1
|
Xi Y, Li X, Liu L, Xiu F, Yi X, Chen H, You X. Sneaky tactics: Ingenious immune evasion mechanisms of Bartonella. Virulence 2024; 15:2322961. [PMID: 38443331 PMCID: PMC10936683 DOI: 10.1080/21505594.2024.2322961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.
Collapse
Affiliation(s)
- Yixuan Xi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinchao Yi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongliang Chen
- Chenzhou NO.1 People’s Hospital, The Affiliated Chenzhou Hospital, Hengyang Medical College, University of South China, ChenZhou, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Sato S, Nishioka E, Kabeya H, Maruyama S. Genomic properties of a Bartonella quintana strain from Japanese macaque (Macaca fuscata) revealed by genome comparison with human and rhesus macaque strains. Sci Rep 2024; 14:10941. [PMID: 38740807 PMCID: PMC11091102 DOI: 10.1038/s41598-024-61782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Bartonella quintana, the causative agent of trench fever, is an intracellular bacterium that infects human erythrocytes and vascular endothelial cells. For many years, humans were considered the only natural hosts for B. quintana; however, it was recently discovered that wild Japanese macaques (Macaca fuscata) also serve as hosts for B. quintana. To elucidate the genetic characteristics of the B. quintana strain MF1-1 isolated from a Japanese macaque, we determined the complete genome sequence of the strain and compared it with those of strain Toulouse from a human and strain RM-11 from a rhesus macaque. General genomic features and orthologous gene cluster profiles are similar among the three strains, and strain MF1-1 is genetically closer to strain RM-11 than strain Toulouse based on the average nucleotide identity values; however, a significant inversion of approximately 0.68 Mb was detected in the chromosome of strain MF1-1. Moreover, the Japanese macaque strains lacked the bepA gene, which is responsible for anti-apoptotic function, and the trwL2, trwL4, and trwL6 genes, which may be involved in adhesion to erythrocytes of rhesus macaque and human. These features likely represent the genomic traits acquired by Japanese macaque strains in their host-associated evolution.
Collapse
Affiliation(s)
- Shingo Sato
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Emu Nishioka
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hidenori Kabeya
- Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
3
|
Zarea AAK, Tempesta M, Odigie AE, Mrenoshki D, Fanelli A, Martella V, Decaro N, Greco G. The Global Molecular Prevalence of Bartonella spp. in Cats and Dogs: A Systematic Review and Meta-Analysis. Transbound Emerg Dis 2023; 2023:7867562. [PMID: 40303778 PMCID: PMC12017235 DOI: 10.1155/2023/7867562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 05/02/2025]
Abstract
Bartonella species are vector-borne infectious pathogens with a severe impact on animal and human health. This comprehensive systematic review aimed to perform a meta-analysis to evaluate the global impact of this pathogen on pet health. A literature search was performed on electronic databases (Web of Science, PubMed, and Scopus) to find relevant peer-reviewed published papers (n = 131). A random-effects model was employed to calculate pooled prevalence estimates, and Q-statistic and I 2 index were used to assess the heterogeneity. Based on 20.133 cats and 9.824 dogs, the global prevalence estimates were 15.3% and 3.6%. The heterogeneity was significantly high in both species, with I 2 = 95.8%, p-value <0.0001, and I 2 = 87.7%, p-value <0.0001 in cats and dogs, respectively. The meta-analysis conducted using location coordinates showed a consistently high prevalence in regions located between latitudes -40 to -30 or latitudes 30-40 in both populations, in agreement with the pure spatial analysis results, which computed significantly high relative risk areas within these region coordinates. When analyzing cat data for other subgroup moderators, Bartonella spp. prevalence was higher in animals of young age (<1 year, p-value = 0.001), with a free roaming lifestyle (p-value <0.0001) and/or having ectoparasite infestation (p-value = 0.004). Globally, among the Bartonella species detected in cats, Bartonella henselae was the most frequent (13.05%), followed by Bartonella clarridgeiae (1.7%) and Bartonella koehlerae (0.11%). When considering Bartonella henselae genotype distribution, high heterogeneity (p < 0.0001) was observed based on geographical subgroups. Dogs displayed infection by Bartonella vinsonii subsp. berkhoffii (1.1%), B. henselae (1%), Candidatus B. merieuxii (0.9%) and B. rochalimae (0.38%). The present study provides a global picture of the epidemiological distribution of Bartonella spp. in cat and dog populations that may be pivotal for implementing proper preventive and control measures.
