1
|
Gu M, Wang Q, Fan R, Liu S, Zhu F, Feng G, Zhang J. Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense. Molecules 2023; 28:molecules28083572. [PMID: 37110806 PMCID: PMC10146670 DOI: 10.3390/molecules28083572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Isolation for antibacterial compounds from natural plants is a promising approach to develop new pesticides. In this study, two compounds were obtained from the Chinese endemic plant Piper austrosinense using bioassay-guided fractionation. Based on analyses of 1H-NMR, 13C-NMR, and mass spectral data, the isolated compounds were identified as 4-allylbenzene-1,2-diol and (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol. 4-Allylbenzene-1,2-diol was shown to have strong antibacterial activity against four plant pathogens, including Xanthomonas oryzae pathovar oryzae (Xoo), X. axonopodis pv. citri (Xac), X. oryzae pv. oryzicola (Xoc) and X. campestris pv. mangiferaeindicae (Xcm). Further bioassay results exhibited that 4-allylbenzene-1,2-diol had a broad antibacterial spectrum, including Xoo, Xac, Xoc, Xcm, X. fragariae (Xf), X. campestris pv. campestris (Xcc), Pectobacterium carotovorum subspecies brasiliense (Pcb) and P. carotovorum subsp. carotovorum (Pcc), with minimum inhibitory concentration (MIC) values ranging from 333.75 to 1335 μmol/L. The pot experiment showed that 4-allylbenzene-1,2-diol exerted an excellent protective effect against Xoo, with a controlled efficacy reaching 72.73% at 4 MIC, which was superior to the positive control kasugamycin (53.03%) at 4 MIC. Further results demonstrated that the 4-allylbenzene-1,2-diol damaged the integrity of the cell membrane and increased cell membrane permeability. In addition, 4-allylbenzene-1,2-diol also prevented the pathogenicity-related biofilm formation in Xoo, thus limiting the movement of Xoo and reducing the production of extracellular polysaccharides (EPS) in Xoo. These findings suggest the value of 4-allylbenzene-1,2-diol and P. austrosinense could be as promising resources for developing novel antibacterial agents.
Collapse
Affiliation(s)
- Mengxuan Gu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Qin Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, China
| | - Shoubai Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan Key Laboratory for Biology of Tropical Specific Ornamental Plants Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Fadi Zhu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| |
Collapse
|
2
|
Sagawa CHD, Assis RDAB, Zaini PA, Saxe H, Wilmarth PA, Salemi M, Phinney BS, Dandekar AM. De Novo Arginine Synthesis Is Required for Full Virulence of Xanthomonas arboricola pv. juglandis During Walnut Bacterial Blight Disease. PHYTOPATHOLOGY 2022; 112:1500-1512. [PMID: 34941365 DOI: 10.1094/phyto-07-21-0302-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Walnut blight (WB) disease caused by Xanthomonas arboricola pv. juglandis (Xaj) threatens orchards worldwide. Nitrogen metabolism in this bacterial pathogen is dependent on arginine, a nitrogen-enriched amino acid that can either be synthesized or provided by the plant host. The arginine biosynthetic pathway uses argininosuccinate synthase (argG), associated with increased bacterial virulence. We examined the effects of bacterial arginine and nitrogen metabolism on the plant response during WB by proteomic analysis of the mutant strain Xaj argG-. Phenotypically, the mutant strain produced 42% fewer symptoms and survived in the plant tissue with 2.5-fold reduced growth compared with wild type, while showing itself to be auxotrophic for arginine in vitro. Proteomic analysis of infected tissue enabled the profiling of 676 Xaj proteins and 3,296 walnut proteins using isobaric labeling in a data-dependent acquisition approach. Comparative analysis of differentially expressed proteins revealed distinct plant responses. Xaj wild type (WT) triggered processes of catabolism and oxidative stress in the host under observed disease symptoms, while most of the host biosynthetic processes triggered by Xaj WT were inhibited during Xaj argG- infection. Overall, the Xaj proteins revealed a drastic shift in carbon and energy management induced by disruption of nitrogen metabolism while the top differentially expressed proteins included a Fis transcriptional regulator and a peptidyl-prolyl isomerase. Our results show the critical role of de novo arginine biosynthesis to sustain virulence and minimal growth during WB. This study is timely and critical as copper-based control methods are losing their effectiveness, and new sustainable methods are urgently needed in orchard environments.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Cíntia H D Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Renata de A B Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Houston Saxe
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, U.S.A
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, CA 95616, U.S.A
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, U.S.A
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
3
|
Wu G, Zhang Y, Wang B, Li K, Lou Y, Zhao Y, Liu F. Proteomic and Transcriptomic Analyses Provide Novel Insights into the Crucial Roles of Host-Induced Carbohydrate Metabolism Enzymes in Xanthomonas oryzae pv. oryzae Virulence and Rice-Xoo Interaction. RICE (NEW YORK, N.Y.) 2021; 14:57. [PMID: 34176023 PMCID: PMC8236019 DOI: 10.1186/s12284-021-00503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/11/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a devastating rice disease. The Xoo-rice interaction, wherein wide ranging host- and pathogen-derived proteins and genes wage molecular arms race, is a research hotspot. Hence, the identification of novel rice-induced Xoo virulence factors and characterization of their roles affecting rice global gene expression profiles will provide an integrated and better understanding of Xoo-rice interactions from the molecular perspective. RESULTS Using comparative proteomics and an in vitro interaction system, we revealed that 5 protein spots from Xoo exhibited significantly different expression patterns (|fold change| > 1.5) at 3, 6, 12 h after susceptible rice leaf extract (RLX) treatment. MALDI-TOF MS analysis and pathogenicity tests showed that 4 host-induced proteins, including phosphohexose mutase, inositol monophosphatase, arginase and septum site-determining protein, affected Xoo virulence. Among them, mutants of two host-induced carbohydrate metabolism enzyme-encoding genes, ΔxanA and Δimp, elicited enhanced defense responses and nearly abolished Xoo virulence in rice. To decipher rice differentially expressed genes (DEGs) associated with xanA and imp, transcriptomic responses of ΔxanA-treated and Δimp-treated susceptible rice were compared to those in rice treated with PXO99A at 1 and 3 dpi. A total of 1521 and 227 DEGs were identified for PXO99A vs Δimp at 1 and 3 dpi, while for PXO99A vs ΔxanA, there were 131 and 106 DEGs, respectively. GO, KEGG and MapMan analyses revealed that the DEGs for PXO99A vs Δimp were mainly involved in photosynthesis, signal transduction, transcription, oxidation-reduction, hydrogen peroxide catabolism, ion transport, phenylpropanoid biosynthesis and metabolism of carbohydrates, lipids, amino acids, secondary metabolites, hormones, and nucleotides, while the DEGs from PXO99A vs ΔxanA were predominantly associated with photosynthesis, signal transduction, oxidation-reduction, phenylpropanoid biosynthesis, cytochrome P450 and metabolism of carbohydrates, lipids, amino acids, secondary metabolites and hormones. Although most pathways were associated with both the Δimp and ΔxanA treatments, the underlying genes were not the same. CONCLUSION Our study identified two novel host-induced virulence factors XanA and Imp in Xoo, and revealed their roles in global gene expression in susceptible rice. These results provide valuable insights into the molecular mechanisms of pathogen infection strategies and plant immunity.
