1
|
Matar IK, Dong Z, Matta CF. Exploring the Chemical Space of Mycobacterial Oxidative Phosphorylation Inhibitors Using Molecular Modeling. ChemMedChem 2024; 19:e202400303. [PMID: 39302818 PMCID: PMC11581423 DOI: 10.1002/cmdc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Indexed: 09/22/2024]
Abstract
Mycobacteria are opportunistic intracellular pathogens that have plagued humans and other animals throughout history and still are today. They manipulate and hijack phagocytic cells of immune systems, enabling them to occupy this peculiar infection niche. Mycobacteria exploit a plethora of mechanisms to resist antimicrobials (e. g., waxy cell walls, efflux pumps, target modification, biofilms, etc.) thereby evolving into superbugs, such as extensively drug-resistant tuberculosis (XDR TB) bacilli and the emerging pathogenic Mycobacterium abscessus complex. This review summarizes the mechanisms of action of some of the surging antimycobacterial strategies. Exploiting the fact that mycobacteria are obligate aerobes and the differences between their oxidative phosphorylation pathways versus their human counterpart opens a promising avenue for drug discovery. The polymorphism of respiratory complexes across mycobacterial pathogens imposes challenges on the repositioning of antimycobacterial agents to battle the rise in nontuberculous mycobacterial infections. In silico strategies exploiting mycobacterial respiratory machinery data to design novel therapeutic agents are touched upon. The potential druggability of mycobacterial respiratory elements is reviewed. Future research addressing the health challenges associated with mycobacterial pathogens is discussed.
Collapse
Affiliation(s)
- Islam K. Matar
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| | - Zhongmin Dong
- Department of BiologySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
| | - Chérif F. Matta
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| |
Collapse
|
2
|
Wu Y, Riehle A, Pollmeier B, Kadow S, Schumacher F, Drab M, Kleuser B, Gulbins E, Grassmé H. Caveolin-1 affects early mycobacterial infection and apoptosis in macrophages and mice. Tuberculosis (Edinb) 2024; 147:102493. [PMID: 38547568 DOI: 10.1016/j.tube.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 06/14/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.
Collapse
Affiliation(s)
- Yuqing Wu
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Andrea Riehle
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Pollmeier
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | - Marek Drab
- Unit of Nanostructural Biointeractions, Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114, Wroclaw, Poland
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Heike Grassmé
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
3
|
Breen P, Zimbric M, Caverly LJ. Itaconic acid inhibits nontuberculous mycobacterial growth in pH dependent manner while 4-octyl-itaconic acid enhances THP-1 clearance of nontuberculous mycobacteria in vitro. PLoS One 2024; 19:e0303516. [PMID: 38728330 PMCID: PMC11086914 DOI: 10.1371/journal.pone.0303516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Increasingly prevalent, nontuberculous mycobacteria (NTM) infections affect approximately 20% of people with cystic fibrosis (CF). Previous studies of CF sputum identified lower levels of the host metabolite itaconate in those infected with NTM. Itaconate can inhibit the growth of M. tuberculosis (MTB) in vitro via the inhibition of the glyoxylate cycle enzyme (ICL), but its impact on NTM is unclear. To test itaconic acid's (IA) effect on NTM growth, laboratory and CF clinical strains of Mycobacterium abscessus and Mycobacterium avium were cultured in 7H9 minimal media supplemented with 1-10 mM of IA and short-chain fatty acids (SCFA). M. avium and M. abscessus grew when supplemented with SCFAs, whereas the addition of IA (≥ 10 mM) completely inhibited NTM growth. NTM supplemented with acetate or propionate and 5 mM IA displayed slower growth than NTM cultured with SCFA and ≤ 1 mM of IA. However, IA's inhibition of NTM was pH dependent; as similar and higher quantities (100 mM) of pH adjusted IA (pH 7) did not inhibit growth in vitro, while in an acidic minimal media (pH 6.1), 1 to 5 mM of non-pH adjusted IA inhibited growth. None of the examined isolates displayed the ability to utilize IA as a carbon source, and IA added to M. abscessus isocitrate lyase (ICL) decreased enzymatic activity. Lastly, the addition of cell-permeable 4-octyl itaconate (4-OI) to THP-1 cells enhanced NTM clearance, demonstrating a potential role for IA/itaconate in host defense against NTM infections.
Collapse
Affiliation(s)
- Paul Breen
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Madsen Zimbric
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Lindsay J. Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
4
|
Kelley M, Sasaninia K, Abnousian A, Badaoui A, Owens J, Beever A, Kachour N, Tiwari RK, Venketaraman V. Additive Effects of Cyclic Peptide [R4W4] When Added Alongside Azithromycin and Rifampicin against Mycobacterium avium Infection. Pathogens 2023; 12:1057. [PMID: 37624017 PMCID: PMC10459066 DOI: 10.3390/pathogens12081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Mycobacterium avium (M. avium), a type of nontuberculous mycobacteria (NTM), poses a risk for pulmonary infections and disseminated infections in immunocompromised individuals. Conventional treatment consists of a 12-month regimen of the first-line antibiotics rifampicin and azithromycin. However, the treatment duration and low antibiotic tolerability present challenges in the treatment of M. avium infection. Furthermore, the emergence of multidrug-resistant mycobacterium strains prompts a need for novel treatments against M. avium infection. This study aims to test the efficacy of a novel antimicrobial peptide, cyclic [R4W4], alongside the first-line antibiotics azithromycin and rifampicin in reducing M. avium survival. Colony-forming unit (CFU) counts were assessed after treating M. avium cultures with varying concentrations of cyclic [R4W4] alone or in conjunction with azithromycin or rifampicin 3 h and 4 days post-treatment. M. avium growth was significantly reduced 4 days after cyclic [R4W4] single treatment. Additionally, cyclic [R4W4]-azithromycin and cyclic [R4W4]-rifampicin combination treatments at specific concentrations significantly reduced M. avium survival 3 h and 4 days post-treatment compared with single antibiotic treatment alone. These findings demonstrate cyclic [R4W4] as a potent treatment method against M. avium and provide insight into novel therapeutic approaches against mycobacterium infections.
Collapse
Affiliation(s)
- Melissa Kelley
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.A.); (J.O.)
| | - Arbi Abnousian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.A.); (J.O.)
| | - Ali Badaoui
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.A.); (J.O.)
| | - James Owens
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.A.); (J.O.)
| | - Abrianna Beever
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA
| | - Nala Kachour
- School of Medicine, University of California Riverside, Riverside, CA 92521, USA;
| | - Rakesh Kumar Tiwari
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.A.); (J.O.)
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92866, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.A.); (J.O.)
| |
Collapse
|
5
|
Barletta RG, Bannantine JP, Stabel JR, Muthukrishnan E, Anderson DK, Dutta E, Manthena V, Hanafy M, Zinniel DK. Mycobacterium avium subsp. paratuberculosis Candidate Vaccine Strains Are Pro-apoptotic in RAW 264.7 Murine Macrophages. Vaccines (Basel) 2023; 11:1085. [PMID: 37376474 DOI: 10.3390/vaccines11061085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease, a severe gastroenteritis of ruminants. This study developed a model cell culture system to rapidly screen MAP mutants with vaccine potential for apoptosis. Two wild-type strains, a transposon mutant, and two deletion mutant MAP strains (MOI of 10 with 1.2 × 106 CFU) were tested in murine RAW 264.7 macrophages to determine if they induce apoptosis and/or necrosis. Both deletion mutants were previously shown to be attenuated and immunogenic in primary bovine macrophages. All strains had similar growth rates, but cell morphology indicated that both deletion mutants were elongated with cell wall bulging. Cell death kinetics were followed by a real-time cellular assay to measure luminescence (apoptosis) and fluorescence (necrosis). A 6 h infection period was the appropriate time to assess apoptosis that was followed by secondary necrosis. Apoptosis was also quantified via DAPI-stained nuclear morphology and validated via flow cytometry. The combined analysis confirmed the hypothesis that candidate vaccine deletion mutants are pro-apoptotic in RAW 264.7 cells. In conclusion, the increased apoptosis seen in the deletion mutants correlates with the attenuated phenotype and immunogenicity observed in bovine macrophages, a property associated with good vaccine candidates.