Collapse
Affiliation(s)
- Aya Attia Koraney Zarea
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Amienwanlen Eugene Odigie
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
- Department of Veterinary Public Health and Preventive Medicine, University of Benin, Benin City 300238, Nigeria
| | - Daniela Mrenoshki
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Greco
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Vaca DJ, Frenzel F, Ballhorn W, Torres SG, Leisegang MS, Günther S, Bender D, Kraiczy P, Göttig S, Kempf VAJ. Adhesion of human pathogenic bacteria to endothelial cells is facilitated by fibronectin interaction. Microbes Infect 2023; 25:105172. [PMID: 37343664 DOI: 10.1016/j.micinf.2023.105172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
Human pathogenic bacteria circulating in the bloodstream need to find a way to interact with endothelial cells (ECs) lining the blood vessels to infect and colonise the host. The extracellular matrix (ECM) of ECs might represent an attractive initial target for bacterial interaction, as many bacterial adhesins have reported affinities to ECM proteins, in particular to fibronectin (Fn). Here, we analysed the general role of EC-expressed Fn for bacterial adhesion. For this, we evaluated the expression levels of ECM coding genes in different ECs, revealing that Fn is the highest expressed gene and thereby, it is highly abundant in the ECM environment of ECs. The role of Fn as a mediator in bacterial cell-host adhesion was evaluated in adhesion assays of Acinetobacter baumannii, Bartonella henselae, Borrelia burgdorferi, and Staphylococcus aureus to ECs. The assays demonstrated that bacteria colocalised with Fn fibres, as observed by confocal laser scanning microscopy. Fn removal from the ECM environment (FN1 knockout ECs) diminished bacterial adherence to ECs in both static and dynamic adhesion assays to varying extents, as evaluated via absolute quantification using qPCR. Interactions between adhesins and Fn might represent the crucial step for the adhesion of human-pathogenic Gram-negative and Gram-positive bacteria targeting the ECs as a niche of infection.
Collapse
Affiliation(s)
- Diana J Vaca
- Institute of Medical Microbiology and Infection Control, Goethe University, Paul Ehrlich Straße 40, 60596, Frankfurt, Germany.
| | - Fabienne Frenzel
- Institute of Medical Microbiology and Infection Control, Goethe University, Paul Ehrlich Straße 40, 60596, Frankfurt, Germany.
| | - Wibke Ballhorn
- Institute of Medical Microbiology and Infection Control, Goethe University, Paul Ehrlich Straße 40, 60596, Frankfurt, Germany.
| | - Sara Garcia Torres
- Institute of Medical Microbiology and Infection Control, Goethe University, Paul Ehrlich Straße 40, 60596, Frankfurt, Germany.
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Parkstraße 1, 61231, Bad Nauheim, Germany.
| | - Daniela Bender
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul Ehrlich Institute, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, Goethe University, Paul Ehrlich Straße 40, 60596, Frankfurt, Germany.
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Goethe University, Paul Ehrlich Straße 40, 60596, Frankfurt, Germany.
| | - Volkhard A J Kempf
- Institute of Medical Microbiology and Infection Control, Goethe University, Paul Ehrlich Straße 40, 60596, Frankfurt, Germany.