Collapse
Affiliation(s)
- Guichun Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Yuqiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, P. R. China
| | - Bo Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Kaihuai Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yuanlai Lou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China.
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China.
| |
Collapse
|
4
|
Characterization of a Novel Quorum-Quenching Bacterial Strain, Burkholderia anthina HN-8, and Its Biocontrol Potential against Black Rot Disease Caused by Xanthomonas campestris pv. campestris. Microorganisms 2020; 8:microorganisms8101485. [PMID: 32992637 PMCID: PMC7601453 DOI: 10.3390/microorganisms8101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusible signal factor (DSF) is a type of cis unsaturated fatty acid, with a chemical structure of 11-methyl-2-dodecylene acid. DSF is widely conserved in a variety of Gram-negative bacterial pathogens and is involved in the regulation of pathogenic virulence. Quorum quenching (QQ) is a promising strategy for preventing and controlling quorum sensing (QS)-mediated bacterial infections by interfering with the QS system of pathogens. In this study, a novel DSF-degrading bacterium, Burkholderia anthina strain HN-8, was isolated and characterized for its degradation ability and potential biocontrol of black rot disease caused by Xanthomonas campestris pv. campestris (Xcc). The HN-8 strain exhibited superb DSF degradation activity and completely degraded 2 mM DSF within 48 h. In addition, we present the first evidence of bacterium having a metabolic pathway for the complete degradation and metabolism of DSF. Analysis of DSF metabolic products by gas chromatography–mass spectrometry led to the identification of dodecanal as the main intermediate product, revealing that DSF could be degraded via oxidation–reduction. Furthermore, application of strain HN-8 as a potent biocontrol agent was able to significantly reduce the severity of black rot disease in radishes and Chinese cabbage. Taken together, these results shed light on the QQ mechanisms of DSF, and they provide useful information showing the potential for the biocontrol of infectious diseases caused by DSF-dependent bacterial pathogens.
Collapse
|
5
|
The ecnA Antitoxin Is Important Not Only for Human Pathogens: Evidence of Its Role in the Plant Pathogen Xanthomonas citri subsp. citri. J Bacteriol 2019; 201:JB.00796-18. [PMID: 31358614 DOI: 10.1128/jb.00796-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/24/2019] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas citri subsp. citri causes citrus canker disease worldwide in most commercial varieties of citrus. Its transmission occurs mainly by wind-driven rain. Once X. citri reaches a leaf, it can epiphytically survive by forming a biofilm, which enhances the persistence of the bacteria under different environmental stresses and plays an important role in the early stages of host infection. Therefore, the study of genes involved in biofilm formation has been an important step toward understanding the bacterial strategy for survival in and infection of host plants. In this work, we show that the ecnAB toxin-antitoxin (TA) system, which was previously identified only in human bacterial pathogens, is conserved in many Xanthomonas spp. We further show that in X. citri, ecnA is involved in important processes, such as biofilm formation, exopolysaccharide (EPS) production, and motility. In addition, we show that ecnA plays a role in X. citri survival and virulence in host plants. Thus, this mechanism represents an important bacterial strategy for survival under stress conditions.IMPORTANCE Very little is known about TA systems in phytopathogenic bacteria. ecnAB, in particular, has only been studied in bacterial human pathogens. Here, we showed that it is present in a wide range of Xanthomonas sp. phytopathogens; moreover, this is the first work to investigate the functional role of this TA system in Xanthomonas citri biology, suggesting an important new role in adaptation and survival with implications for bacterial pathogenicity.