Collapse
Affiliation(s)
- Raul G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - John P Bannantine
- United States Department of Agriculture-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010, USA
| | - Judith R Stabel
- United States Department of Agriculture-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010, USA
| | - Ezhumalai Muthukrishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Dirk K Anderson
- Nebraska Center for Biotechnology, Flow Cytometry Core Facility, University of Nebraska, Lincoln, NE 68588, USA
| | - Enakshy Dutta
- Department of Statistics, University of Nebraska, Lincoln, NE 68583, USA
| | - Vamsi Manthena
- Department of Statistics, University of Nebraska, Lincoln, NE 68583, USA
| | - Mostafa Hanafy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Denise K Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
6
|
Kajiwara C, Shiozawa A, Urabe N, Yamaguchi T, Kimura S, Akasaka Y, Ishii Y, Tateda K. Apoptosis Inhibitor of Macrophages Contributes to the Chronicity of Mycobacterium avium Infection by Promoting Foamy Macrophage Formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:431-441. [PMID: 36602769 DOI: 10.4049/jimmunol.2200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
In Mycobacterium avium infections, macrophages play a critical role in the host defense response. Apoptosis inhibitor of macrophage (AIM), also known as CD5L, may represent a novel supportive therapy against various diseases, including metabolic syndrome and infectious diseases. The mechanisms of AIM include modulating lipid metabolism in macrophages and other host cells. We investigated the role of AIM in M. avium infections in vitro and in vivo. In a mouse model of M. avium pneumonia, foamy macrophages were induced 6 wk after infection. The bacteria localized in these macrophages. Flow cytometric analysis also confirmed that the percentage of CD11chighMHCclassIIhigh interstitial and alveolar macrophages, a cell surface marker defined as foamy macrophages, increased significantly after infection. AIM in alveolar lavage fluid and serum gradually increased after infection. Administration of recombinant AIM significantly increased the number of bacteria in the lungs of mice, accompanied by the induction of inflammatory cytokine and iNOS expression. In mouse bone marrow-derived macrophages, the mRNA expression of AIM after M. avium infection and the amount of AIM in the supernatant increased prior to the increase in intracellular bacteria. Infected cells treated with anti-AIM Abs had fewer bacteria and a higher percentage of apoptosis-positive cells than infected cells treated with isotype control Abs. Finally, AIM in the sera of patients with M. avium-pulmonary disease was measured and was significantly higher than in healthy volunteers. This suggests that AIM production is enhanced in M. avium-infected macrophages, increasing macrophage resistance to apoptosis and providing a possible site for bacterial growth.
Collapse
Affiliation(s)
- Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Ayako Shiozawa
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Naohisa Urabe
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Soichiro Kimura
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Shonan University of Medical Sciences, Kanagawa, Japan; and
| | - Yoshikiyo Akasaka
- Department of Diagnostic Pathology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Park HE, Lee W, Choi S, Jung M, Shin MK, Shin SJ. Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Front Immunol 2022; 13:931876. [PMID: 36505429 PMCID: PMC9730288 DOI: 10.3389/fimmu.2022.931876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium complex (MAC) is the main causative agent of infectious diseases in humans among nontuberculous mycobacteria (NTM) that are ubiquitous organisms found in environmental media such as soil as well as in domestic and natural waters. MAC is a primary causative agent of NTM-lung disease that threaten immunocompromised or structural lung disease patients. The incidence and the prevalence of M. tuberculosis infection have been reduced, while MAC infections and mortality rates have increased, making it a cause of global health concern. The emergence of drug resistance and the side effects of long-term drug use have led to a poor outcome of treatment regimens against MAC infections. Therefore, the development of host-directed therapy (HDT) has recently gained interest, aiming to accelerate mycobacterial clearance and reversing lung damage by employing the immune system using a novel adjuvant strategy to improve the clinical outcome of MAC infection. Therefore, in this review, we discuss the innate immune responses that contribute to MAC infection focusing on macrophages, chief innate immune cells, and host susceptibility factors in patients. We also discuss potential HDTs that can act on the signaling pathway of macrophages, thereby contributing to antimycobacterial activity as a part of the innate immune response during MAC infection. Furthermore, this review provides new insights into MAC infection control that modulates and enhances macrophage function, promoting host antimicrobial activity in response to potential HDTs and thus presenting a deeper understanding of the interactions between macrophages and MACs during infection.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Myunghwan Jung
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| |
Collapse
|
8
|
Mycobacterium intracellulare induces a Th17 immune response via M1-like macrophage polarization in canine peripheral blood mononuclear cells. Sci Rep 2022; 12:11818. [PMID: 35821058 PMCID: PMC9276657 DOI: 10.1038/s41598-022-16117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
Mycobacterium avium-intracellulare complex (MAC) is one of the most prevalent pathogenic nontuberculous mycobacteria that cause chronic pulmonary disease. The prevalence of MAC infection has been rising globally in a wide range of hosts, including companion animals. MAC infection has been reported in dogs; however, little is known about interaction between MAC and dogs, especially in immune response. In this study, we investigated the host immune response driven by M. intracellulare using the co-culture system of canine T helper cells and autologous monocyte-derived macrophages (MDMs). Transcriptomic analysis revealed that canine MDMs differentiated into M1-like macrophages after M. intracellulare infection and the macrophages secreted molecules that induced Th1/Th17 cell polarization. Furthermore, canine lymphocytes co-cultured with M. intracellulare-infected macrophages induced the adaptive Th17 responses after 5 days. Taken together, our results indicate that M. intracellulare elicits a Th17 response through macrophage activation in this system. Those findings might help the understanding of the canine immune response to MAC infection and diminishing the potential zoonotic risk in One Health aspect.
Collapse
|
9
|
Kilinç G, Walburg KV, Franken KLMC, Valkenburg ML, Aubry A, Haks MC, Saris A, Ottenhoff THM. Development of Human Cell-Based In Vitro Infection Models to Determine the Intracellular Survival of Mycobacterium avium. Front Cell Infect Microbiol 2022; 12:872361. [PMID: 35811670 PMCID: PMC9263196 DOI: 10.3389/fcimb.2022.872361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
The Mycobacterium avium (Mav) complex accounts for more than 80% of all pulmonary diseases caused by non-tuberculous mycobacteria (NTM) infections, which have an alarming increase in prevalence and vary in different regions, currently reaching 0.3–9.8 per 100,000 individuals. Poor clinical outcomes, as a result of increasing microbial drug resistance and low treatment adherence due to drug-toxicities, emphasize the need for more effective treatments. Identification of more effective treatments, however, appears to be difficult, which may be due to the intracellular life of NTM and concomitant altered drug sensitivity that is not taken into account using traditional drug susceptibility testing screenings. We therefore developed human cell-based in vitro Mav infection models using the human MelJuSo cell line as well as primary human macrophages and a fluorescently labeled Mav strain. By testing a range of multiplicity of infection (MOI) and using flow cytometry and colony-forming unit (CFU) analysis, we found that an MOI of 10 was the most suitable for Mav infection in primary human macrophages, whereas an MOI of 50 was required to achieve similar results in MelJuSo cells. Moreover, by monitoring intracellular bacterial loads over time, the macrophages were shown to be capable of controlling the infection, while MelJuSo cells failed to do so. When comparing the MGIT system with the classical CFU counting assay to determine intracellular bacterial loads, MGIT appeared as a less labor-intensive, more precise, and more objective alternative. Next, using our macrophage Mav infection models, the drug efficacy of the first-line drug rifampicin and the more recently discovered bedaquiline on intracellular bacteria was compared to the activity on extracellular bacteria. The efficacy of the antibiotics inhibiting bacterial growth was significantly lower against intracellular bacteria compared to extracellular bacteria. This finding emphasizes the crucial role of the host cell during infection and drug susceptibility and highlights the usefulness of the models. Taken together, the human cell-based Mav infection models are reliable tools to determine the intracellular loads of Mav, which will enable researchers to investigate host–pathogen interactions and to evaluate the efficacy of (host-directed) therapeutic strategies against Mav.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kimberley V. Walburg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Merel L. Valkenburg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Aubry
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, U1135, AP-HP, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Anno Saris, ; orcid.org/0000-0003-0493-9501
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Wang J, Liu Z, Li W, Yu J, Zhang D. Knockdown of GBP1 inhibits BCG-induced apoptosis in macrophage RAW 264.7 cells via p38/JNK pathway. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105158. [PMID: 34826624 DOI: 10.1016/j.meegid.2021.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Alveolar macrophage apoptosis induced by Mycobacterium tuberculosis (Mtb) plays a significant role in mediating the pathogenesis of tuberculosis. There is growing evidence that guanylate-binding proteins (GBPs) are associated with different pathological processes such as microbial infection. However, it remains unclear whether GBPs can regulate the apoptosis of macrophages induced by Mtb. In this study, we investigated the potential effect of GBP1 on RAW 264.7 cell apoptosis during Bacillus Calmette-Guerin (BCG) infection. The results demonstrated that BCG could induce macrophage apoptosis and GBP1 upregulation. In addition, we explored the role of GBP1 in regulating BCG-induced RAW 264.7 cell apoptosis using small interfering RNAs targeting GBP1. The results showed that knockdown of GBP1 could attenuate BCG-induced apoptosis in RAW 264.7 cells. Moreover, we found that GBP1 knockdown decreased the levels of cleaved-Caspase 3 and cleaved-PARP-1, while decreased those of cleaved-Caspase 9, BAX, Cytochrome C and APAF1. These findings imply that GBP1 knockdown can prevent BCG-induced apoptosis through an endogenous apoptosis pathway. In addition, the mitochondrial membrane potential of macrophages was significantly increased after BCG infection, and GBP1 knockdown could alleviate this phenomenon. Furthermore, downregulation of GBP1 also attenuated BCG-induced accumulation of reactive oxygen species in macrophages. Mechanistically, GBP1 suppressed the phosphorylation of the target molecules in p38/JNK pathway, thus regulating the apoptosis of BGC-infected macrophages. Collectively, these findings reveal a significant role of GBP1 in mediating cell apoptosis in macrophages infected with BCG, and the molecular mechanism underlying its suppressive effect on BCG-induced apoptosis.