| |
Collapse
|
5
|
Thibau A, Vaca DJ, Bagowski M, Hipp K, Bender D, Ballhorn W, Linke D, Kempf VAJ. Adhesion of Bartonella henselae to Fibronectin Is Mediated via Repetitive Motifs Present in the Stalk of Bartonella Adhesin A. Microbiol Spectr 2022; 10:e0211722. [PMID: 36165788 PMCID: PMC9602544 DOI: 10.1128/spectrum.02117-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022] Open
Abstract
Adhesion to host cells is the first and most crucial step in infections with pathogenic Gram-negative bacteria and is often mediated by trimeric autotransporter adhesins (TAAs). Bartonella henselae targets the extracellular matrix glycoprotein fibronectin (Fn) via the Bartonella adhesin A (BadA) attaching the bacteria to the host cell. The TAA BadA is characterized by a highly repetitive passenger domain consisting of 30 neck/stalk domains with various degrees of similarity. To elucidate the motif sequences mediating Fn binding, we generated 10 modified BadA constructs and verified their expression via Western blotting, confocal laser scanning, and electron microscopy. We analyzed their ability to bind human plasma Fn using quantitative whole-cell enzyme-linked immunosorbent assays (ELISAs) and fluorescence microscopy. Polyclonal antibodies targeting a 15-mer amino acid motif sequence proved to reduce Fn binding. We suggest that BadA adheres to Fn in a cumulative effort with quick saturation primarily via unpaired β-strands appearing in motifs repeatedly present throughout the neck/stalk region. In addition, we demonstrated that the length of truncated BadA constructs correlates with the immunoreactivity of human patient sera. The identification of BadA-Fn binding regions will support the development of new "antiadhesive" compounds inhibiting the initial adherence of B. henselae and other TAA-expressing pathogens to host cells. IMPORTANCE Trimeric autotransporter adhesins (TAAs) are important virulence factors and are widely present in various pathogenic Gram-negative bacteria. TAA-expressing bacteria cause a wide spectrum of human diseases, such as cat scratch disease (Bartonella henselae), enterocolitis (Yersinia enterocolitica), meningitis (Neisseria meningitis), and bloodstream infections (multidrug-resistant Acinetobacter baumannii). TAA-targeted antiadhesive strategies (against, e.g., Bartonella adhesin A [BadA], Yersinia adhesin A [YadA], Neisseria adhesin A [NadA], and Acinetobacter trimeric autotransporter [Ata]) might represent a universal strategy to counteract such bacterial infections. BadA is one of the best characterized TAAs, and because of its high number of (sub)domains, it serves as an attractive adhesin to study the domain-function relationship of TAAs in the infection process. The identification of common binding motifs between TAAs (here, BadA) and their major binding partner (here, fibronectin) provides a basis toward the design of novel "antiadhesive" compounds preventing the initial adherence of Gram-negative bacteria in infections.
Collapse
Affiliation(s)
- Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Marlene Bagowski
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniela Bender
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Wibke Ballhorn
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Interaction of Bartonella henselae with Fibronectin Represents the Molecular Basis for Adhesion to Host Cells. Microbiol Spectr 2022; 10:e0059822. [PMID: 35435766 PMCID: PMC9241615 DOI: 10.1128/spectrum.00598-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deciphering the mechanisms of bacterial host cell adhesion is a clue for preventing infections. We describe the underestimated role that the extracellular matrix protein fibronectin plays in the adhesion of human-pathogenic
Bartonella henselae
to host cells.
Collapse
|
7
|
Lu X, Peng Y, Geng Y, Zhao H, Shen X, Li D, Li Z, Lu L, Fan M, Xu W, Wang J, Xia L, Zhang Z, Kan B. Co-Localization of Sampling and Sequencing for Zoonotic Pathogen Identification in the Field Monitoring Using Mobile Laboratories. China CDC Wkly 2022; 4:259-263. [PMID: 35433082 PMCID: PMC9005490 DOI: 10.46234/ccdcw2022.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/20/2022] [Indexed: 12/26/2022] Open
Abstract
Introduction Methods Results Discussion
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yao Peng
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Geng
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaona Shen
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Li
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengguang Fan
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot City, Inner Mongolia Autonomous Region, China
| | - Wenbin Xu
- Siziwang Banner Center for Disease Control and Prevention, Huhhot City, Inner Mongolia Autonomous Region, China
| | - Jin Wang
- Siziwang Banner Center for Disease Control and Prevention, Huhhot City, Inner Mongolia Autonomous Region, China
| | - Lianxu Xia
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Biao Kan,
| | - Zhongbing Zhang
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot City, Inner Mongolia Autonomous Region, China
- Lianxu Xia,
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Shandong University, Jinan City, Shandong Province, China
- Zhongbing Zhang,
| |
Collapse
|
8
|
Sharma A, Yadav SP, Sarma D, Mukhopadhaya A. Modulation of host cellular responses by gram-negative bacterial porins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:35-77. [PMID: 35034723 DOI: 10.1016/bs.apcsb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outer membrane of a gram-negative bacteria encapsulates the plasma membrane thereby protecting it from the harsh external environment. This membrane acts as a sieving barrier due to the presence of special membrane-spanning proteins called "porins." These porins are β-barrel channel proteins that allow the passive transport of hydrophilic molecules and are impermeable to large and charged molecules. Many porins form trimers in the outer membrane. They are abundantly present on the bacterial surface and therefore play various significant roles in the host-bacteria interactions. These include the roles of porins in the adhesion and virulence mechanisms necessary for the pathogenesis, along with providing resistance to the bacteria against the antimicrobial substances. They also act as the receptors for phage and complement proteins and are involved in modulating the host cellular responses. In addition, the potential use of porins as adjuvants, vaccine candidates, therapeutic targets, and biomarkers is now being exploited. In this review, we focus briefly on the structure of the porins along with their important functions and roles in the host-bacteria interactions.