Collapse
|
6
|
Li L, Li J, Zhang Y, Wang N. Diffusible signal factor (DSF)-mediated quorum sensing modulates expression of diverse traits in Xanthomonas citri and responses of citrus plants to promote disease. BMC Genomics 2019; 20:55. [PMID: 30654743 PMCID: PMC6337780 DOI: 10.1186/s12864-018-5384-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 12/18/2018] [Indexed: 01/07/2023] Open
Abstract
Background The gram-negative Xanthomonas genus contains a large group of economically important plant pathogens, which cause severe diseases on many crops worldwide. The diffusible signal factor (DSF) - mediated quorum sensing (QS) system coordinates expression of virulence factors in plant pathogenic Xanthomonas spp. However, the regulatory effects of this system during the Xanthomonas- plant interactions remain unclear from both the pathogen and host aspects. Results In this study, we investigated the in planta DSF- mediated QS regulon of X. citri subsp. citri (Xac), the causal agent of citrus canker. We also characterized the transcriptional responses of citrus plants to DSF-mediated Xac infection via comparing the gene expression patterns of citrus trigged by wild type Xac strain 306 with those trigged by its DSF- deficient (∆rpfF) mutant using the dual RNA-seq approach. Comparative global transcript profiles of Xac strain 306 and the ∆rpfF mutant during host infection revealed that DSF- mediated QS specifically modulates bacterial adaptation, nutrition uptake and metabolisms, stress tolerance, virulence, and signal transduction to favor host infection. The transcriptional responses of citrus to DSF-mediated Xac infection are characterized by downregulation of photosynthesis genes and plant defense related genes, suggesting photosynthetically inactive reactions and repression of defense responses. Alterations of phytohormone metabolism and signaling pathways were also triggered by DSF-mediated Xac infection to benefit the pathogen. Conclusions Collectively, our findings provide new insight into the DSF- mediated QS regulation during plant-pathogen interactions and advance the understanding of traits used by Xanthomonas to promote infection on host plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-5384-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Li
- Chinese Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Beijing, 100081, China.,Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
7
|
Su P, Song Z, Wu G, Zhao Y, Zhang Y, Wang B, Qian G, Fu ZQ, Liu F. Insights Into the Roles of Two Genes of the Histidine Biosynthesis Operon in Pathogenicity of Xanthomonas oryzae pv. oryzicola. PHYTOPATHOLOGY 2018; 108:542-551. [PMID: 29256829 DOI: 10.1094/phyto-09-17-0332-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthomonas oryzae pv. oryzicola is an X. oryzae pathovar that causes bacterial leaf streak in rice. In this study, we performed functional characterization of a nine-gene his operon in X. oryzae pv. oryzicola. Sequence analysis indicates that this operon is highly conserved in Xanthomonas spp. Auxotrophic assays confirmed that the his operon was involved in histidine biosynthesis. We found that two genes within this operon, trpR and hisB, were required for virulence and bacterial growth in planta. Further research revealed that trpR and hisB play different roles in X. oryzae pv. oryzicola. The trpR acts as a transcriptional repressor and could negatively regulate the expression of hisG, -D, -C, -B, -H, -A, and -F. hisB, which encodes a bifunctional enzyme implicated in histidine biosynthesis, was shown to be required for xanthomonadin production in X. oryzae pv. oryzicola. The disruption of hisB reduced the transcriptional expression of five known shikimate pathway-related genes xanB2, aroE, aroA, aroC, and aroK. We found that the his operon in X. oryzae pv. oryzicola is not involved in hypersensitive response in nonhost tobacco plants. Collectively, our results revealed that two genes in histidine biosynthesis operon play an important role in the pathogenicity of X. oryzae pv. oryzicola Rs105.
Collapse
Affiliation(s)
- Panpan Su
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Zhiwei Song
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Guichun Wu
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Yancun Zhao
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Yuqiang Zhang
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Bo Wang
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Guoliang Qian
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Zheng Qing Fu
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| | - Fengquan Liu
- First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia
| |
Collapse
|
8
|
Ankyrin-Like Protein AnkB Interacts with CatB, Affects Catalase Activity, and Enhances Resistance of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola to Phenazine-1-Carboxylic Acid. Appl Environ Microbiol 2018; 84:AEM.02145-17. [PMID: 29180371 DOI: 10.1128/aem.02145-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae, which causes rice bacterial leaf blight, and Xanthomonas oryzae pv. oryzicola, which causes rice bacterial leaf streak, are important plant-pathogenic bacteria. A member of the adaptor protein family, ankyrin protein, has been investigated largely in humans but rarely in plant-pathogenic bacteria. In this study, a novel ankyrin-like protein, AnkB, was identified in X. oryzae pv. oryzae and X. oryzae pv. oryzicola. The expression of ankB was significantly upregulated when these bacteria were treated with phenazine-1-carboxylic acid (PCA). ankB is located 58 bp downstream of the gene catB (which encodes a catalase) in both bacteria, and the gene expression of catB and catalase activity were reduced following ankB deletion in X. oryzae pv. oryzae and X. oryzae pv. oryzicola. Furthermore, we demonstrated that AnkB directly interacts with CatB by glutathione S-transferase (GST) pulldown assays. Deletion of ankB increased the sensitivity of X. oryzae pv. oryzae and X. oryzae pv. oryzicola to H2O2 and PCA, decreased bacterial biofilm formation, swimming ability, and exopolysaccharide (EPS) production, and also reduced virulence on rice. Together our results indicate that the ankyrin-like protein AnkB has important and conserved roles in antioxidant systems and pathogenicity in X. oryzae pv. oryzae and X. oryzae pv. oryzicola.IMPORTANCE This study demonstrates that the ankyrin protein AnkB directly interacts with catalase CatB in Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Ankyrin protein AnkB can affect the gene expression of catB, catalase activity, and sensitivity to H2O2 In Xanthomonas spp., the locations of genes ankB and catB and the amino acid sequence of AnkB are highly conserved. It is suggested that in prokaryotes, AnkB plays a conserved role in the defense against oxidative stress.