Collapse
Affiliation(s)
- Jianhong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Zhanyou Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Wu Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jialin Yu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Dongtao Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
11
|
Shaw TD, Krasnodembskaya AD, Schroeder GN, Zumla A, Maeurer M, O’Kane CM. Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 PMCID: PMC8510528 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
Affiliation(s)
- Timothy D. Shaw
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Anna D. Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Alimuddin Zumla
- Center for Clinical Microbiology, Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- Immunosurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| |
Collapse
|
12
|
Weathered C, Pennington K, Escalante P, Pienaar E. The Role of Biofilms, Bacterial Phenotypes, and Innate Immune Response in Mycobacterium avium Colonization to Infection. J Theor Biol 2021; 534:110949. [PMID: 34717938 DOI: 10.1016/j.jtbi.2021.110949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023]
Abstract
Mycobacterium avium complex (MAC), is known for colonizing and infecting humans following inhalation of the bacteria. MAC pulmonary disease is notoriously difficult to treat and prone to recurrence. Both the incidence and prevalence MAC pulmonary disease have been increasing globally. MAC is well known to form biofilms in the environment, and in vitro, these biofilms have been shown to aid MAC in epithelial cell invasion, protect MAC from phagocytosis, and cause premature apoptosis in macrophages. In vivo, the system of interactions between MAC, biofilms and host macrophages is complex, difficult to replicate in vitro and in animal models, has not been fully characterized. Here we present a three-dimensional agent-based model of a lung airway to help understand how these interactions evolve in the first 14 days post-bacterial inhalation. We parameterized the model using published data and performed uncertainty analysis to characterize outcomes and parameters' effects on those outcomes. Model results show diverse outcomes, including wide ranges of macrophage recruitment levels, and bacterial loads and phenotype distribution. Though most bacteria are phagocytosed by macrophages and remain intracellular, there are also many simulations in which extracellular bacteria continue to drive the colonization and infection. Initial parameters dictating host immune levels, bacterial loads introduced to the airway, and biofilm conditions have significant and lasting impacts on the course of these results. Additionally, though macrophage recruitment is key for suppressing bacterial loads, there is evidence of significant excess recruitment that fail to impact bacterial numbers. These results highlight a need and identify a path for further exploration into the inhalation events in MAC infection. Early infection dynamics could have lasting impacts on the development of nodular bronchiectatic or fibrocavitary disease as well as inform possible preventative and treatment intervention targeting biofilm-macrophage interactions.
Collapse
Affiliation(s)
- Catherine Weathered
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Kelly Pennington
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Patricio Escalante
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| |
Collapse
|
13
|
Abukhalid N, Islam S, Ndzeidze R, Bermudez LE. Mycobacterium avium Subsp. hominissuis Interactions with Macrophage Killing Mechanisms. Pathogens 2021; 10:1365. [PMID: 34832521 PMCID: PMC8623537 DOI: 10.3390/pathogens10111365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Non-tuberculosis mycobacteria (NTM) are ubiquitously found throughout the environment. NTM can cause respiratory infections in individuals with underlying lung conditions when inhaled, or systemic infections when ingested by patients with impaired immune systems. Current therapies can be ineffective at treating NTM respiratory infections, even after a long course or with multidrug treatment regimens. NTM, such as Mycobacterium avium subspecies hominissuis (M. avium), is an opportunistic pathogen that shares environments with ubiquitous free-living amoeba and other environmental hosts, possibly their evolutionary hosts. It is highly likely that interactions between M. avium and free-living amoeba have provided selective pressure on the bacteria to acquire survival mechanisms, which are also used against predation by macrophages. In macrophages, M. avium resides inside phagosomes and has been shown to exit it to infect other cells. M. avium's adaptation to the hostile intra-phagosomal environment is due to many virulence mechanisms. M. avium is able to switch the phenotype of the macrophage to be anti-inflammatory (M2). Here, we have focused on and discussed the bacterial defense mechanisms associated with the intra-phagosome phase of infection. M. avium possesses a plethora of antioxidant enzymes, including the superoxide dismutases, catalase and alkyl hydroperoxide reductase. When these defenses fail or are overtaken by robust oxidative burst, many other enzymes exist to repair damage incurred on M. avium proteins, including thioredoxin/thioredoxin reductase. Finally, M. avium has several oxidant sensors that induce transcription of antioxidant enzymes, oxidation repair enzymes and biofilm- promoting genes. These expressions induce physiological changes that allow M. avium to survive in the face of leukocyte-generated oxidative stress. We will discuss the strategies used by M. avium to infect human macrophages that evolved during its evolution from free-living amoeba. The more insight we gain about M. avium's mode of pathogenicity, the more targets we can have to direct new anti-virulence therapies toward.
Collapse
Affiliation(s)
- Norah Abukhalid
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Sabrina Islam
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Robert Ndzeidze
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
14
|
Huang H, Deng J, Qin C, Zhou J, Duan M. Disseminated Coinfection by Mycobacterium fortuitum and Talaromyces marneffei in a Non-HIV Case. Infect Drug Resist 2021; 14:3619-3625. [PMID: 34526784 PMCID: PMC8435476 DOI: 10.2147/idr.s316881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Mycobacterium fortuitum is a rapidly growing non-tuberculous mycobacterium (NTM) with weak pathogenicity. Here, we present a rare case of disseminated M. fortuitum and Talaromyces marneffei coinfection in a human immunodeficiency virus (HIV) negative patient. Case Presentation A 28-year-old female was admitted to our hospital due to 2 months of swelling of lymph nodes on the right side of her cervix, accompanied by repeated low fever for more than 1 month. Biopsy of the right cervical lymph node and endobronchial ultrasound-guided transbronchial fine needle aspiration (EBUS-TBNA) both suggested granulomatous inflammation. The bacterial culture and mycobacteria examination of the lesion as well as HIV antibody test were all negative. Disseminated T. marneffei infection was diagnosed by the quantitative polymerase chain reaction (qPCR) results from the blood showing 1798 copies/ul. In the meantime, treatment with amphotericin B combined with cefoxitin was administered for suspected NTM infection. However, the once-dropped fever recurred and the lymph nodes continued to swell. Metagenomics next-generation sequencing (mNGS) detection of the lymph nodes indicated M. fortuitum. After combination treatment with amphotericin B, voriconazole, linazolamide, and imipenem, the patient's body temperature returned to normal, the lymph node swelling was gradually reduced, and the lung lesion was absorbed. Conclusion We report the first case of an HIV-negative patient diagnosed with disseminated M. fortuitum and T. marneffei coinfection with nonspecific clinical manifestation, in order to heighten awareness of these infections.
Collapse
Affiliation(s)
- Hongchun Huang
- Department of Respiratory and Critical Care Medicine, Guangxi Autonomous Regional Jiangbin Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Jingmin Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Caixia Qin
- Department of Respiratory and Critical Care Medicine, Guangxi Autonomous Regional Jiangbin Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Jianpeng Zhou
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Minchao Duan
- Department of Respiratory and Critical Care Medicine, Guangxi Medical University Wuming Affiliated Hospital, Nanning, Guangxi, 530199, People's Republic of China
| |
Collapse
|
15
|
Nontuberculous Mycobacteria, Macrophages, and Host Innate Immune Response. Infect Immun 2021; 89:e0081220. [PMID: 34097459 DOI: 10.1128/iai.00812-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although nontuberculous mycobacteria (NTM) are considered opportunistic infections, incidence and prevalence of NTM infection are increasing worldwide becoming a major public health threat. Innate immunity plays an essential role in mediating the initial host response against these intracellular bacteria. Specifically, macrophages phagocytose and eliminate NTM and act as antigen-presenting cells, which trigger downstream activation of cellular and humoral adaptive immune responses. Identification of macrophage receptors, mycobacterial ligands, phagosome maturation, autophagy/necrosis, and escape mechanisms are important components of this immunity network. The role of the macrophage in mycobacterial disease has mainly been studied in tuberculosis (TB), but limited information exists on its role in NTM. In this review, we focus on NTM immunity, the role of macrophages, and host interaction in NTM infection.
Collapse
|
16
|
Mycobacterium avium subsp. hominissuis (MAH) Microaggregate induction of host innate immunity is linked to biofilm formation. Microb Pathog 2021; 157:104977. [PMID: 34015496 DOI: 10.1016/j.micpath.2021.104977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 11/23/2022]
Abstract
Bacterial aggregation is a strategy employed by many pathogens to establish infection. Mycobacterium avium subsp. hominissuis (MAH) undergoes a phenotypic change, microaggregation, when exposed to the respiratory epithelium. We therefore compared how non-aggregated bacteria, or planktonic, and microaggregated MAH can establish lung infections by evaluating mucosal epithelial cell and phagocytic cell responses. It was determined that human mucosal lung epithelial cells recognition of MAH occurs through toll-like receptors 1 and 2. MAPK 1/3 is phosphorylated at 30 min post infection, and active at the transcriptional level 2 h post infection for both phenotypes. Microaggregate infected BEAS-2B cells up-regulated CCL5, IL-1β, and TNF-α cDNA, while planktonic infected cells only up-regulated IL-1β cDNA at 2 h post infection. Microaggregates are associated with increased uptake by macrophages after 1 h compared to planktonic bacteria (8.83% vs. 5.00%, P < 0.05). In addition, the microaggregate phenotype, when internalized by macrophages, had reduced growth compared to planktonic bacteria, which increased when the host cells were exposed to microaggregate supernatant, obtained from the incubation of MAH with HEp-2 cells. Moreover, microaggregate supernatant stimulated biofilm formation by planktonic and microaggregated bacteria. Microaggregate supernatant also induces the production of both pro- and anti-inflammatory cytokines, which was suppressed following MAH infection. The results suggest that epithelial recognition occurs during MAH infection, and the microaggregate phenotype stimulates an inflammatory response. The initial bacterial interaction with the mucosal epithelium and development of the microaggregate phenotype has a role in pathogenesis, allowing for more robust biofilm formation and infection establishment.