Collapse
Affiliation(s)
- Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Dwipjyoti Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
9
|
Vaca DJ, Thibau A, Schütz M, Kraiczy P, Happonen L, Malmström J, Kempf VAJ. Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Med Microbiol Immunol 2019; 209:277-299. [PMID: 31784893 PMCID: PMC7248048 DOI: 10.1007/s00430-019-00644-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
The capacity of pathogenic microorganisms to adhere to host cells and avoid clearance by the host immune system is the initial and most decisive step leading to infections. Bacteria have developed different strategies to attach to diverse host surface structures. One important strategy is the adhesion to extracellular matrix (ECM) proteins (e.g., collagen, fibronectin, laminin) that are highly abundant in connective tissue and basement membranes. Gram-negative bacteria express variable outer membrane proteins (adhesins) to attach to the host and to initiate the process of infection. Understanding the underlying molecular mechanisms of bacterial adhesion is a prerequisite for targeting this interaction by “anti-ligands” to prevent colonization or infection of the host. Future development of such “anti-ligands” (specifically interfering with bacteria-host matrix interactions) might result in the development of a new class of anti-infective drugs for the therapy of infections caused by multidrug-resistant Gram-negative bacteria. This review summarizes our current knowledge about the manifold interactions of adhesins expressed by Gram-negative bacteria with ECM proteins and the use of this information for the generation of novel therapeutic antivirulence strategies.
Collapse
Affiliation(s)
- Diana J Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Monika Schütz
- Institute for Medical Microbiology and Infection Control, University Hospital, Eberhard Karls-University, Tübingen, Germany
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany.
| |
Collapse
|
10
|
Porayath C, Salim A, Palillam Veedu A, Babu P, Nair B, Madhavan A, Pal S. Characterization of the bacteriophages binding to human matrix molecules. Int J Biol Macromol 2018; 110:608-615. [PMID: 29246876 PMCID: PMC5864510 DOI: 10.1016/j.ijbiomac.2017.12.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Recent literature has suggested a novel symbiotic relationship between bacteriophage and metazoan host that provides antimicrobial defense protecting mucosal surface by binding to host matrix mucin glycoproteins. Here, we isolated and studied different bacteriophages that specifically interact with human extracellular matrix molecules such as fibronectin, gelatin, heparin and demonstrated their potency for protection to host against microbial infections. We showed that subpopulations of bacteriophages that work against clinical isolates of Escherichia coli can bind to pure gelatin, fibronectin and heparin and reduced bacterial load in human colon cell line HT29. The bacteriophages were characterized with respect to their genome sizes, melting curve patterns and host tropism (cross-reactivity with different hosts). Since, the bacteriophages are non-toxic to the host and can effectively reduce bacterial load in HT29 cell line their therapeutic potency against bacterial infection could be explored.
Collapse
Affiliation(s)
- Chandni Porayath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Amrita Salim
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | | | - Pradeesh Babu
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Bipin Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Ajith Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India.
| |
Collapse
|
11
|
Abstract
Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.