Collapse
|
9
|
Wang H, Yang Z, Du S, Ma L, Liao Y, Wang Y, Toth I, Fan J. Characterization of Pectobacterium carotovorum proteins differentially expressed during infection of Zantedeschia elliotiana in vivo and in vitro which are essential for virulence. MOLECULAR PLANT PATHOLOGY 2018; 19:35-48. [PMID: 27671364 PMCID: PMC6638092 DOI: 10.1111/mpp.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/05/2016] [Accepted: 09/19/2016] [Indexed: 05/22/2023]
Abstract
The identification of phytopathogen proteins that are differentially expressed during the course of the establishment of an infection is important to better understand the infection process. In vitro approaches, using plant extracts added to culture medium, have been used to identify such proteins, but the biological relevance of these findings for in planta infection are often uncertain until confirmed by in vivo studies. Here, we compared the proteins of Pectobacterium carotovorum ssp. carotovorum strain PccS1 differentially expressed in Luria-Bertani medium supplemented with extracts of the ornamental plant Zantedeschia elliotiana cultivar 'Black Magic' (in vitro) and in plant tissues (in vivo) by two-dimensional electrophoresis coupled with mass spectrometry. A total of 53 differentially expressed proteins (>1.5-fold) were identified (up-regulated or down-regulated in vitro, in vivo or both). Proteins that exhibited increased expression in vivo but not in vitro, or in both conditions, were identified, and deletions were made in a number of genes encoding these proteins, four of which (clpP, mreB, flgK and eda) led to a loss of virulence on Z. elliotiana, although clpP and mreB were later also shown to be reduced in growth in rich and minimal media. Although clpP, flgK and mreB have previously been reported as playing a role in virulence in plants, this is the first report of such a role for eda, which encodes 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, a key enzyme in Entner-Doudoroff metabolism. The results highlight the value of undertaking in vivo as well as in vitro approaches for the identification of new bacterial virulence factors.
Collapse
Affiliation(s)
- Huan Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Zhongling Yang
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Shuo Du
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Lin Ma
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Yao Liao
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Yujie Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Ian Toth
- Cell and Molecular SciencesJames Hutton InstituteDundeeDD2 5DAUK
| | - Jiaqin Fan
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
10
|
Liang X, Yu X, Pan X, Wu J, Duan Y, Wang J, Zhou M. A thiadiazole reduces the virulence of Xanthomonas oryzae pv. oryzae by inhibiting the histidine utilization pathway and quorum sensing. MOLECULAR PLANT PATHOLOGY 2018; 19:116-128. [PMID: 27756112 PMCID: PMC6638098 DOI: 10.1111/mpp.12503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 05/08/2023]
Abstract
Thiazole, isothiazole, thiadiazole and their derivatives are widely thought to induce host defences against plant pathogens. In this article, we report that bismerthiazol, a thiadiazole molecule, reduces disease by inhibiting the histidine utilization (Hut) pathway and quorum sensing (QS). Bismerthiazol provides excellent control of bacterial rice leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo), but does not greatly inhibit Xoo growth in vitro. According to RNA-sequencing analysis, the transcription of the Hut pathway genes of Xoo ZJ173 was inhibited after 4.5 and 9.0 h of bismerthiazol treatment. Functional studies of hutG and hutU indicated that the Hut pathway had little effect on the growth and bismerthiazol sensitivity of Xoo in vitro, but significantly reduced the aggregation of Xoo cells. Deletion mutants of hutG or hutU were more motile, produced less biofilm and were less virulent than the wild-type, indicating that the Hut pathway is involved in QS and contributes to virulence. The overexpression of the hutG-U operons in ZJ173 reduced Xoo control by bismerthiazol. Bismerthiazol did not inhibit the transcription of Hut pathway genes, QS or virulence of the bismerthiazol-resistant strain 2-1-1. The results indicate that bismerthiazol reduces Xoo virulence by inhibiting the Hut pathway and QS.
Collapse
Affiliation(s)
- Xiaoyu Liang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Xiaoyue Yu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Xiayan Pan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Jian Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| |
Collapse
|
11
|
Wu G, Su P, Wang B, Zhang Y, Qian G, Liu F. Novel Insights into Tat Pathway in Xanthomonas oryzae pv. oryzae Stress Adaption and Virulence: Identification and Characterization of Tat-Dependent Translocation Proteins. PHYTOPATHOLOGY 2017; 107:1011-1021. [PMID: 28699375 DOI: 10.1094/phyto-02-17-0053-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthomonas oryzae pv. oryzae, an economically important bacterium, causes a serious disease in rice production worldwide called bacterial leaf blight. How X. oryzae pv. oryzae infects rice and causes symptoms remains incompletely understood. Our earlier works demonstrated that the twin-arginine translocation (Tat) pathway plays an vital role in X. oryzae pv. oryzae fitness and virulence but the underlying mechanism is unknown. In this study, we used strain PXO99A as a working model, and identified 15 potential Tat-dependent translocation proteins (TDTP) by using comparative proteomics and bioinformatics analyses. Combining systematic mutagenesis, phenotypic characterization, and gene expression, we found that multiple TDTP play key roles in X. oryzae pv. oryzae adaption or virulence. In particular, four TDTP (PXO_02203, PXO_03477, PXO_02523, and PXO_02951) were involved in virulence, three TDTP (PXO_02203, PXO_03477, and PXO_02523) contributed to colonization in planta, one TDTP (PXO_02671) had a key role in attachment to leaf surface, four TDTP (PXO_02523, PXO_02951, PXO_03132, and PXO_03841) were involved in tolerance to multiple stresses, and two TDTP (PXO_02523 and PXO_02671) were required for full swarming motility. These findings suggest that multiple TDTP may have differential contributions to involvement of the Tat pathway in X. oryzae pv. oryzae adaption, physiology, and pathogenicity.
Collapse
Affiliation(s)
- Guichun Wu
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Panpan Su
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Bo Wang
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Yuqiang Zhang
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Guoliang Qian
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Fengquan Liu
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| |
Collapse
|
12
|
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ. Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (Reading) 2017; 163:1117-1144. [DOI: 10.1099/mic.0.000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jessica Schneider
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Frank-Jörg Vorhölter
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
13
|
Song Z, Zhao Y, Qian G, Odhiambo BO, Liu F. Novel insights into the regulatory roles of gene hshB in Xanthomonas oryzae pv. oryzicola. Res Microbiol 2016; 168:165-173. [PMID: 27810475 DOI: 10.1016/j.resmic.2016.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/15/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Xanthomonas oryzae pv. oryzicola causes leaf streak disease of rice. The gene hshB is a newly identified virulence-associated gene that is co-regulated by diffusible signal factor signaling and global regulator Clp in X. oryzae pv. oryzicola. Our previous study showed that mutation of hshB remarkably impaired the virulence, extracellular protease activity, extracellular polysaccharide production and resistance to oxidative stress of X. oryzae pv. oryzicola. In this study, the regulatory role of hshB in X. oryzae pv .oryzicola was expanded. Results showed that hshB was also required for cell swimming motility. Transcriptome analysis showed that 305 genes were significantly differentially expressed after deletion of hshB in X. oryzae pv. oryzicola. Further analysis of transcriptome data indicated that the differentially expressed genes focused on two aspects: namely, cell motility and cell signal transduction. This finding strongly identified the closely related function of hshB to cell motility and signal transduction. In addition, the mutation of hshB of X. oryzae pv. oryzicola enhanced biofilm formation. Collectively, the study showed novel functions of gene hshB in cell motility and biofilm formation by transcriptome analysis, thus expanding our understanding of the roles of gene hshB in the pathogenic X. oryzae pv. oryzicola.
