolism in the group with the worst response to treatment. Altogether, the data presented contribute to elucidate gene signatures and identify differentially expressed genes associated with MDT outcomes in MB patients.
Collapse
Affiliation(s)
- Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thyago Leal-Calvo
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Charlotte Avanzi
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Busso
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrej Benjak
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anna Maria Sales
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cássio Porto Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Márcia de Berrêdo-Pinho
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Stewart Thomas Cole
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Roberta Olmo Pinheiro,
| |
Collapse
|
5
|
de Oliveira JADP, de Athaide MM, Rahman AU, de Mattos Barbosa MG, Jardim MM, Moraes MO, Pinheiro RO. Kynurenines in the Pathogenesis of Peripheral Neuropathy During Leprosy and COVID-19. Front Cell Infect Microbiol 2022; 12:815738. [PMID: 35281455 PMCID: PMC8907883 DOI: 10.3389/fcimb.2022.815738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory disorders are associated with the activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP). Several reports have demonstrated the role of KP in the immunopathophysiology of both leprosy and coronavirus disease 19 (COVID-19). The nervous system can be affected in infections caused by both Mycobacterium leprae and SARS-CoV-2, but the mechanisms involved in the peripheral neural damage induced by these infectious agents are not fully understood. In recent years KP has received greater attention due the importance of kynurenine metabolites in infectious diseases, immune dysfunction and nervous system disorders. In this review, we discuss how modulation of the KP may aid in controlling the damage to peripheral nerves and the effects of KP activation on neural damage during leprosy or COVID-19 individually and we speculate its role during co-infection.
Collapse
Affiliation(s)
| | | | - Atta Ur Rahman
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Marcia Maria Jardim
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Neurology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Roberta Olmo Pinheiro,
| |
Collapse
|
6
|
Oktaria S, Anfasa F, Menaldi SL, Bramono K, Nijsten TEC, Thio HB. Serum IL-6 level and nutrition status as potential predictors of clinical leprosy development among household contacts in the endemic areas. Open Forum Infect Dis 2022; 9:ofac010. [PMID: 35237701 PMCID: PMC8883588 DOI: 10.1093/ofid/ofac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Leprosy is a chronic infectious disease that can lead to severe life-long disabilities. Close contacts of leprosy patients have a higher risk of acquiring the disease. Nevertheless, there is a lack of reliable markers to predict Mycobacterium leprae infection. We aim to identify new potential markers for developing clinical leprosy among contacts.
Methods
Serum levels of IL-6, IL-8, IL-10, hemoglobin, ferritin and transferrin saturation were measured in 67 multibacillary leprosy (MB) patients, 65 household contacts (HC) of MB patients, and 127 endemic controls (EC). By means of multivariate logistic regression and ROC analyses, we analyze baseline variables and laboratory parameters that showed significant differences between MB with HC and EC groups and obtained the respective areas under the curve (AUC). Optimal cut-off value of the associated cytokines was also determined.
Results
Elevated IL-6 level was observed in MB compared to HC and EC (p=0.022 and 0.0041, respectively). Anemia and iron deficiency were also higher in MB group compared to HC or EC (p<0.001). Likewise, we observed an increased risk of having MB leprosy in underweight HC [OR 2.599 (0.991; 6.820)] and underweight EC [2.176 (1.010; 4.692)]. Further analysis with ROC showed that high serum IL-6 level, underweight, anemia, and iron deficiency can discriminate leprosy from their household contacts [AUC 0.843 (95% CI 0.771-0.914); p=0.000; optimal cut-off value of IL-6 = 9.14 pg/ml].
Conclusions
Our results suggest that serum IL-6 and nutrition status could serve as potential prognostic markers for the development of clinical leprosy in infected individuals.