Collapse
|
12
|
Ben-Tekaya H, Gorvel JP, Dehio C. Bartonella and Brucella--weapons and strategies for stealth attack. Cold Spring Harb Perspect Med 2013; 3:3/8/a010231. [PMID: 23906880 DOI: 10.1101/cshperspect.a010231] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bartonella spp. and Brucella spp. are closely related α-proteobacterial pathogens that by distinct stealth-attack strategies cause chronic infections in mammals including humans. Human infections manifest by a broad spectrum of clinical symptoms, ranging from mild to fatal disease. Both pathogens establish intracellular replication niches and subvert diverse pathways of the host's immune system. Several virulence factors allow them to adhere to, invade, proliferate, and persist within various host-cell types. In particular, type IV secretion systems (T4SS) represent essential virulence factors that transfer effector proteins tailored to recruit host components and modulate cellular processes to the benefit of the bacterial intruders. This article puts the remarkable features of these two pathogens into perspective, highlighting the mechanisms they use to hijack signaling and trafficking pathways of the host as the basis for their stealthy infection strategies.
Collapse
Affiliation(s)
- Houchaima Ben-Tekaya
- Focal Area Infection Biology, Biozentrum, University of Basel, 4052 Basel, Switzerland
| | | | | |
Collapse
|
13
|
Liu M, Ferrandez Y, Bouhsira E, Monteil M, Franc M, Boulouis HJ, Biville F. Heme binding proteins of Bartonella henselae are required when undergoing oxidative stress during cell and flea invasion. PLoS One 2012; 7:e48408. [PMID: 23144761 PMCID: PMC3483173 DOI: 10.1371/journal.pone.0048408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/01/2012] [Indexed: 11/24/2022] Open
Abstract
Bartonella are hemotropic bacteria responsible for emerging zoonoses. These heme auxotroph alphaproteobacteria must import heme for their growth, since they cannot synthesize it. To import exogenous heme, Bartonella genomes encode for a complete heme uptake system enabling transportation of this compound into the cytoplasm and degrading it to release iron. In addition, these bacteria encode for four or five outer membrane heme binding proteins (Hbps). The structural genes of these highly homologous proteins are expressed differently depending on oxygen, temperature and heme concentrations. These proteins were hypothesized as being involved in various cellular processes according to their ability to bind heme and their regulation profile. In this report, we investigated the roles of the four Hbps of Bartonella henselae, responsible for cat scratch disease. We show that Hbps can bind heme in vitro. They are able to enhance the efficiency of heme uptake when co-expressed with a heme transporter in Escherichia coli. Using B. henselae Hbp knockdown mutants, we show that these proteins are involved in defense against the oxidative stress, colonization of human endothelial cell and survival in the flea.
Collapse
Affiliation(s)
- MaFeng Liu
- UMR BIPAR Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, INRA-Anses-UPEC-ENVA, Maisons-Alfort, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Eicher SC, Dehio C. Bartonellaentry mechanisms into mammalian host cells. Cell Microbiol 2012; 14:1166-73. [DOI: 10.1111/j.1462-5822.2012.01806.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/11/2012] [Accepted: 04/17/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Simone C. Eicher
- Research Area Infection BiologyBiozentrum of the University of Basel Klingelbergstrasse 70 CH‐4056 Basel Switzerland
| | - Christoph Dehio
- Research Area Infection BiologyBiozentrum of the University of Basel Klingelbergstrasse 70 CH‐4056 Basel Switzerland
| |
Collapse
|
15
|
Hauk P, Barbosa AS, Ho PL, Farah CS. Calcium binding to leptospira outer membrane antigen LipL32 is not necessary for its interaction with plasma fibronectin, collagen type IV, and plasminogen. J Biol Chem 2012; 287:4826-34. [PMID: 22147698 PMCID: PMC3281616 DOI: 10.1074/jbc.m111.277210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/05/2011] [Indexed: 11/06/2022] Open
Abstract
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca(2+). Recent crystal structures have been obtained for the protein in the apo- and Ca(2+)-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca(2+) and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca(2+) binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca(2+) affinity as the wild-type protein. We then evaluated if Ca(2+) binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca(2+) ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.