Collapse
|
17
|
Shin MK, Shin SJ. Genetic Involvement of Mycobacterium avium Complex in the Regulation and Manipulation of Innate Immune Functions of Host Cells. Int J Mol Sci 2021; 22:ijms22063011. [PMID: 33809463 PMCID: PMC8000623 DOI: 10.3390/ijms22063011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium complex (MAC), a collection of mycobacterial species representing nontuberculous mycobacteria, are characterized as ubiquitous and opportunistic pathogens. The incidence and prevalence of infectious diseases caused by MAC have been emerging globally due to complications in the treatment of MAC-pulmonary disease (PD) in humans and the lack of understating individual differences in genetic traits and pathogenesis of MAC species or subspecies. Despite genetically close one to another, mycobacteria species belonging to the MAC cause diseases to different host range along with a distinct spectrum of disease. In addition, unlike Mycobacterium tuberculosis, the underlying mechanisms for the pathogenesis of MAC infection from environmental sources of infection to their survival strategies within host cells have not been fully elucidated. In this review, we highlight unique genetic and genotypic differences in MAC species and the virulence factors conferring the ability to MAC for the tactics evading innate immune attacks of host cells based on the recent advances in genetic analysis by exemplifying M. avium subsp. hominissuis, a major representative pathogen causing MAC-PD in humans. Further understanding of the genetic link between host and MAC may contribute to enhance host anti-MAC immunity, but also provide novel therapeutic approaches targeting the pangenesis-associated genes of MAC.
Collapse
Affiliation(s)
- Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1813
| |
Collapse
|
18
|
Crilly NP, Ayeh SK, Karakousis PC. The New Frontier of Host-Directed Therapies for Mycobacterium avium Complex. Front Immunol 2021; 11:623119. [PMID: 33552087 PMCID: PMC7862709 DOI: 10.3389/fimmu.2020.623119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
Mycobacterium avium complex (MAC) is an increasingly important cause of morbidity and mortality, and is responsible for pulmonary infection in patients with underlying lung disease and disseminated disease in patients with AIDS. MAC has evolved various virulence strategies to subvert immune responses and persist in the infected host. Current treatment for MAC is challenging, requiring a combination of multiple antibiotics given over a long time period (for at least 12 months after negative sputum culture conversion). Moreover, even after eradication of infection, many patients are left with residual lung dysfunction. In order to address similar challenges facing the management of patients with tuberculosis, recent attention has focused on the development of novel adjunctive, host-directed therapies (HDTs), with the goal of accelerating the clearance of mycobacteria by immune defenses and reducing or reversing mycobacterial-induced lung damage. In this review, we will summarize the evidence supporting specific adjunctive, HDTs for MAC, with a focus on the repurposing of existing immune-modulatory agents targeting a variety of different cellular pathways. We also highlight areas meriting further investigation.
Collapse
Affiliation(s)
- Nathan P Crilly
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel K Ayeh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
19
|
Kim S, Park HE, Park WB, Kim SY, Park HT, Yoo HS. Mycobacterium avium Modulates the Protective Immune Response in Canine Peripheral Blood Mononuclear Cells. Front Cell Infect Microbiol 2021; 10:609712. [PMID: 33520738 PMCID: PMC7840563 DOI: 10.3389/fcimb.2020.609712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium avium, an opportunistic intracellular pathogen, is a member of the non-tuberculous mycobacteria species. M. avium causes respiratory disease in immunosuppressed individuals and a wide range of animals, including companion dogs and cats. In particular, the number of infected companion dogs has increased, although the underlying mechanism of M. avium pathogenesis in dogs has not been studied. Therefore, in the present study, the host immune response against M. avium in dogs was investigated by transcriptome analysis of canine peripheral blood mononuclear cells. M. avium was shown to induce different immune responses in canine peripheral blood mononuclear cells at different time points after infection. The expression of Th1-associated genes occurred early during M. avium infection, while that of Th17-associated genes increased after 12 h. In addition, the expression of apoptosis-related genes decreased and the abundance of intracellular M. avium increased in monocyte-derived macrophages after infection for 24 h. These results reveal the M. avium induces Th17 immune response and avoids apoptosis in infected canine cells. As the number of M. avium infection cases increases, the results of the present study will contribute to a better understanding of host immune responses to M. avium infection in companion dogs.
Collapse
Affiliation(s)
- Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
| | - Hyun-Eui Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
- Bio-MAX/N-Bio Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
Strong EJ, Lee S. Targeting Autophagy as a Strategy for Developing New Vaccines and Host-Directed Therapeutics Against Mycobacteria. Front Microbiol 2021; 11:614313. [PMID: 33519771 PMCID: PMC7840607 DOI: 10.3389/fmicb.2020.614313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Mycobacterial disease is an immense burden worldwide. This disease group includes tuberculosis, leprosy (Hansen's disease), Buruli Ulcer, and non-tuberculous mycobacterial (NTM) disease. The burden of NTM disease, both pulmonary and ulcerative, is drastically escalating globally, especially in developed countries such as America and Australia. Mycobacteria's ability to inhibit or evade the host immune system has contributed significantly to its continued prevalence. Pre-clinical studies have highlighted promising candidates that enhance endogenous pathways and/or limit destructive host responses. Autophagy is a cell-autonomous host defense mechanism by which intracytoplasmic cargos can be delivered and then destroyed in lysosomes. Previous studies have reported that autophagy-activating agents, small molecules, and autophagy-activating vaccines may be beneficial in restricting intracellular mycobacterial infection, even with multidrug-resistant strains. This review will examine how mycobacteria evade autophagy and discusses how autophagy could be exploited to design novel TB treatment strategies, such as host-directed therapeutics and vaccines, against Mycobacterium tuberculosis and NTMs.
Collapse
Affiliation(s)
| | - Sunhee Lee
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
21
|
Affiliation(s)
- Armand O. Brown
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (AOB); (DAG)
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (AOB); (DAG)
| |
Collapse
|
22
|
Prasla Z, Sutliff RL, Sadikot RT. Macrophage Signaling Pathways in Pulmonary Nontuberculous Mycobacteria Infections. Am J Respir Cell Mol Biol 2020; 63:144-151. [PMID: 32160017 DOI: 10.1165/rcmb.2019-0241tr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The incidence and prevalence of nontuberculous mycobacteria (NTM) lung disease is rising worldwide and accounts for most clinical cases of NTM disease. NTM infections occur in both immunocompetent and immunocompromised hosts. Macrophages are the primary host cells that initiate an immune response to NTM. Defining the molecular events that govern the control of infection within macrophages is fundamental to understanding the pathogenesis of NTM disease. Here, we review key macrophage host signaling pathways that contribute to the host immune response to pulmonary NTM infections. In this review, we focus primarily on NTM that are known to cause lung disease, including Mycobacterium avium intracellulare, M. abscessus, and M. kansasii.
Collapse
Affiliation(s)
- Zohra Prasla
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| | - Ruxana T Sadikot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
23
|
Mues N, Chu HW. Out-Smarting the Host: Bacteria Maneuvering the Immune Response to Favor Their Survival. Front Immunol 2020; 11:819. [PMID: 32477341 PMCID: PMC7235365 DOI: 10.3389/fimmu.2020.00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Bacteria adapt themselves to various environmental conditions in nature, which can lead to bacterial adaptation and persistence in the host as commensals or pathogens. In healthy individuals, host defense mechanisms prevent the opportunistic bacteria/commensals from becoming a pathological infection. However, certain pathological conditions can impair normal defense barriers leading to bacterial survival and persistence. Under pathological conditions such as chronic lung inflammation, bacteria employ various mechanisms from structural changes to protease secretion to manipulate and evade the host immune response and create a niche permitting commensal bacteria to thrive into infections. Therefore, understanding the mechanisms by which pathogenic bacteria survive in the host tissues and organs may offer new strategies to overcome persistent bacterial infections. In this review, we will discuss and highlight the complex interactions between airway pathogenic bacteria and immune responses in several major chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
24
|
Chin KL, Sarmiento ME, Alvarez-Cabrera N, Norazmi MN, Acosta A. Pulmonary non-tuberculous mycobacterial infections: current state and future management. Eur J Clin Microbiol Infect Dis 2020; 39:799-826. [PMID: 31853742 PMCID: PMC7222044 DOI: 10.1007/s10096-019-03771-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Currently, there is a trend of increasing incidence in pulmonary non-tuberculous mycobacterial infections (PNTM) together with a decrease in tuberculosis (TB) incidence, particularly in developed countries. The prevalence of PNTM in underdeveloped and developing countries remains unclear as there is still a lack of detection methods that could clearly diagnose PNTM applicable in these low-resource settings. Since non-tuberculous mycobacteria (NTM) are environmental pathogens, the vicinity favouring host-pathogen interactions is known as important predisposing factor for PNTM. The ongoing changes in world population, as well as socio-political and economic factors, are linked to the rise in the incidence of PNTM. Development is an important factor for the improvement of population well-being, but it has also been linked, in general, to detrimental environmental consequences, including the rise of emergent (usually neglected) infectious diseases, such as PNTM. The rise of neglected PNTM infections requires the expansion of the current efforts on the development of diagnostics, therapies and vaccines for mycobacterial diseases, which at present, are mainly focused on TB. This review discuss the current situation of PNTM and its predisposing factors, as well as the efforts and challenges for their control.