Collapse
Affiliation(s)
- Salma Oktaria
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Dermatology and Venerology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Fatih Anfasa
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Faculty of Medicine Universitas Indonesia-Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Sri Linuwih Menaldi
- Department of Dermatology and Venerology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Kusmarinah Bramono
- Department of Dermatology and Venerology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hok Bing Thio
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Llibre A, Dedicoat M, Burel JG, Demangel C, O’Shea MK, Mauro C. Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Front Immunol 2021; 12:747387. [PMID: 34630426 PMCID: PMC8495197 DOI: 10.3389/fimmu.2021.747387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial diseases are a major public health challenge. Their causative agents include, in order of impact, members of the Mycobacterium tuberculosis complex (causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous mycobacterial pathogens including Mycobacterium ulcerans. Macrophages are mycobacterial targets and they play an essential role in the host immune response to mycobacteria. This review aims to provide a comprehensive understanding of the immune-metabolic adaptations of the macrophage to mycobacterial infections. This metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage metabolic adaptations result in changes in intracellular metabolites, which can post-translationally modify proteins including histones, with potential for shaping the epigenetic landscape. This review will also cover how critical tuberculosis co-morbidities such as smoking, diabetes and HIV infection shape host metabolic responses and impact disease outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last decades can be harnessed towards the design of novel diagnostic and therapeutic tools, as well as vaccines.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Julie G. Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Matthew K. O’Shea
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Silva BJDA, Bittencourt TL, Leal-Calvo T, Mendes MA, Prata RBDS, Barbosa MGDM, Andrade PR, Côrte-Real S, Sperandio da Silva GM, Moraes MO, Sarno EN, Pinheiro RO. Autophagy-Associated IL-15 Production Is Involved in the Pathogenesis of Leprosy Type 1 Reaction. Cells 2021; 10:2215. [PMID: 34571865 PMCID: PMC8468917 DOI: 10.3390/cells10092215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Leprosy reactional episodes are acute inflammatory events that may occur during the clinical course of the disease. Type 1 reaction (T1R) is associated with an increase in neural damage, and the understanding of the molecular pathways related to T1R onset is pivotal for the development of strategies that may effectively control the reaction. Interferon-gamma (IFN-γ) is a key cytokine associated with T1R onset and is also associated with autophagy induction. Here, we evaluated the modulation of the autophagy pathway in Mycobacterium leprae-stimulated cells in the presence or absence of IFN-γ. We observed that IFN-γ treatment promoted autophagy activation and increased the expression of genes related to the formation of phagosomes, autophagy regulation and function, or lysosomal pathways in M. leprae-stimulated cells. IFN-γ increased interleukin (IL)-15 secretion in M. leprae-stimulated THP-1 cells in a process associated with autophagy activation. We also observed higher IL15 gene expression in multibacillary (MB) patients who later developed T1R during clinical follow-up when compared to MB patients who did not develop the episode. By overlapping gene expression patterns, we observed 13 common elements shared between T1R skin lesion cells and THP-1 cells stimulated with both M. leprae and IFN-γ. Among these genes, the autophagy regulator Translocated Promoter Region, Nuclear Basket Protein (TPR) was significantly increased in T1R cells when compared with non-reactional MB cells. Overall, our results indicate that IFN-γ may induce a TPR-mediated autophagy transcriptional program in M. leprae-stimulated cells similar to that observed in skin cells during T1R by a pathway that involves IL-15 production, suggesting the involvement of this cytokine in the pathogenesis of T1R.
Collapse
Affiliation(s)
- Bruno Jorge de Andrade Silva
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Tamiris Lameira Bittencourt
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Thyago Leal-Calvo
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Rhana Berto da Silva Prata
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Mayara Garcia de Mattos Barbosa
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Priscila Ribeiro Andrade
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Suzana Côrte-Real
- Structural Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
| | | | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| |
Collapse
|
9
|