Collapse
Affiliation(s)
- Pricila Hauk
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, São Paulo
| | - Angela Silva Barbosa
- the Laboratório de Bacteriologia, Instituto Butantan, CEP 05503-900, São Paulo, and
| | - Paulo Lee Ho
- the Centro de Biotecnologia, Instituto Butantan, CEP 05503-900, São Paulo, Brazil
| | - Chuck Shaker Farah
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, São Paulo
| |
Collapse
|
16
|
Pulliainen AT, Dehio C. Persistence of Bartonella spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiol Rev 2012; 36:563-99. [PMID: 22229763 DOI: 10.1111/j.1574-6976.2012.00324.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/11/2023] Open
Abstract
Bartonella spp. are facultative intracellular bacteria that typically cause a long-lasting intraerythrocytic bacteremia in their mammalian reservoir hosts, thereby favoring transmission by blood-sucking arthropods. In most cases, natural reservoir host infections are subclinical and the relapsing intraerythrocytic bacteremia may last weeks, months, or even years. In this review, we will follow the infection cycle of Bartonella spp. in a reservoir host, which typically starts with an intradermal inoculation of bacteria that are superficially scratched into the skin from arthropod feces and terminates with the pathogen exit by the blood-sucking arthropod. The current knowledge of bacterial countermeasures against mammalian immune response will be presented for each critical step of the pathogenesis. The prevailing models of the still-enigmatic primary niche and the anatomical location where bacteria reside, persist, and are periodically seeded into the bloodstream to cause the typical relapsing Bartonella spp. bacteremia will also be critically discussed. The review will end up with a discussion of the ability of Bartonella spp., namely Bartonella henselae, Bartonella quintana, and Bartonella bacilliformis, to induce tumor-like vascular deformations in humans having compromised immune response such as in patients with AIDS.
Collapse
|
17
|
Abstract
Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
18
|
Henderson B, Nair S, Pallas J, Williams MA. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 2011; 35:147-200. [DOI: 10.1111/j.1574-6976.2010.00243.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
19
|
Li D, Liu Q, Zhao F, Hu Y, Xiao D, Gu Y, Song X, Zhang J. Proteomic and bioinformatic analysis of outer membrane proteins of the protobacterium Bartonella henselae (Bartonellaceae). GENETICS AND MOLECULAR RESEARCH 2011; 10:1789-818. [DOI: 10.4238/vol10-3gmr1153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Sa E Cunha C, Griffiths NJ, Virji M. Neisseria meningitidis Opc invasin binds to the sulphated tyrosines of activated vitronectin to attach to and invade human brain endothelial cells. PLoS Pathog 2010; 6:e1000911. [PMID: 20502634 PMCID: PMC2873925 DOI: 10.1371/journal.ppat.1000911] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 04/16/2010] [Indexed: 11/18/2022] Open
Abstract
The host vasculature is believed to constitute the principal route of dissemination of Neisseria meningitidis (Nm) throughout the body, resulting in septicaemia and meningitis in susceptible humans. In vitro, the Nm outer membrane protein Opc can enhance cellular entry and exit, utilising serum factors to anchor to endothelial integrins; but the mechanisms of binding to serum factors are poorly characterised. This study demonstrates that Nm Opc expressed in acapsulate as well as capsulate bacteria can increase human brain endothelial cell line (HBMEC) adhesion and entry by first binding to serum vitronectin and, to a lesser extent, fibronectin. This study also demonstrates that Opc binds preferentially to the activated form of human vitronectin, but not to native vitronectin unless the latter is treated to relax its closed conformation. The direct binding of vitronectin occurs at its Connecting Region (CR) requiring sulphated tyrosines Y(56) and Y(59). Accordingly, Opc/vitronectin interaction could be inhibited with a conformation-dependent monoclonal antibody 8E6 that targets the sulphotyrosines, and with synthetic sulphated (but not phosphorylated or unmodified) peptides spanning the vitronectin residues 43-68. Most importantly, the 26-mer sulphated peptide bearing the cell-binding domain (45)RGD(47) was sufficient for efficient meningococcal invasion of HBMECs. To our knowledge, this is the first study describing the binding of a bacterial adhesin to sulphated tyrosines of the host receptor. Our data also show that a single region of Opc is likely to interact with the sulphated regions of both vitronectin and of heparin. As such, in the absence of heparin, Opc-expressing Nm interact directly at the CR but when precoated with heparin, they bind via heparin to the heparin-binding domain of the activated vitronectin, although with a lower affinity than at the CR. Such redundancy suggests the importance of Opc/vitronectin interaction in meningococcal pathogenesis and may enable the bacterium to harness the benefits of the physiological processes in which the host effector molecule participates.