Collapse
Affiliation(s)
- Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah (UMS), Kota Kinabalu, Sabah, Malaysia.
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Nadine Alvarez-Cabrera
- Center for Discovery and Innovation (CDI), Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
25
|
Feng Z, Bai X, Wang T, Garcia C, Bai A, Li L, Honda JR, Nie X, Chan ED. Differential Responses by Human Macrophages to Infection With Mycobacterium tuberculosis and Non-tuberculous Mycobacteria. Front Microbiol 2020; 11:116. [PMID: 32117140 PMCID: PMC7018682 DOI: 10.3389/fmicb.2020.00116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) and non-tuberculous mycobacteria (NTM) are formidable causes of lung diseases throughout the world. While MTB is considered to be more virulent than NTM, host factors also play a key role in disease development. To elucidate whether there are differential immune responses to various mycobacteria, THP-1 macrophages were temporally infected with MTB H37Rv or with four different NTM species. We found that cells infected with MTB had greater bacterial burden and p65 nuclear factor-kappa B (NF-κB) activation than cells infected with NTM. There was also differential expression of mRNA for interleukin-1-β (IL-1β), IL-8, IL-10, and tumor necrosis factor-alpha (TNF-α) with no distinct pattern of mRNA expression among the different mycobacteria. In contrast, at the protein level, some generalizations can be made of the cytokines and chemokines expressed. Compared to uninfected cells, the rapid-growing Mycobacterium smegmatis but not Mycobacterium abscessus induced significantly greater pro-inflammatory cytokines and IL-10, whereas both NTM individually induced greater levels of chemokines. Compared to uninfected control cells, the two slow-growing NTM and MTB differentially induced cytokine expression with Mycobacterium avium inducing more pro-inflammatory cytokines and IL-10, whereas M. avium, Mycobacterium intracellulare, and MTB inducing greater but similar levels of chemokines. MTB-infected THP-1 cells also demonstrated lower level of phagosome–lysosome fusion and apoptosis than NTM-infected cells while there were differences in these macrophage functions among the NTM species. Interestingly, M. intracellulare, M. avium, and MTB have similar levels of autophagosome formation, but the levels displayed by all three were lower than for M. smegmatis and M. abscessus. This study demonstrates the differences in bacterial burden and macrophage effector functions among several clinically relevant mycobacterial species. Such disparities may, in part, account for differences in clinical outcomes among patients infected with various species of NTM as has been seen for different strains of MTB.
Collapse
Affiliation(s)
- Zhihong Feng
- Department of Respiratory Medcine, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Jewish Health, Denver, CO, United States
| | - Xiyuan Bai
- National Jewish Health, Denver, CO, United States.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tao Wang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Cindy Garcia
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - An Bai
- National Jewish Health, Denver, CO, United States.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Li Li
- National Jewish Health, Denver, CO, United States
| | | | - Xiuhong Nie
- Department of Respiratory Medcine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Edward D Chan
- National Jewish Health, Denver, CO, United States.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
26
|
Bento CM, Gomes MS, Silva T. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9010018. [PMID: 31947883 PMCID: PMC7168257 DOI: 10.3390/antibiotics9010018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Mycobacterium comprises not only the deadliest of bacterial pathogens, Mycobacterium tuberculosis, but several other pathogenic species, including M. avium and M. abscessus. The incidence of infections caused by atypical or nontuberculous mycobacteria (NTM) has been steadily increasing, and is associated with a panoply of diseases, including pulmonary, soft-tissue, or disseminated infections. The treatment for NTM disease is particularly challenging, due to its long duration, to variability in bacterial susceptibility profiles, and to the lack of evidence-based guidelines. Treatment usually consists of a combination of at least three drugs taken from months to years, often leading to severe secondary effects and a high chance of relapse. Therefore, new treatment approaches are clearly needed. In this review, we identify the main limitations of current treatments and discuss different alternatives that have been put forward in recent years, with an emphasis on less conventional therapeutics, such as antimicrobial peptides, bacteriophages, iron chelators, or host-directed therapies. We also review new forms of the use of old drugs, including the repurposing of non-antibacterial molecules and the incorporation of antimicrobials into ionic liquids. We aim to stimulate advancements in testing these therapies in relevant models, in order to provide clinicians and patients with useful new tools with which to treat these devastating diseases.
Collapse
Affiliation(s)
- Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
27
|
Hodgkinson JW, Belosevic M, Elks PM, Barreda DR. Teleost contributions to the understanding of mycobacterial diseases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:111-125. [PMID: 30776420 DOI: 10.1016/j.dci.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Few pathogens have shaped human medicine as the mycobacteria. From understanding biological phenomena driving disease spread, to mechanisms of host-pathogen interactions and antibiotic resistance, the Mycobacterium genus continues to challenge and offer insights into the basis of health and disease. Teleost fish models of mycobacterial infections have progressed significantly over the past three decades, now supplying a range of unique tools and new opportunities to define the strategies employed by these Gram-positive bacteria to overcome host defenses, as well as those host antimicrobial pathways that can be used to limit its growth and spread. Herein, we take a comparative perspective and provide an update on the contributions of teleost models to our understanding of mycobacterial diseases.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom; Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
28
|
Bai X, Bai A, Honda JR, Eichstaedt C, Musheyev A, Feng Z, Huitt G, Harbeck R, Kosmider B, Sandhaus RA, Chan ED. Alpha-1-Antitrypsin Enhances Primary Human Macrophage Immunity Against Non-tuberculous Mycobacteria. Front Immunol 2019; 10:1417. [PMID: 31293581 PMCID: PMC6606736 DOI: 10.3389/fimmu.2019.01417] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Rationale: The association between non-tuberculous mycobacterial lung disease and alpha-1-antitrypsin (AAT) deficiency is likely due, in part, to underlying emphysema or bronchiectasis. But there is increasing evidence that AAT itself enhances host immunity against microbial pathogens and thus deficiency could compromise host protection. Objectives: The goal of this project is to determine if AAT could augment macrophage activity against non-tuberculous mycobacteria. Methods: We compared the ability of monocyte-derived macrophages cultured in autologous plasma that were obtained immediately before and soon after AAT infusion—given to individuals with AAT deficiency—to control an ex vivo Mycobacterium intracellulare infection. Measurements and Main Results: We found that compared to pre-AAT infused monocyte-derived macrophages plus plasma, macrophages, and contemporaneous plasma obtained after a session of AAT infusion were significantly better able to control M. intracellulare infection; the reduced bacterial burden was linked with greater phagosome-lysosome fusion and increased autophagosome formation/maturation, the latter due to AAT inhibition of both M. intracellulare–induced nuclear factor-kappa B activation and A20 expression. While there was a modest increase in apoptosis in the M. intracellulare-infected post-AAT infused macrophages and plasma, inhibiting caspase-3 in THP-1 cells, monocyte-derived macrophages, and alveolar macrophages unexpectedly reduced the M. intracellulare burden, indicating that apoptosis impairs macrophage control of M. intracellulare and that the host protective effects of AAT occurred despite inducing apoptosis. Conclusion: AAT augments macrophage control of M. intracellulare infection through enhancing phagosome-lysosome fusion and autophagy.
Collapse
Affiliation(s)
- Xiyuan Bai
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States.,Academic Affairs, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - An Bai
- Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Jennifer R Honda
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | | | - Ariel Musheyev
- Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Zhihong Feng
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States.,Department of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gwen Huitt
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - Ronald Harbeck
- Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Beata Kosmider
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, United States.,Department of Physiology, Temple University, Philadelphia, PA, United States
| | - Robert A Sandhaus
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - Edward D Chan
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States.,Academic Affairs, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO, United States
| |
Collapse
|
29
|
Nontuberculous Mycobacteria Persistence in a Cell Model Mimicking Alveolar Macrophages. Microorganisms 2019; 7:microorganisms7050113. [PMID: 31035520 PMCID: PMC6560506 DOI: 10.3390/microorganisms7050113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Nontuberculous Mycobacteria (NTM) respiratory infections have been gradually increasing. Here, THP-1 cells were used as a model to evaluate intracellular persistence of three NTM species (reference and clinical strains) in human alveolar macrophages. The contribution of phagosome acidification, nitric oxide (NO) production and cell dead on NTM intracellular fate was assessed. In addition, strains were characterized regarding their repertoire of virulence factors by whole-genome sequencing. NTM experienced different intracellular fates: M. smegmatis and M. fortuitum ATCC 6841 were cleared within 24h. In contrast, M. avium strains (reference/clinical) and M. fortuitum clinical strain were able to replicate. Despite this fact, unexpectedly high percentages of acidified phagosomes were found harbouring rab7, but not CD63. All NTM were able to survive in vitro at acidic pHs, with the exception of M. smegmatis. Our data further suggested a minor role for NO in intracellular persistence and that apoptosis mediated by caspase 8 and 3/7, but not necrosis, is triggered during NTM infection. Insights regarding the bacteria genomic backbone corroborated the virulence potential of M. avium and M. fortuitum. In conclusion, the phenotypic traits detected contrast with those described for M. tuberculosis, pointing out that NTM adopt distinct strategies to manipulate the host immune defense and persist intracellularly.