Bezerra OCDL, Alvarado-Arnez LE, Mabunda N, Salomé G, de Sousa A, Kehdy FDSG, Sales-Marques C, Manta FSDN, Andrade RM, Ferreira LP, Leal-Calvo T, Cardoso CC, Nunes K, Gouveia MH, Mbulaiteve SM, Yeboah ED, Hsing A, Latini ACP, Leturiondo AL, Rodrigues FDC, Noronha AB, Ferreira CDO, Talhari C, Rêgo JL, Castellucci LCDC, Tarazona-Santos E, de Carvalho EF, Meyer D, Pinheiro RO, Jani IV, Pacheco AG, Moraes MO. Putative pathogen-selected polymorphisms in the PKLR gene are associated with mycobacterial susceptibility in Brazilian and African populations. PLoS Negl Trop Dis 2021; 15:e0009434. [PMID: 34449765 PMCID: PMC8396769 DOI: 10.1371/journal.pntd.0009434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
Pyruvate kinase (PK), encoded by the PKLR gene, is a key player in glycolysis controlling the integrity of erythrocytes. Due to Plasmodium selection, mutations for PK deficiency, which leads to hemolytic anemia, are associated with resistance to malaria in sub-Saharan Africa and with susceptibility to intracellular pathogens in experimental models. In this case-control study, we enrolled 4,555 individuals and investigated whether PKLR single nucleotide polymorphisms (SNPs) putatively selected for malaria resistance are associated with susceptibility to leprosy across Brazil (Manaus-North; Salvador-Northeast; Rondonópolis-Midwest and Rio de Janeiro-Southeast) and with tuberculosis in Mozambique. Haplotype T/G/G (rs1052176/rs4971072/rs11264359) was associated with leprosy susceptibility in Rio de Janeiro (OR = 2.46, p = 0.00001) and Salvador (OR = 1.57, p = 0.04), and with tuberculosis in Mozambique (OR = 1.52, p = 0.07). This haplotype downregulates PKLR expression in nerve and skin, accordingly to GTEx, and might subtly modulate ferritin and haptoglobin levels in serum. Furthermore, we observed genetic signatures of positive selection in the HCN3 gene (xpEHH>2 -recent selection) in Europe but not in Africa, involving 6 SNPs which are PKLR/HCN3 eQTLs. However, this evidence was not corroborated by the other tests (FST, Tajima's D and iHS). Altogether, we provide evidence that a common PKLR locus in Africans contribute to mycobacterial susceptibility in African descent populations and also highlight, for first, PKLR as a susceptibility gene for leprosy and TB.
Collapse
Affiliation(s)
| | - Lucia Elena Alvarado-Arnez
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- National Research Coordination, Franz Tamayo University (UNIFRAZ), Cochabamba, Bolivia
| | - Nédio Mabunda
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Graça Salomé
- Medical Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Amina de Sousa
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | | | - Carolinne Sales-Marques
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Cellular Biology and Genetics, Federal University of Alagoas, Arapiraca, Brazil
| | | | | | | | - Thyago Leal-Calvo
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Cynthia Chester Cardoso
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly Nunes
- Laboratory of Evolutionary Genetics and Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mateus H. Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sam M. Mbulaiteve
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Ann Hsing
- Stanford Cancer Institute, Stanford University, Stanford, California, United States of America
| | | | | | | | | | | | - Carolina Talhari
- Laboratory of Molecular Biology, Alfredo da Matta Foundation, Manaus, Brazil
| | - Jamile Leão Rêgo
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador, Brazil
| | | | - Eduardo Tarazona-Santos
- Departament of Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Diogo Meyer
- Laboratory of Evolutionary Genetics and Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Ilesh V. Jani
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | | | | |
Collapse
|
10
|
Ferreira H, Mendes MA, de Mattos Barbosa MG, de Oliveira EB, Sales AM, Moraes MO, Sarno EN, Pinheiro RO. Potential Role of CXCL10 in Monitoring Response to Treatment in Leprosy Patients. Front Immunol 2021; 12:662307. [PMID: 34354699 PMCID: PMC8329534 DOI: 10.3389/fimmu.2021.662307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
The treatment of multibacillary cases of leprosy with multidrug therapy (MDT) comprises 12 doses of a combination of rifampicin, dapsone and clofazimine. Previous studies have described the immunological phenotypic pattern in skin lesions in multibacillary patients. Here, we evaluated the effect of MDT on skin cell phenotype and on the Mycobacterium leprae-specific immune response. An analysis of skin cell phenotype demonstrated a significant decrease in MRS1 (SR-A), CXCL10 (IP-10) and IFNG (IFN-γ) gene and protein expression after MDT release. Patients were randomized according to whether they experienced a reduction in bacillary load after MDT. A reduction in CXCL10 (IP-10) in sera was associated with the absence of a reduction in the bacillary load at release. Although IFN-γ production in response to M. leprae was not affected by MDT, CXCL10 (IP-10) levels in response to M. leprae increased in cells from patients who experienced a reduction in bacillary load after treatment. Together, our results suggest that CXCL10 (IP-10) may be a good marker for monitoring treatment efficacy in multibacillary patients.