Collapse
Affiliation(s)
- Claudia Sa E Cunha
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Natalie J. Griffiths
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Mumtaz Virji
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
21
|
Chiaraviglio L, Duong S, Brown DA, Birtles RJ, Kirby JE. An immunocompromised murine model of chronic Bartonella infection. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2753-63. [PMID: 20395436 DOI: 10.2353/ajpath.2010.090862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bartonella are ubiquitous gram-negative pathogens that cause chronic blood stream infections in mammals. Two species most often responsible for human infection, B. henselae and B. quintana, cause prolonged febrile illness in immunocompetent hosts, known as cat scratch disease and trench fever, respectively. Fascinatingly, in immunocompromised hosts, these organisms also induce new blood vessel formation leading to the formation of angioproliferative tumors, a disease process named bacillary angiomatosis. In addition, they cause an endothelial-lined cystic disease in the liver known as bacillary peliosis. Unfortunately, there are as yet no completely satisfying small animal models for exploring these unique human pathologies, as neither species appears able to sustain infection in small animal models. Therefore, we investigated the potential use of other Bartonella species for their ability to recapitulate human pathologies in an immunodeficient murine host. Here, we demonstrate the ability of Bartonella taylorii to cause chronic infection in SCID/BEIGE mice. In this model, Bartonella grows in extracellular aggregates, embedded within collagen matrix, similar to previous observations in cat scratch disease, bacillary peliosis, and bacillary angiomatosis. Interestingly, despite overwhelming infection later in disease, evidence for significant intracellular replication in endothelial or other cell types was not evident. We believe that this new model will provide an important new tool for investigation of Bartonella-host interaction.
Collapse
Affiliation(s)
- Lucius Chiaraviglio
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
22
|
Ferreira EDO, de Carvalho JB, Peixoto RJM, Lobo LA, Zingalli RB, Smith CJ, Rocha ER, Domingues RMCP. The interaction of Bacteroides fragilis with components of the human fibrinolytic system. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 56:48-55. [PMID: 19260960 PMCID: PMC2719845 DOI: 10.1111/j.1574-695x.2009.00546.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacteroides fragilis is a minor component of the intestinal microbiota and the most frequently isolated from intra-abdominal infections and bacteremia. Previously, our group has shown that molecules involved in laminin-1 (LMN-1) recognition were present in outer membrane protein extracts of B. fragilis MC2 strain. One of these proteins was identified and showed 98% similarity to a putative B. fragilis plasminogen-binding protein precursor, deposited in the public database. Thus, the objective of this work was to overexpress and further characterize this novel adhesin. The ability of B. fragilis MC2 strain and purified protein to convert plasminogen into plasmin was tested. Our results showed that B. fragilis strain MC2 strain adhered to both LMN-1 and plasminogen and this adhesion was inhibited by either LMN-1 or plasminogen. Regarding the plasminogen activation activity, both the whole bacterial cell and the purified protein converted plasminogen into plasmin similar to streptokinase used as a positive control. Bacterial receptors that recognize plasminogen bind to it and enhance its activation, transforming a nonproteolytic bacterium into a proteolytic one. We present in vitro evidence for a pathogenic function of the plasminogen receptor in promoting adherence to laminin and also the formation of plasmin by B. fragilis.
Collapse
Affiliation(s)
- Eliane de Oliveira Ferreira
- Laboratório Biologia de Anaeróbios, Departamento de Microbiologia Médica, UFRJ, Ilha do Fundão, CCS, Instituto de Microbiologia Prof. Paulo de Góes, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|