Collapse
Affiliation(s)
- Zhiwei Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Benard Omondi Odhiambo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| |
Collapse
|
14
|
Niu XN, Wei ZQ, Zou HF, Xie GG, Wu F, Li KJ, Jiang W, Tang JL, He YQ. Complete sequence and detailed analysis of the first indigenous plasmid from Xanthomonas oryzae pv. oryzicola. BMC Microbiol 2015; 15:233. [PMID: 26498126 PMCID: PMC4619425 DOI: 10.1186/s12866-015-0562-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Bacterial plasmids have a major impact on metabolic function and adaptation of their hosts. An indigenous plasmid was identified in a Chinese isolate (GX01) of the invasive phytopathogen Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS). To elucidate the biological functions of the plasmid, we have sequenced and comprehensively annotated the plasmid. METHODS The plasmid DNA was extracted from Xoc strain GX01 by alkaline lysis and digested with restriction enzymes. The cloned and subcloned DNA fragments in pUC19 were sequenced by Sanger sequencing. Sequences were assembled by using Sequencher software. Gaps were closed by primer walking and sequencing, and multi-PCRs were conducted through the whole plasmid sequence for verification. BLAST, phylogenetic analysis and dinucleotide calculation were performed for gene annotation and DNA structure analysis. Transformation, transconjugation and stress tolerance tests were carried out for plasmid function assays. RESULTS The indigenous plasmid from Xoc strain GX01, designated pXOCgx01, is 53,206-bp long and has been annotated to possess 64 open reading frames (ORFs), including genes encoding type IV secretion system, heavy metal exporter, plasmid stability factors, and DNA mobile factors, i.e., the Tn3-like transposon. Bioinformatics analysis showed that pXOCgx01 has a mosaic structure containing different genome contexts with distinct genomic heterogeneities. Phylogenetic analysis indicated that the closest relative of pXOCgx01 is pXAC64 from Xanthomonas axonopodis pv. citri str. 306. It was estimated that there are four copies of pXOCgx01 per cell of Xoc GX01 by PCR assay and the calculation of whole genome shotgun sequencing data. We demonstrate that pXOCgx01 is a self-transmissible plasmid and can replicate in some Xanthomonas spp. strains, but not in Escherichia coli DH5α. It could significantly enhance the tolerance of Xanthomonas oryzae pv. oryzae PXO99A to the stresses of heavy metal ions. The plasmid survey indicated that nine out of 257 Xoc Chinese isolates contain plasmids. CONCLUSIONS pXOCgx01 is the first report of indigenous plasmid from Xanthomonas oryzae pv. oryzicola, and the first completely sequenced plasmid from Xanthomonas oryzae species. It is a self-transmissible plasmid and has a mosaic structure, containing genes for macromolecule secretion, heavy metal exportation, and DNA mobile factors, especially the Tn3-like transposon which may provide transposition function for mobile insertion cassette and play a major role in the spread of pathogenicity determinants. The results will be helpful to elucidate the biological significance of this cryptic plasmid and the adaptive evolution of Xoc.
Collapse
Affiliation(s)
- Xiang-Na Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Zhi-Qiong Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Hai-Fan Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Gui-Gang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Feng Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Kang-Jia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| |
Collapse
|
15
|
Abstract
Bacterial blight of rice is an important serious bacterial diseases of rice in many rice-growing regions, caused by Xanthomonas oryzae pv. oryzae (Xoo). The thiG gene from Xoo strain ZJ173, which is involved with thiazole moiety production in the thiamine biosynthesis pathway, is highly conserved among the members of Xanthomonas. The thiG deletion mutant displayed impaired virulence and growth in thiamine-free medium but maintained its normal growth rate in the rice tissues, indicating that the thiG gene is involved in Xoo virulence. Compared to the wild type strain, the formation of cell-cell aggregates was affected in thiG deletion mutants. Although biofilm formation was promoted, motility and migration in rice leaves were repressed in the thiG mutants, and therefore limited the expansion of pathogen infection in rice. Quorum sensing and extracellular substance are two key factors that contribute to the formation of cell-cell aggregates. Our study found that in the thiG mutant the expression of two genes, rpfC and rpfG, which form a two-component regulatory signal system involved in the regulation of biofilm formation by a second messenger cyclic di-GMP is down-regulated. In addition, our study showed that xanthan production was not affected but the expression of some genes associated with xanthan biosynthesis, like gumD, gumE, gumH and gumM, were up-regulated in thiG mutants. Taken together, these findings are the first to demonstrate the role of the thiazole biosynthsis gene, thiG, in virulence and the formation of aggregates in Xanthomonas oryzae pv. oryzae.