Collapse
Affiliation(s)
- Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Anna Maria Sales
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Sahu S, Sharma K, Sharma M, Narang T, Dogra S, Minz RW, Chhabra S. Neutrophil NETworking in ENL: Potential as a Putative Biomarker: Future Insights. Front Med (Lausanne) 2021; 8:697804. [PMID: 34336901 PMCID: PMC8316588 DOI: 10.3389/fmed.2021.697804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Erythema nodosum leprosum (ENL), also known as type 2 reaction (T2R) is an immune complex mediated (type III hypersensitivity) reactional state encountered in patients with borderline lepromatous and lepromatous leprosy (BL and LL) either before, during, or after the institution of anti-leprosy treatment (ALT). The consequences of ENL may be serious, leading to permanent nerve damage and deformities, constituting a major cause of leprosy-related morbidity. The incidence of ENL is increasing with the increasing number of multibacillary cases. Although the diagnosis of ENL is not difficult to make for physicians involved in the care of leprosy patients, its management continues to be a most challenging aspect of the leprosy eradication program: the chronic and recurrent painful skin lesions, neuritis, and organ involvement necessitates prolonged treatment with prednisolone, thalidomide, and anti-inflammatory and immunosuppressive drugs, which further adds to the existing morbidity. In addition, the use of immunosuppressants like methotrexate, azathioprine, cyclosporine, or biologics carries a risk of reactivation of persisters (Mycobacterium leprae), apart from their own end-organ toxicities. Most ENL therapeutic guidelines are primarily designed for acute episodes and there is scarcity of literature on management of patients with chronic and recurrent ENL. It is difficult to predict which patients will develop chronic or recurrent ENL and plan the treatment accordingly. We need simple point-of-care or ELISA-based tests from blood or skin biopsy samples, which can help us in identifying patients who are likely to require prolonged treatment and also inform us about the prognosis of reactions so that appropriate therapy may be started and continued for better ENL control in such patients. There is a significant unmet need for research for better understanding the immunopathogenesis of, and biomarkers for, ENL to improve clinical stratification and therapeutics. In this review we will discuss the potential of neutrophils (polymorphonuclear granulocytes) as putative diagnostic and prognostic biomarkers by virtue of their universal abundance in human blood, functional versatility, phenotypic heterogeneity, metabolic plasticity, differential hierarchical cytoplasmic granule mobilization, and their ability to form NETs (neutrophil extracellular traps). We will touch upon the various aspects of neutrophil biology relevant to ENL pathophysiology in a step-wise manner. We also hypothesize about an element of metabolic reprogramming of neutrophils by M. leprae that could be investigated and exploited for biomarker discovery. In the end, a potential role for neutrophil derived exosomes as a novel biomarker for ENL will also be explored.
Collapse
Affiliation(s)
- Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshav Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maryada Sharma
- Department of Otolaryngology and Head and Neck Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chhabra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Oliveira JAP, Gandini M, Sales JS, Fujimori SK, Barbosa MGM, Frutuoso VS, Moraes MO, Sarno EN, Pessolani MCV, Pinheiro RO. Mycobacterium leprae induces a tolerogenic profile in monocyte-derived dendritic cells via TLR2 induction of IDO. J Leukoc Biol 2020; 110:167-176. [PMID: 33040382 PMCID: PMC8359402 DOI: 10.1002/jlb.4a0320-188r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The enzyme IDO‐1 is involved in the first stage of tryptophan catabolism and has been described in both microbicidal and tolerogenic microenvironments. Previous data from our group have shown that IDO‐1 is differentially regulated in the distinctive clinical forms of leprosy. The present study aims to investigate the mechanisms associated with IDO‐1 expression and activity in human monocyte‐derived dendritic cells (mDCs) after stimulation with irradiated Mycobacterium leprae and its fractions. M. leprae and its fractions induced the expression and activity of IDO‐1 in human mDCs. Among the stimuli studied, irradiated M. leprae and its membrane fraction (MLMA) induced the production of proinflammatory cytokines TNF and IL‐6 whereas irradiated M. leprae and its cytosol fraction (MLSA) induced an increase in IL‐10. We investigated if TLR2 activation was necessary for IDO‐1 induction in mDCs. We observed that in cultures treated with a neutralizing anti‐TLR2 antibody, there was a decrease in IDO‐1 activity and expression induced by M. leprae and MLMA. The same effect was observed when we used a MyD88 inhibitor. Our data demonstrate that coculture of mDCs with autologous lymphocytes induced an increase in regulatory T (Treg) cell frequency in MLSA‐stimulated cultures, showing that M. leprae constituents may play opposite roles that may possibly be related to the dubious effect of IDO‐1 in the different clinical forms of disease. Our data show that M. leprae and its fractions are able to differentially modulate the activity and functionality of IDO‐1 in mDCs by a pathway that involves TLR2, suggesting that this enzyme may play an important role in leprosy immunopathogenesis.