Collapse
|
30
|
Danelishvili L, Rojony R, Carson KL, Palmer AL, Rose SJ, Bermudez LE. Mycobacterium avium subsp. hominissuis effector MAVA5_06970 promotes rapid apoptosis in secondary-infected macrophages during cell-to-cell spread. Virulence 2019; 9:1287-1300. [PMID: 30134761 PMCID: PMC6177253 DOI: 10.1080/21505594.2018.1504559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis is an opportunistic intracellular pathogen associated with disease in patients either immunosuppression or chronic lung pathology. Once in the host, M. avium preferentially infects and replicates within the phagocytic cells. The host driven macrophage apoptosis appears to be an essential aspect of innate immunity during bacterial infection; however, the existing evidence suggests that M. avium has evolved adaptive approaches to trigger the phagocyte apoptosis, exit apoptotic cells or via ingestion of infected apoptotic bodies subsequently infect neighboring macrophages. By evaluating 4,000 transposon mutants of M. avium in THP-1 cells, we identified clones that can trigger a new form of early host cell apoptosis, which is only observed upon entry into the “secondary-infected” macrophages. Inactivation of MAVA5_06970 gene lead to significant attenuation in intracellular growth within macrophages and mice, and impaired M. avium to induce rapid apoptosis in the “secondary-infected” cells as measured by Annexin V-FITC detection assay. Complementation of MAVA5_06970 gene corrected the attenuation as well as apoptotic phenotypes. The MAVA5_06970 gene encodes for a secreted protein. Using the pull-down assay and then confirmed with the yeast two-hybrid screen, we found that MAVA5_06970 effector interacts with the Secreted Phosphoprotein 1, the cytokine also known as Osteopontin. This interaction enhances the THP-1 cell apoptosis and, consequently, restricts the production of interleukin-12 that likely may limit the activation of the type I immunity pathway in vivo. This work identified a key virulence effector of M. avium that contributes to the cell-to-cell spread of the pathogen.
Collapse
Affiliation(s)
- Lia Danelishvili
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA
| | - Rajoana Rojony
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA
| | - Kylee L Carson
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA
| | - Amy L Palmer
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA
| | - Sasha J Rose
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA
| | - Luiz E Bermudez
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA.,b Department of Microbiology, College of Science , Oregon State University , Corvallis , OR , USA
| |
Collapse
|
31
|
Abate G, Hamzabegovic F, Eickhoff CS, Hoft DF. BCG Vaccination Induces M. avium and M. abscessus Cross-Protective Immunity. Front Immunol 2019; 10:234. [PMID: 30837992 PMCID: PMC6389677 DOI: 10.3389/fimmu.2019.00234] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/28/2019] [Indexed: 01/14/2023] Open
Abstract
Pulmonary non-tuberculous mycobacterial (NTM) infections particularly caused by Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) are becoming major health problems in the U.S. New therapies or vaccines which will help prevent the disease, shorten treatment duration and/or increase treatment success rates are urgently needed. This study was conducted with the objective of testing the hypothesis that Bacillus Calmette Guerin (BCG), a vaccine used for prevention of serious forms of tuberculosis (TB) in children and adolescents in tuberculosis hyperendemic countries, induces cross-protective T cell immunity against Mycobacterium avium (MAV) and MAB. Human TB and NTM cross-protective T cells were quantified using flow cytometric assays. The ability of BCG expanded T cells to inhibit the intracellular growth of MAV and MAB was assessed in co-cultures with infected autologous macrophages. In both BCG-vaccinated and M. tuberculosis (Mtb)-infected mice, NTM cross-reactive immunity was measured using IFN-γ ELISPOT assays. Our results demonstrate the following key findings: (i) peripheral blood mononuclear cells from TB skin test-positive individuals contain MAV and MAB cross-reactive T cells, (ii) both BCG vaccination and Mtb infection of mice induce MAV and MAB cross-reactive splenic cells, (iii) BCG-expanded T cells inhibit intracellular MAV and MAB, (iv) CD4, CD8, and γδ T cells play important roles in inhibition of intracellular MAV and MAB and (v) BCG vaccination of healthy volunteers induces TB and NTM cross-reactive T cells. In conclusion, BCG-vaccination induces NTM cross-reactive immunity, and has the potential for use as a vaccine or immunotherapy to prevent and/or treat pulmonary NTM disease.
Collapse
Affiliation(s)
- Getahun Abate
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University, St. Louis, MO, United States,*Correspondence: Getahun Abate
| | - Fahreta Hamzabegovic
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University, St. Louis, MO, United States
| | - Christopher S. Eickhoff
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University, St. Louis, MO, United States
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University, St. Louis, MO, United States,Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
32
|
Wu ML, Aziz DB, Dartois V, Dick T. NTM drug discovery: status, gaps and the way forward. Drug Discov Today 2018; 23:1502-1519. [PMID: 29635026 DOI: 10.1016/j.drudis.2018.04.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
Abstract
Incidence of pulmonary diseases caused by non-tuberculous mycobacteria (NTM), relatives of Mycobacterium tuberculosis, is increasing at an alarming rate, surpassing tuberculosis in many countries. Current chemotherapies require long treatment times and the clinical outcomes are often disappointing. There is an urgent medical need to discover and develop new, more-efficacious anti-NTM drugs. In this review, we summarize the current status of NTM drug development, and highlight knowledge gaps and scientific obstacles in NTM drug discovery. We propose strategies to reduce biological uncertainties and to begin to populate a NTM drug pipeline with attractive leads and drug candidates.
Collapse
Affiliation(s)
- Mu-Lu Wu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Dinah B Aziz
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, USA
| | - Thomas Dick
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, USA.
| |
Collapse
|
33
|
Sharp RC, Beg SA, Naser SA. Role of PTPN2/22 polymorphisms in pathophysiology of Crohn's disease. World J Gastroenterol 2018; 24:657-670. [PMID: 29456405 PMCID: PMC5807669 DOI: 10.3748/wjg.v24.i6.657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/03/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish the relationship of protein tyrosine phosphatase non-receptor type 2 and 22 (PTPN2/22) polymorphisms and mycobacterial infections in Crohn's disease (CD). METHODS All 133 subjects' blood samples were genotyped for nine single nucleotide polymorphisms (SNPs) in PTPN2/22 using TaqMan™ genotyping, while the effect of the SNPs on PTPN2/22 and IFN-γ gene expression was determined using RT-PCR. Detection of Mycobacterium avium subspecies paratuberculosis (MAP) IS900 gene was done by nPCR after DNA extraction from the isolated leukocytes of each subjects' blood samples. T-cells isolated from the patient samples were tested for response to phytohematoagglutonin (PHA) mitogen or mycobacterial antigens by BrdU proliferation assays for T-cell activity. RESULTS Out of the nine SNPs examined, subjects with either heterozygous (TC)/minor (CC) alleles in PTPN2:rs478582 occurred in 83% of CD subjects compared to 61% healthy controls (P-values < 0.05; OR = 3.03). Subjects with either heterozygous (GA)/minor (AA) alleles in PTPN22:rs2476601 occurred in 16% of CD compared to 6% healthy controls (OR = 2.7). Gene expression in PTPN2/22 in CD subjects was significantly decreased by 2 folds compared to healthy controls (P-values < 0.05). IFN-γ expression levels were found to be significantly increased by approxiately 2 folds in subjects when either heterozygous or minor alleles in PTPN2:rs478582 and/or PTPN22:rs2476601 were found (P-values < 0.05). MAP DNA was detected in 61% of CD compared to only 8% of healthy controls (P-values < 0.05, OR = 17.52), where subjects with either heterozygous or minor alleles in PTPN2:rs478582 and/or PTPN22:rs2476601 had more MAPbacteremia presence than subjects without SNPs did. The average T-cell proliferation in CD treated with PHA or mycobacteria antigens was, respectively, 1.3 folds and 1.5 folds higher than healthy controls without any significant SNP. CONCLUSION The data suggests that SNPs in PTPN2/22 affect the negative regulation of the immune response in CD patients, thus leading to an increase in inflammation/apoptosis and susceptibility of mycobacteria.
Collapse
Affiliation(s)
- Robert C Sharp
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States
| | - Shazia A Beg
- University of Central College of Medicine, Health Center, Orlando, FL 32816, United States
| | - Saleh A Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States
| |
Collapse
|
34
|
Abstract
The coevolution of intracellular bacteria with their eukaryotic hosts has presented these pathogens with numerous challenges for their evolutionary progress and survival. Chief among these is the ability to exit from host cells, an event that is fundamentally linked to pathogen dissemination and transmission. Recent years have witnessed a major expansion of research in this area, and this chapter summarizes our current understanding of the spectrum of exit strategies that are exploited by intracellular pathogens. Clear themes regarding the mechanisms of microbial exit have emerged and are most easily conceptualized as (i) lysis of the host cell, (ii) nonlytic exit of free bacteria, and (iii) release of microorganisms into membrane-encased compartments. The adaptation of particular exit strategies is closely linked with additional themes in microbial pathogenesis, including host cell death, manipulation of host signaling pathways, and coincident activation of proinflammatory responses. This chapter will explore the molecular determinants used by intracellular pathogens to promote host cell escape and the infectious advantages each exit pathway may confer, and it will provide an evolutionary framework for the adaptation of these mechanisms.