Collapse
|
16
|
Song Z, Zhao Y, Zhou X, Wu G, Zhang Y, Qian G, Liu F. Identification and Characterization of Two Novel DSF-Controlled Virulence-Associated Genes Within the nodB-rhgB Locus of Xanthomonas oryzae pv. oryzicola Rs105. PHYTOPATHOLOGY 2015; 105:588-596. [PMID: 26020828 DOI: 10.1094/phyto-07-14-0190-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae are two pathovars of X. oryzae that cause leaf streak and blight in rice, respectively. These two bacterial pathogens cause different disease symptoms by utilizing different infection sites on rice. Compared with X. oryzae pv. oryzae, the molecular virulence mechanism of X. oryzae pv. oryzicola remains largely unknown. Previously, we identified a unique diffusible signal factor (DSF)-controlled virulence-related gene (hshB) in X. oryzae pv. oryzicola Rs105 located in the nodB-rghB locus, which is absent in X. oryzae pv. oryzae PXO99(A). In the present study, we identified two additional genes within this locus (hshA and hshC) that were unique to X. oryzae pv. oryzicola Rs105 compared with X. oryzae pv. oryzae PXO99(A), and we found that the transcription of these genes was regulated by DSF signaling in X. oryzae pv. oryzicola. The mutation of these genes impaired the virulence of the wild-type Rs105 when using a low inoculation density of X. oryzae pv. oryzicola. In contrast to hshB, the mutation of these genes did not have any visible effect on characterized virulence-related functions, including in vitro growth, extracellular polysaccharide production, extracellular protease activity, and antioxidative ability. However, we found that mutation of hshA or hshC significantly reduced the in planta growth ability and epiphytic survival level of X. oryzae pv. oryzicola cells, which was the probable mechanisms of involvement of these two genes in virulence. Collectively, our studies of X. oryzae pv. oryzicola have identified two novel DSF-controlled virulence-associated genes (hshA and hshC), which will add to our understanding of the regulatory mechanisms of conserved DSF virulence signaling in Xanthomonas species.
Collapse
Affiliation(s)
- Zhiwei Song
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Yancun Zhao
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Xingyang Zhou
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guichun Wu
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Yuqiang Zhang
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guoliang Qian
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Fengquan Liu
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| |
Collapse
|
17
|
Xu J, Zhou L, Venturi V, He YW, Kojima M, Sakakibari H, Höfte M, De Vleesschauwer D. Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions. BMC PLANT BIOLOGY 2015; 15:10. [PMID: 25605284 PMCID: PMC4307914 DOI: 10.1186/s12870-014-0411-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/30/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND Small-molecule hormones are well known to play key roles in the plant immune signaling network that is activated upon pathogen perception. In contrast, little is known about whether phytohormones also directly influence microbial virulence, similar to what has been reported in animal systems. RESULTS In this paper, we tested the hypothesis that hormones fulfill dual roles in plant-microbe interactions by orchestrating host immune responses, on the one hand, and modulating microbial virulence traits, on the other. Employing the rice-Xanthomonas oryzae pv. oryzae (Xoo) interaction as a model system, we show that Xoo uses the classic immune hormone salicylic acid (SA) as a trigger to activate its virulence-associated quorum sensing (QS) machinery. Despite repressing swimming motility, sodium salicylate (NaSA) induced production of the Diffusible Signal Factor (DSF) and Diffusible Factor (DF) QS signals, with resultant accumulation of xanthomonadin and extracellular polysaccharides. In contrast, abscisic acid (ABA), which favors infection by Xoo, had little impact on DF- and DSF-mediated QS, but promoted bacterial swimming via the LuxR solo protein OryR. Moreover, we found both DF and DSF to influence SA- and ABA-responsive gene expression in planta. CONCLUSIONS Together our findings indicate that the rice SA and ABA signaling pathways cross-communicate with the Xoo DF and DSF QS systems and underscore the importance of bidirectional interkingdom signaling in molding plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Xu
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Hitoshi Sakakibari
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Monica Höfte
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - David De Vleesschauwer
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
18
|
O'Connell A, An SQ, McCarthy Y, Schulte F, Niehaus K, He YQ, Tang JL, Ryan RP, Dow JM. Proteomics analysis of the regulatory role of Rpf/DSF cell-to-cell signaling system in the virulence of Xanthomonas campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1131-1137. [PMID: 23819805 DOI: 10.1094/mpmi-05-13-0155-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The black rot pathogen Xanthomonas campestris utilizes molecules of the diffusible signal factor (DSF) family as signals to regulate diverse processes contributing to virulence. DSF signal synthesis and transduction requires proteins encoded by the rpf gene cluster. RpfF catalyzes DSF synthesis, whereas the RpfCG two-component system links the perception of DSF to alteration in the level of the second messenger cyclic di-GMP. As this nucleotide can exert a regulatory influence at the post-transcriptional and post-translational levels, we have used comparative proteomics to identify Rpf-regulated processes in X. campestris that may not be revealed by transcriptomics. The abundance of a number of proteins was altered in rpfF, rpfC, or rpfG mutants compared with the wild type. These proteins belonged to several functional categories, including biosynthesis and intermediary metabolism, regulation, oxidative stress or antibiotic resistance, and DNA replication. For many of these proteins, the alteration in abundance was not associated with alteration in transcript level. A directed mutational analysis allowed us to describe a number of new virulence factors among these proteins, including elongation factor P and a putative outer membrane protein, which are both widely conserved in bacteria.
Collapse
|
19
|
Qian G, Zhou Y, Zhao Y, Song Z, Wang S, Fan J, Hu B, Venturi V, Liu F. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J Proteome Res 2013; 12:3327-41. [PMID: 23688240 DOI: 10.1021/pr4001543] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ham JH. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. MOLECULAR PLANT PATHOLOGY 2013; 14. [PMID: 23186372 PMCID: PMC6638695 DOI: 10.1111/mpp.12005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens.