Collapse
Affiliation(s)
- Jéssica A P Oliveira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jorgenilce S Sales
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Sérgio K Fujimori
- Laboratory for Development and Analytical Validation, Oswaldo Cruz Foundation, Farmanguinhos, Rio de Janeiro, Brazil
| | - Mayara G M Barbosa
- Cascalho-Platt Laboratory, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Valber S Frutuoso
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Milton O Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir N Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria C V Pessolani
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta O Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
da Silva TP, Bittencourt TL, de Oliveira AL, Prata RBDS, Menezes V, Ferreira H, Nery JADC, de Oliveira EB, Sperandio da Silva GM, Sarno EN, Pinheiro RO. Macrophage Polarization in Leprosy-HIV Co-infected Patients. Front Immunol 2020; 11:1493. [PMID: 32849508 PMCID: PMC7403476 DOI: 10.3389/fimmu.2020.01493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/08/2020] [Indexed: 11/24/2022] Open
Abstract
In HIV-infected individuals, a paradoxical clinical deterioration may occur in preexisting leprosy when highly active antiretroviral therapy (HAART)-associated reversal reaction (RR) develops. Leprosy–HIV co-infected patients during HAART may present a more severe form of the disease (RR/HIV), but the immune mechanisms related to the pathogenesis of leprosy–HIV co-infection remain unknown. Although the adaptive immune responses have been extensively studied in leprosy–HIV co-infected individuals, recent studies have described that innate immune cells may drive the overall immune responses to mycobacterial antigens. Monocytes are critical to the innate immune system and play an important role in several inflammatory conditions associated with chronic infections. In leprosy, different tissue macrophage phenotypes have been associated with the different clinical forms of the disease, but it is not clear how HIV infection modulates the phenotype of innate immune cells (monocytes or macrophages) during leprosy. In the present study, we investigated the phenotype of monocytes and macrophages in leprosy–HIV co-infected individuals, with or without RR. We did not observe differences between the monocyte profiles in the studied groups; however, analysis of gene expression within the skin lesion cells revealed that the RR/HIV group presents a higher expression of macrophage scavenger receptor 1 (MRS1), CD209 molecule (CD209), vascular endothelial growth factor (VEGF), arginase 2 (ARG2), and peroxisome proliferator-activated receptor gamma (PPARG) when compared with the RR group. Our data suggest that different phenotypes of tissue macrophages found in the skin from RR and RR/HIV patients could differentially contribute to the progression of leprosy.
Collapse
Affiliation(s)
| | | | | | | | - Vinicius Menezes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Gilberto Marcelo Sperandio da Silva
- Chagas Disease Clinic Research Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Reanalysis and integration of public microarray datasets reveals novel host genes modulated in leprosy. Mol Genet Genomics 2020; 295:1355-1368. [PMID: 32661593 DOI: 10.1007/s00438-020-01705-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/01/2020] [Indexed: 01/24/2023]
Abstract
Due to multiple hypothesis testing with often limited sample size, microarrays and other-omics technologies can sometimes produce irreproducible findings. Complementary to better experimental design, reanalysis and integration of gene expression datasets may help overcome reproducibility issues by identifying consistent differentially expressed genes from independent studies. In this work, after a systematic search, nine microarray datasets evaluating host gene expression in leprosy were reanalyzed and the information was integrated to strengthen evidence of differential expression for several genes. Our results are relevant in prioritizing genes and pathways for further investigation, whether in functional studies or in biomarker discovery. Reanalysis of individual datasets revealed several differentially expressed genes (DEGs) in accordance with original reports. Then, five integration methods (P value and effect size based) were tested. In the end, random-effects model and ratio association were selected as the main methods to pinpoint DEGs. Overall, classic pathways were found corroborating previous findings and validating this approach. Also, we identified some novel DEG involved especially with skin development processes (AQP3, AKR1C3, CYP27B1, LTB, VDR) and keratinocyte biology (CSTA, DSG1, KRT14, KRT5, PKP1, IVL), both still poorly understood in leprosy context. In addition, here we provide aggregated evidence towards some gene candidates that should be prioritized in further leprosy research, as they are likely important in immunopathogenesis. Altogether, these data are useful in better understanding host responses to the disease and, at the same time, provide a list of potential host biomarkers that could be useful in complementing leprosy diagnosis based on transcriptional levels.