Collapse
|
35
|
McDougal CE, Sauer JD. Listeria monocytogenes: The Impact of Cell Death on Infection and Immunity. Pathogens 2018; 7:pathogens7010008. [PMID: 29324702 PMCID: PMC5874734 DOI: 10.3390/pathogens7010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes has evolved exquisite mechanisms for invading host cells and spreading from cell-to-cell to ensure maintenance of its intracellular lifecycle. As such, it is not surprising that loss of the intracellular replication niche through induction of host cell death has significant implications on the development of disease and the subsequent immune response. Although L. monocytogenes can activate multiple pathways of host cell death, including necrosis, apoptosis, and pyroptosis, like most intracellular pathogens L. monocytogenes has evolved a series of adaptations that minimize host cell death to promote its virulence. Understanding how L. monocytogenes modulates cell death during infection could lead to novel therapeutic approaches. In addition, as L. monocytogenes is currently being developed as a tumor immunotherapy platform, understanding how cell death pathways influence the priming and quality of cell-mediated immunity is critical. This review will focus on the mechanisms by which L. monocytogenes modulates cell death, as well as the implications of cell death on acute infection and the generation of adaptive immunity.
Collapse
Affiliation(s)
- Courtney E McDougal
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
36
|
Whang J, Back YW, Lee KI, Fujiwara N, Paik S, Choi CH, Park JK, Kim HJ. Mycobacterium abscessus glycopeptidolipids inhibit macrophage apoptosis and bacterial spreading by targeting mitochondrial cyclophilin D. Cell Death Dis 2017; 8:e3012. [PMID: 28837151 PMCID: PMC5596598 DOI: 10.1038/cddis.2017.420] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022]
Abstract
Mycobacterium abscessus (MAB) is a species of nontuberculous mycobacteria (NTM) and a major causative pathogen of pulmonary diseases especially in patients with cystic fibrosis. MAB infection is notoriously difficult to treat because of its intrinsic or inducible resistance to most antibiotics. The rough (R) morphotype of MAB, lacking cell surface glycopeptidolipids (GPLs), is associated with more severe and persistent infection than the smooth (S) type; however, the mechanisms underlying the R type's virulence and the relation with GPLs remain unclear. In this study, we found that R-type MAB is much more proapoptotic than the S type, as a result of GPL-mediated inhibition of macrophage apoptosis. Polar GPLs inhibited an apoptotic response (induced by proapoptotic stimuli) by suppressing ROS production and the cytochrome c release and by preserving mitochondrial transmembrane potential. Furthermore, GPLs were found to be targeted to mitochondria and interacted with cyclophilin D; their acetylation was essential for this interaction. Finally, GPLs inhibited the intracellular growth and bacterial spreading of R-type MAB among macrophages via apoptosis inhibition. These findings suggest that GPLs limit MAB virulence by inhibiting apoptosis and the spread of bacteria and therefore provide a novel insight into the mechanism underlying virulence of MAB.
Collapse
Affiliation(s)
- Jake Whang
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yong Woo Back
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kang-In Lee
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Tezukayama University, Gakuenminami, Nara, Japan
| | - Seungwha Paik
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chul Hee Choi
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jeong-Kyu Park
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
37
|
Danelishvili L, Chinison JJJ, Pham T, Gupta R, Bermudez LE. The Voltage-Dependent Anion Channels (VDAC) of Mycobacterium avium phagosome are associated with bacterial survival and lipid export in macrophages. Sci Rep 2017; 7:7007. [PMID: 28765557 PMCID: PMC5539096 DOI: 10.1038/s41598-017-06700-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/16/2017] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium avium subsp. hominissuis is associated with infection of immunocompromised individuals as well as patients with chronic lung disease. M. avium infects macrophages and actively interfere with the host killing machinery such as apoptosis and autophagy. Bacteria alter the normal endosomal trafficking, prevent the maturation of phagosomes and modify many signaling pathways inside of the macrophage by secreting effector molecules into the cytoplasm. To investigate whether M. avium needs to attach to the internal surface of the vacuole membrane before releasing efferent molecules, vacuole membrane proteins were purified and binding to the surface molecules present in intracellular bacteria was evaluated. The voltage-dependent anion channels (VDAC) were identified as components of M. avium vacuoles in macrophages. M. avium mmpL4 proteins were found to bind to VDAC-1 protein. The inactivation of VDAC-1 function either by pharmacological means or siRNA lead to significant decrease of M. avium survival. Although, we could not establish a role of VDAC channels in the transport of known secreted M. avium proteins, we demonstrated that the porin channels are associated with the export of bacterial cell wall lipids outside of vacuole. Suppression of the host phagosomal transport systems and the pathogen transporter may serve as therapeutic targets for infectious diseases.
Collapse
Affiliation(s)
- Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA.
| | - Jessica J J Chinison
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA.,Department of Microbiology, College of Science, Corvallis, OR, USA
| | - Tuan Pham
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Rashmi Gupta
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA.,College of Medicine, University of Central Florida, Orlando, Florida, 32827, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA. .,Department of Microbiology, College of Science, Corvallis, OR, USA.
| |
Collapse
|
38
|
The protective effect of a novel antioxidant gene from Mycobacterium avium against nitrosative and oxidative stress in E. coli. World J Microbiol Biotechnol 2017; 33:127. [PMID: 28547728 DOI: 10.1007/s11274-017-2294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
The production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) is an important host defense mechanism in response to infection by Mycobacterium tuberculosis. A variety of genes have been implicated in resistance to ROI and RNI, including noxR1. However, studies in Mycobacterium avium, an important pathogen among nontuberculous mycobacteria, are limited. We aim to investigate the role of a novel gene cloned from M. avium with high similarity to noxR1, noA, in resistance against RNI and ROI in M. tuberculosis. After subcloning noA into vector for expression in E. coli, we performed survival rate analysis in the bacteria transformed with noA (pET-noA) and without noA (pET-his) after exposure to nitrosative stresses by S-nitrosoglutathione (GSNO) and sodium nitrite, and oxidative stresses by H2O2. Compared with pET-his, the survival rate of pET-noA was 1 log10-fold higher after exposure to GSNO and sodium nitrite. We observed 1 log10-fold, 2 log10-fold and 3 log10-fold higher survival rate in pET-noA than pET-his after exposure to H2O2 for 3, 6 and 9 h, respectively. With the combined treatment of H2O2 and GSNO, we found more than 2 log10-fold increase in survival rate in pET-noA comparing with pET-his, suggesting a possible synergistic effect. In summary, noA gene cloned from M. avium has been shown to protect E. coli from both RNI and ROI.
Collapse
|
39
|
Lam A, Prabhu R, Gross CM, Riesenberg LA, Singh V, Aggarwal S. Role of apoptosis and autophagy in tuberculosis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L218-L229. [PMID: 28495854 DOI: 10.1152/ajplung.00162.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is one of the oldest known human diseases and is transmitted by the bacteria Mycobacterium tuberculosis (Mtb). TB has a rich history with evidence of TB infections dating back to 5,800 bc TB is unique in its ability to remain latent in an individual for decades, with the possibility of later reactivation, causing widespread systemic symptoms. Currently, it is estimated that more than one-third of the world's population (~2 billion people) are infected with Mtb. Prolonged periods of therapy and complexity of treatment regimens, especially in active infection, have led to poor compliance in patients being treated for TB. Therefore, it is vitally important to have a thorough knowledge of the pathophysiology of Mtb to understand the disease progression, as well as to develop novel diagnostic tests and treatments. Alveolar macrophages represent both the primary host cell and the first line of defense against the Mtb infection. Apoptosis and autophagy of macrophages play a vital role in the pathogenesis and also in the host defense against Mtb. This review will outline the role of these two cellular processes in defense against Mtb with particular emphasis on innate immunity and explore developing therapies aimed at altering host responses to the disease.
Collapse
Affiliation(s)
- Adam Lam
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Rohan Prabhu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Lee Ann Riesenberg
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Vinodkumar Singh
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
40
|
Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci 2017; 74:1625-1648. [PMID: 27866220 PMCID: PMC11107535 DOI: 10.1007/s00018-016-2422-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity's most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.
Collapse
Affiliation(s)
- Jane Atesoh Awuh
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway.
| |
Collapse
|
41
|
Lee KI, Whang J, Choi HG, Son YJ, Jeon HS, Back YW, Park HS, Paik S, Park JK, Choi CH, Kim HJ. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth. Sci Rep 2016; 6:37804. [PMID: 27901051 PMCID: PMC5129020 DOI: 10.1038/srep37804] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium avium complex induces macrophage apoptosis. However, the M. avium components that inhibit or trigger apoptosis and their regulating mechanisms remain unclear. We recently identified the immunodominant MAV2054 protein by fractionating M. avium culture filtrate protein by multistep chromatography; this protein showed strong immuno-reactivity in M. avium complex pulmonary disease and in patients with tuberculosis. Here, we investigated the biological effects of MAV2054 on murine macrophages. Recombinant MAV2054 induced caspase-dependent macrophage apoptosis. Enhanced reactive oxygen species production and JNK activation were essential for MAV2054-mediated apoptosis and MAV2054-induced interleukin-6, tumour necrosis factor, and monocyte chemoattractant protein-1 production. MAV2054 was targeted to the mitochondrial compartment of macrophages treated with MAV2054 and infected with M. avium. Dissipation of the mitochondrial transmembrane potential (ΔΨm) and depletion of cytochrome c also occurred in MAV2054-treated macrophages. Apoptotic response, reactive oxygen species production, and ΔΨm collapse were significantly increased in bone marrow-derived macrophages infected with Mycobacterium smegmatis expressing MAV2054, compared to that in M. smegmatis control. Furthermore, MAV2054 expression suppressed intracellular growth of M. smegmatis and increased the survival rate of M. smegmatis-infected mice. Thus, MAV2054 induces apoptosis via a mitochondrial pathway in macrophages, which may be an innate cellular response to limit intracellular M. avium multiplication.