Collapse
Affiliation(s)
- Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| |
Collapse
|
21
|
Santos CA, Saraiva AM, Toledo MAS, Beloti LL, Crucello A, Favaro MTP, Horta MAC, Santiago AS, Mendes JS, Souza AA, Souza AP. Initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa related to the human cytosolic 5'-nucleotidase I. Microb Pathog 2013; 59-60:1-6. [PMID: 23474016 DOI: 10.1016/j.micpath.2013.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/18/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
The 5'-nucleotidases constitute a ubiquitous family of enzymes that catalyze either the hydrolysis or the transfer of esterified phosphate at the 5' position of nucleoside monophosphates. These enzymes are responsible for the regulation of nucleotide and nucleoside levels in the cell and can interfere with the phosphorylation-dependent activation of nucleoside analogs used in therapies targeting solid tumors and viral infections. In the present study, we report the initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa that is related to the human cytosolic 5'-nucleotidase I. X. fastidiosa is a plant pathogenic bacterium that is responsible for numerous economically important crop diseases. Biochemical assays confirmed the phosphatase activity of the recombinant purified enzyme and revealed metal ion dependence for full enzyme activity. In addition, we investigated the involvement of Xf5'-Nt in the formation of X. fastidiosa biofilms, which are structures that occlude the xylem vessels of susceptible plants and are strictly associated with bacterial pathogenesis. Using polyclonal antibodies against Xf5'-Nt, we observed an overexpression of Xf5'-Nt during the initial phases of X. fastidiosa biofilm formation that was not observed during X. fastidiosa planktonic growth. Our results demonstrate that the de/phosphorylation network catalyzed by 5'-nucleotidases may play an important role in bacterial biofilm formation, thereby contributing novel insights into bacterial nucleotide metabolism and pathogenicity.
Collapse
Affiliation(s)
- Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Qian G, Liu C, Wu G, Yin F, Zhao Y, Zhou Y, Zhang Y, Song Z, Fan J, Hu B, Liu F. AsnB, regulated by diffusible signal factor and global regulator Clp, is involved in aspartate metabolism, resistance to oxidative stress and virulence in Xanthomonas oryzae pv. oryzicola. MOLECULAR PLANT PATHOLOGY 2013; 14:145-57. [PMID: 23157387 PMCID: PMC6638903 DOI: 10.1111/j.1364-3703.2012.00838.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak in rice, which is a destructive disease worldwide. Xoc virulence factors are regulated by diffusible signal factor (DSF) and the global regulator Clp. In this study, we have demonstrated that asnB (XOC_3054), encoding an asparagine synthetase, is a novel virulence-related gene regulated by both DSF and Clp in Xoc. A sequence analysis revealed that AsnB is highly conserved in Xanthomonas. An asnB mutation in Xoc dramatically impaired pathogen virulence and growth rate in host rice, but did not affect the ability to trigger the hypersensitive response in nonhost (plant) tobacco. Compared with the wild-type strain, the asnB deletion mutant was unable to grow in basic MMX (-) medium (a minimal medium without ammonium sulphate as the nitrogen source) with or without 10 tested nitrogen sources, except asparagine. The disruption of asnB impaired pathogen resistance to oxidative stress and reduced the transcriptional expression of oxyR, katA and katG, which encode three important proteins responsible for hydrogen peroxide (H(2)O(2)) sensing and detoxification in Xanthomonas in the presence of H(2)O(2), and nine important known Xoc virulence-related genes in plant cell-mimicking medium. Furthermore, the asnB mutation did not affect extracellular protease activity, extracellular polysaccharide production, motility or chemotaxis. Taken together, our results demonstrate the role of asnB in Xanthomonas for the first time.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Qian G, Zhang Y, Zhou Y, Liu C, Zhao Y, Song Z, Fan J, Hu B, Liu F. epv, Encoding a hypothetical protein, is regulated by DSF-mediating quorum sensing as well as global regulator Clp and is required for optimal virulence in Xanthomonas oryzae pv. oryzicola. PHYTOPATHOLOGY 2012; 102:841-7. [PMID: 22881870 DOI: 10.1094/phyto-02-12-0020-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak in rice, a destructive disease worldwide. In this study, six putative hypothetical secreted proteins, which were absent in X. oryzae pv. oryzae, were detected from X. oryzae pv. oryzicola strain BLS256. Disruption-based mutagenesis study revealed that one of them, Xoc_15235, named as extracellular polysaccharide and virulence-related gene (epv), was required for the optimal virulence in host rice but not for the induction of a hypersensitive reaction in nonhost tobacco. Sequence analysis revealed that epv was highly conserved in Xanthomonas spp. (except X. oryzae pv. oryzae). In-frame deletion of epv in X. oryzae pv. oryzicola dramatically impaired pathogen virulence and extracellular polysaccharide (EPS) production, one of the important known virulence-associated functions in Xanthomonas spp. Quantitative real-time reverse-transcription polymerase chain reaction showed that expression of both gumB (a gene encoding exopolysaccharide xanthan biosynthesis export protein) and a known virulence-related gene, pgk (encoding phosphoglycerate kinase), were obviously reduced in the epv-deletion mutant compared with the wild-type strain Rs105. In addition, we observed that epv was positively regulated by both diffusible signal factor and global regulator Clp in X. oryzae pv. oryzicola. Taken together, the novel roles and genetics of epv of X. oryzae pv. oryzicola in the EPS production and virulence were investigated for the first time.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection and Key Laboratory of Integrated Management of Corp Diseases and Pests, Ministry of Education, Nanjing Agricultural University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhao Y, Qian G, Fan J, Yin F, Zhou Y, Liu C, Shen Q, Hu B, Liu F. Identification and characterization of a novel gene, hshB, in Xanthomonas oryzae pv. oryzicola co-regulated by quorum sensing and clp. PHYTOPATHOLOGY 2012; 102:252-259. [PMID: 22106829 DOI: 10.1094/phyto-06-11-0169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Virulence factors of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, are regulated by a diffusible signal factor (DSF)-dependent quorum-sensing (QS) system. In this study, a novel pathogenicity-related gene, Xoryp_010100018570 (named hshB), of X. oryzae pv. oryzicola was characterized. hshB encodes a hydrolase with a putative signal peptide, which is a homolog of imidazolonepropionase. Bioinformatic analysis showed that hshB is relatively conserved in the genus Xanthomonas but the homologous gene of hshB was not found in X. oryzae pv. oryzae. Reverse-transcription polymerase chain reaction (PCR) analysis showed that hshB and its upstream gene, Xoryp_010100018565 (named hshA), are co-transcribed in X. oryzae pv. oryzicola. Subsequent experimental results indicated that mutation of hshB remarkably impaired the virulence, extracellular protease activity, extracellular polysaccharide production, growth in minimal medium, and resistance to oxidative stress and bismerthiazol of X. oryzae pv. oryzicola. Mutation of clp, encoding a global regulator, resulted in similar phenotypes. Real-time PCR assays showed that hshB transcription is positively regulated by clp and DSF, and induced by poor nutrition. Our study not only found a novel gene hshB regulated by DSF-dependent QS system and clp but also showed that hshB was required for virulence of X. oryzae pv. oryzicola.