Collapse
|
15
|
de Macedo CS, Lara FA, Pinheiro RO, Schmitz V, de Berrêdo-Pinho M, Pereira GM, Pessolani MCV. New insights into the pathogenesis of leprosy: contribution of subversion of host cell metabolism to bacterial persistence, disease progression, and transmission. F1000Res 2020; 9:F1000 Faculty Rev-70. [PMID: 32051758 PMCID: PMC6996526 DOI: 10.12688/f1000research.21383.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic infection by the obligate intracellular pathogen Mycobacterium leprae may lead to the development of leprosy. Of note, in the lepromatous clinical form of the disease, failure of the immune system to constrain infection allows the pathogen to reproduce to very high numbers with minimal clinical signs, favoring transmission. The bacillus can modulate cellular metabolism to support its survival, and these changes directly influence immune responses, leading to host tolerance, permanent disease, and dissemination. Among the metabolic changes, upregulation of cholesterol, phospholipids, and fatty acid biosynthesis is particularly important, as it leads to lipid accumulation in the host cells (macrophages and Schwann cells) in the form of lipid droplets, which are sites of polyunsaturated fatty acid-derived lipid mediator biosynthesis that modulate the inflammatory and immune responses. In Schwann cells, energy metabolism is also subverted to support a lipogenic environment. Furthermore, effects on tryptophan and iron metabolisms favor pathogen survival with moderate tissue damage. This review discusses the implications of metabolic changes on the course of M. leprae infection and host immune response and emphasizes the induction of regulatory T cells, which may play a pivotal role in immune modulation in leprosy.
Collapse
Affiliation(s)
- Cristiana Santos de Macedo
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-361, Brazil
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| | - Flavio Alves Lara
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| | - Veronica Schmitz
- Leprosy Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| | - Marcia de Berrêdo-Pinho
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| | - Geraldo Moura Pereira
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| | - Maria Cristina Vidal Pessolani
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|
16
|
R. Andrade P, Mehta M, Lu J, M. B. Teles R, Montoya D, O. Scumpia P, Nunes Sarno E, Ochoa MT, Ma F, Pellegrini M, Modlin RL. The cell fate regulator NUPR1 is induced by Mycobacterium leprae via type I interferon in human leprosy. PLoS Negl Trop Dis 2019; 13:e0007589. [PMID: 31344041 PMCID: PMC6684084 DOI: 10.1371/journal.pntd.0007589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/06/2019] [Accepted: 06/30/2019] [Indexed: 11/18/2022] Open
Abstract
The initial interaction between a microbial pathogen and the host immune response influences the outcome of the battle between the host and the foreign invader. Leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, provides a model to study relevant human immune responses. Previous studies have adopted a targeted approach to investigate host response to M. leprae infection, focusing on the induction of specific molecules and pathways. By measuring the host transcriptome triggered by M. leprae infection of human macrophages, we were able to detect a host gene signature 24-48 hours after infection characterized by specific innate immune pathways involving the cell fate mechanisms autophagy and apoptosis. The top upstream regulator in the M. leprae-induced gene signature was NUPR1, which is found in the M. leprae-induced cell fate pathways. The induction of NUPR1 by M. leprae was dependent on the production of the type I interferon (IFN), IFN-β. Furthermore, NUPR1 mRNA and protein were upregulated in the skin lesions from patients with the multibacillary form of leprosy. Together, these data indicate that M. leprae induces a cell fate program which includes NUPR1 as part of the host response in the progressive form of leprosy.
Collapse
Affiliation(s)
- Priscila R. Andrade
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Manali Mehta
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rosane M. B. Teles
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Dennis Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Phillip O. Scumpia
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | | | - Maria Teresa Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, United States of America
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Robert L. Modlin
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
de Mattos Barbosa MG, de Andrade Silva BJ, Assis TQ, da Silva Prata RB, Ferreira H, Andrade PR, da Paixão de Oliveira JA, Sperandio da Silva GM, da Costa Nery JA, Sarno EN, Pinheiro RO. Autophagy Impairment Is Associated With Increased Inflammasome Activation and Reversal Reaction Development in Multibacillary Leprosy. Front Immunol 2018; 9:1223. [PMID: 29915584 PMCID: PMC5994478 DOI: 10.3389/fimmu.2018.01223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Leprosy reactions are responsible for incapacities in leprosy and represent the major cause of permanent neuropathy. The identification of biomarkers able to identify patients more prone to develop reaction could contribute to adequate clinical management and the prevention of disability. Reversal reaction may occur in unstable borderline patients and also in lepromatous patients. To identify biomarker signature profiles related with the reversal reaction onset, multibacillary patients were recruited and classified accordingly the occurrence or not of reversal reaction during or after multidrugtherapy. Analysis of skin lesion cells at diagnosis of multibacillary leprosy demonstrated that in the group that developed reaction (T1R) in the future there was a downregulation of autophagy associated with the overexpression of TLR2 and MLST8. The autophagy impairment in T1R group was associated with increased expression of NLRP3, caspase-1 (p10) and IL-1β production. In addition, analysis of IL-1β production in serum from multibacillary patients demonstrated that patients who developed reversal reaction have significantly increased concentrations of IL-1β at diagnosis, suggesting that the pattern of innate immune responses could predict the reactional episode outcome. In vitro analysis demonstrated that the blockade of autophagy with 3-methyladenine (3-MA) in Mycobacterium leprae-stimulated human primary monocytes increased the assembly of NLRP3 specks assembly, and it was associated with an increase of IL-1β and IL-6 production. Together, our data suggest an important role for autophagy in multibacillary leprosy patients to avoid exacerbated inflammasome activation and the onset of reversal reaction.
Collapse
Affiliation(s)
| | | | - Tayná Quintella Assis
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Toledo Pinto TG, Batista-Silva LR, Medeiros RCA, Lara FA, Moraes MO. Type I Interferons, Autophagy and Host Metabolism in Leprosy. Front Immunol 2018; 9:806. [PMID: 29755459 PMCID: PMC5932357 DOI: 10.3389/fimmu.2018.00806] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
For those with leprosy, the extent of host infection by Mycobacterium leprae and the progression of the disease depend on the ability of mycobacteria to shape a safe environment for its replication during early interaction with host cells. Thus, variations in key genes such as those in pattern recognition receptors (NOD2 and TLR1), autophagic flux (PARK2, LRRK2, and RIPK2), effector immune cytokines (TNF and IL12), and environmental factors, such as nutrition, have been described as critical determinants for infection and disease progression. While parkin-mediated autophagy is observed as being essential for mycobacterial clearance, leprosy patients present a prominent activation of the type I IFN pathway and its downstream genes, including OASL, CCL2, and IL10. Activation of this host response is related to a permissive phenotype through the suppression of IFN-γ response and negative regulation of autophagy. Finally, modulation of host metabolism was observed during mycobacterial infection. Both changes in lipid and glucose homeostasis contribute to the persistence of mycobacteria in the host. M. leprae-infected cells have an increased glucose uptake, nicotinamide adenine dinucleotide phosphate generation by pentose phosphate pathways, and downregulation of mitochondrial activity. In this review, we discussed new pathways involved in the early mycobacteria–host interaction that regulate innate immune pathways or metabolism and could be new targets to host therapy strategies.
Collapse
Affiliation(s)
| | | | | | - Flávio Alves Lara
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | |
Collapse
|
19
|
Pinheiro RO, Schmitz V, Silva BJDA, Dias AA, de Souza BJ, de Mattos Barbosa MG, de Almeida Esquenazi D, Pessolani MCV, Sarno EN. Innate Immune Responses in Leprosy. Front Immunol 2018; 9:518. [PMID: 29643852 PMCID: PMC5882777 DOI: 10.3389/fimmu.2018.00518] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management.
Collapse
Affiliation(s)
- Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - André Alves Dias
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|