Collapse
Affiliation(s)
- Yancun Zhao
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guo W, Cui YP, Li YR, Che YZ, Yuan L, Zou LF, Zou HS, Chen GY. Identification of seven Xanthomonas oryzae pv. oryzicola genes potentially involved in pathogenesis in rice. Microbiology (Reading) 2012; 158:505-518. [DOI: 10.1099/mic.0.050419-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Wei Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education of China), College of Plant Protection, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, PR China
| | - Yi-ping Cui
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education of China), College of Plant Protection, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, PR China
| | - Yu-rong Li
- Key Laboratory of Urban (South) by Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yi-zhou Che
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education of China), College of Plant Protection, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, PR China
| | - Liang Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education of China), College of Plant Protection, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, PR China
| | - Li-fang Zou
- Key Laboratory of Urban (South) by Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Hua-song Zou
- Key Laboratory of Urban (South) by Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Gong-you Chen
- Key Laboratory of Urban (South) by Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education of China), College of Plant Protection, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, PR China
| |
Collapse
|
26
|
Guo Y, Zhang Y, Li JL, Wang N. Diffusible signal factor-mediated quorum sensing plays a central role in coordinating gene expression of Xanthomonas citri subsp. citri. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:165-179. [PMID: 21995764 DOI: 10.1094/mpmi-07-11-0184] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Diffusible signal factor (DSF) family signal-mediated quorum sensing (QS) has been identified in many gram-negative bacteria. This QS pathway of Xanthomonas spp. consists of three major QS components: RpfF, RpfC, and RpfG. The rpfF gene encodes a putative enoyl-CoA hydratase that catalyzes the synthesis of the signal molecule. RpfC and RpfG serve as a two-component system for the perception and transduction of the extracellular DSF family signals. In order to further characterize the QS regulatory network in Xanthomonas citri subsp. citri, we investigated the RpfF, RpfC, and RpfG regulons by using transcriptome analyses. Comparison of the transcriptomes of the QS mutants (rpfF, rpfC, and rpfG) with that of the wild-type strain revealed a core group of genes controlled by all three QS components, suggesting that the RpfC-RpfG two-component system is a major and conserved signal perception and transduction system for DSF family signal-mediated QS in X. citri subsp. citri. The unique genes controlled by RpfF alone indicate the complexity of the QS pathway and the involvement of additional sensory mechanisms in X. citri subsp. citri. The unique genes controlled by RpfC and RpfG, respectively, support the possibility that RpfC and RpfG play broader roles in gene regulation other than transduction of DSF signals.
Collapse
Affiliation(s)
- Yinping Guo
- Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL, USA
| | | | | | | |
Collapse
|
27
|
Silva MS, De Souza AA, Takita MA, Labate CA, Machado MA. Analysis of the biofilm proteome of Xylella fastidiosa. Proteome Sci 2011; 9:58. [PMID: 21939513 PMCID: PMC3187737 DOI: 10.1186/1477-5956-9-58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 09/22/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. RESULTS We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. CONCLUSIONS We observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen.
Collapse
Affiliation(s)
- Mariana S Silva
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Centro APTA Citros 'Sylvio Moreira'(CCSM), Cordeirópolis, SP, Brazil
| | | | - Marco A Takita
- Centro APTA Citros 'Sylvio Moreira'(CCSM), Cordeirópolis, SP, Brazil
| | - Carlos A Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Marcos A Machado
- Centro APTA Citros 'Sylvio Moreira'(CCSM), Cordeirópolis, SP, Brazil
| |
Collapse
|
28
|
Knief C, Delmotte N, Vorholt JA. Bacterial adaptation to life in association with plants - A proteomic perspective from culture to in situ conditions. Proteomics 2011; 11:3086-105. [PMID: 21548095 DOI: 10.1002/pmic.201000818] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/01/2011] [Accepted: 02/17/2011] [Indexed: 12/13/2022]
Abstract
Diverse bacterial taxa that live in association with plants affect plant health and development. This is most evident for those bacteria that undergo a symbiotic association with plants or infect the plants as pathogens. Proteome analyses have contributed significantly toward a deeper understanding of the molecular mechanisms underlying the development of these associations. They were applied to obtain a general overview of the protein composition of these bacteria, but more so to study effects of plant signaling molecules on the cytosolic proteome composition or metabolic adaptations upon plant colonization. Proteomic analyses are particularly useful for the identification of secreted proteins, which are indispensable to manipulate a host plant. Recent advances in the field of proteome analyses have initiated a new research area, the analysis of more complex microbial communities. Such studies are just at their beginning but hold great potential for the future to elucidate not only the interactions between bacteria and their host plants, but also of bacteria-bacteria interactions between different bacterial taxa when living in association with plants. These include not only the symbiotic and pathogenic bacteria, but also the commensal bacteria that are consistently found in association with plants and whose functions remain currently largely uncovered.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
29
|
Eberl L, Riedel K. Mining quorum sensing regulated proteins - Role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics. Proteomics 2011; 11:3070-85. [PMID: 21548094 DOI: 10.1002/pmic.201000814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/20/2011] [Accepted: 02/17/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of Zürich, Zurich, Switzerland
| | | |
Collapse
|