Collapse
Affiliation(s)
- Kang-In Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jake Whang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yeo-Jin Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Haet Sal Jeon
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yong Woo Back
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hye-Soo Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seungwha Paik
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jeong-Kyu Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
42
|
Mitchell G, Chen C, Portnoy DA. Strategies Used by Bacteria to Grow in Macrophages. Microbiol Spectr 2016; 4:10.1128/microbiolspec.MCHD-0012-2015. [PMID: 27337444 PMCID: PMC4922531 DOI: 10.1128/microbiolspec.mchd-0012-2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/24/2022] Open
Abstract
Intracellular bacteria are often clinically relevant pathogens that infect virtually every cell type found in host organisms. However, myeloid cells, especially macrophages, constitute the primary cells targeted by most species of intracellular bacteria. Paradoxically, macrophages possess an extensive antimicrobial arsenal and are efficient at killing microbes. In addition to their ability to detect and signal the presence of pathogens, macrophages sequester and digest microorganisms using the phagolysosomal and autophagy pathways or, ultimately, eliminate themselves through the induction of programmed cell death. Consequently, intracellular bacteria influence numerous host processes and deploy sophisticated strategies to replicate within these host cells. Although most intracellular bacteria have a unique intracellular life cycle, these pathogens are broadly categorized into intravacuolar and cytosolic bacteria. Following phagocytosis, intravacuolar bacteria reside in the host endomembrane system and, to some extent, are protected from the host cytosolic innate immune defenses. However, the intravacuolar lifestyle requires the generation and maintenance of unique specialized bacteria-containing vacuoles and involves a complex network of host-pathogen interactions. Conversely, cytosolic bacteria escape the phagolysosomal pathway and thrive in the nutrient-rich cytosol despite the presence of host cell-autonomous defenses. The understanding of host-pathogen interactions involved in the pathogenesis of intracellular bacteria will continue to provide mechanistic insights into basic cellular processes and may lead to the discovery of novel therapeutics targeting infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chen Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
Lim MS, Bermingham N, O'Broin C, Khalil A, Keohane C, Lim C. Isolated Cerebellar Spindle Cell Pseudotumor Caused by Mycobacterium Avium-Intracellulare Complex in a Patient without AIDS. World Neurosurg 2016; 90:703.e1-703.e3. [PMID: 26926796 DOI: 10.1016/j.wneu.2016.02.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Spindle cell pseudotumors are formed by histiocytes in response to infection by Mycobacterium avium-intracellulare complex (MAC) and are rare in patients without AIDS. CASE DESCRIPTION A 66-year-old man presented with neck pain, ataxia, and a history of sarcoidosis. A cerebellar lesion was identified on magnetic resonance imaging and surgically excised. Histopathology revealed this to be a spindle cell pseudotumor and MAC was isolated by bacterial culture of cerebrospinal fluid. Hematology revealed cluster of differentiation 4 lymphocytopenia but human immunodeficiency virus serology was negative. The patient was commenced on antimicrobial treatment that included a macrolide and remained well at 1 year follow-up. CONCLUSIONS This rare presentation of isolated intracranial MAC was treated with surgical excision and antimicrobials with a good outcome.
Collapse
Affiliation(s)
- Ming-Sheng Lim
- Department of Neurosurgery, Cork University Hospital, Cork, Ireland.
| | - Niamh Bermingham
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | - Cathal O'Broin
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Ayman Khalil
- Department of Neurosurgery, Cork University Hospital, Cork, Ireland
| | - Catherine Keohane
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | - Chris Lim
- Department of Neurosurgery, Cork University Hospital, Cork, Ireland
| |
Collapse
|
44
|
Bermudez LE, Danelishvili L, Babrack L, Pham T. Evidence for genes associated with the ability of Mycobacterium avium subsp. hominissuis to escape apoptotic macrophages. Front Cell Infect Microbiol 2015; 5:63. [PMID: 26380226 PMCID: PMC4548235 DOI: 10.3389/fcimb.2015.00063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/07/2015] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is an environmental bacteria that infects immunocompromised humans. MAH cases are increasing in incidence, making it crucial to gain knowledge of the pathogenic mechanisms associated with the bacterium. MAH infects macrophages and after several days the infection triggers the phagocyte apoptosis. Many of the intracellular MAH escape the cell undergoing apoptosis leading to infection of neighboring macrophages. We screened a transposon bank of MAH mutants in U937 mononuclear phagocytes for the inability to escape macrophages undergoing apoptosis. Mutations in genes; MAV_2235, MAV_2120, MAV_2410, and MAV_4563 resulted in the inability of the bacteria to exit macrophages upon apoptosis. Complementation of the mutations corrected the phenotype either completely or partially. Testing for the ability of the mutants to survive in macrophages compared to the wild-type bacterium revealed that the mutant clones were not attenuated up to 4 days of infection. Testing in vivo, however, demonstrated that all the MAH clones were attenuated compared with the wild-type MAC 104 in tissues of mice. Although the mechanism associated with the bacterial inability to leave apoptotic macrophages is unknown, the identification of macrophage cytoplasm targets for the MAH proteins suggest that they interfere either with protein degradation machinery or post-translation mechanisms. The identification of tatC as a MAH protein involved in the ability of MAH to leave macrophages, suggests that secreted effector(s) are involved in the process. The study reveals a pathway of escape from macrophages, not shared with Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Luiz E Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA ; Department of Microbiology, College of Science, Oregon State University Corvallis, OR, USA ; Program of Molecular and Cell Biology, Oregon State University Corvallis, OR, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA ; Biochemistry Program, College of Science, Oregon State University Corvallis, OR, USA
| | - Lmar Babrack
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA ; Department of Microbiology, College of Science, Oregon State University Corvallis, OR, USA
| | - Tuan Pham
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA ; Biochemistry Program, College of Science, Oregon State University Corvallis, OR, USA
| |
Collapse
|
45
|
The within host dynamics of Mycobacterium avium ssp. paratuberculosis infection in cattle: where time and place matter. Vet Res 2015; 46:61. [PMID: 26092382 PMCID: PMC4473847 DOI: 10.1186/s13567-015-0185-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/07/2015] [Indexed: 01/17/2023] Open
Abstract
Johne’s disease or paratuberculosis, caused by Mycobacterium avium subsp. paratuberculosis (MAP), occurs in domestic and wild animals worldwide, causing a significant economic loss to livestock industries. After a prolonged incubation time, infected cattle shed MAP bacilli into feces and spread the disease to an uninfected animal population. It is largely unknown how (or whether) the interplay between the pathogen and the host immunity determines timing of shedding after the long incubation time. Such information would provide an understanding of pathogenesis in individual animals and the epidemiology of MAP infection in animal populations. In this review, we summarize current knowledge of bovine Johne’s disease pathology, pathogenesis, immunology and genetics. We discuss knowledge gaps that direly need to be addressed to provide a science-based approach to diagnostics and (immuno)prophylaxis. These knowledge gaps are related to anatomical/clinical manifestation of MAP invasion, interaction of bacteria with phagocytes, granuloma formation, shedding, establishment and kinetics of adaptive immune responses in the pathogenesis of the disease. These topics are discussed at the molecular, cellular and tissue levels with special attention to the within host dynamics including the temporal and the spatial context relevant for the various host-pathogen interactions.
Collapse
|
46
|
Bannantine JP, Stabel JR, Laws E, D. Cardieri MC, Souza CD. Mycobacterium avium Subspecies paratuberculosis Recombinant Proteins Modulate Antimycobacterial Functions of Bovine Macrophages. PLoS One 2015; 10:e0128966. [PMID: 26076028 PMCID: PMC4468122 DOI: 10.1371/journal.pone.0128966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/04/2015] [Indexed: 01/14/2023] Open
Abstract
It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinant proteins expressed from coding sequences annotated as lipoproteins were screened for their ability to induce IL-10 expression, an indicator of MAPKp38 activation, in bovine monocyte-derived macrophages. A recombinant lipoprotein, designated as MAP3837c, was among a group of 6 proteins that strongly induced IL-10 gene transcription in bovine macrophages, averaging a 3.1-fold increase compared to non-stimulated macrophages. However, a parallel increase in expression of IL-12 and TNF-α was only observed in macrophages exposed to a subset of these 6 proteins. Selected recombinant proteins were further analyzed for their ability to enhance survival of M. avium within bovine macrophages as measured by recovered viable bacteria and nitrite production. All 6 IL-10 inducing MAP recombinant proteins along with M. paratuberculosis cells significantly enhanced phosphorylation of MAPK-p38 in bovine macrophages. Although these proteins are likely not post translationally lipidated in E. coli and thus is a limitation in this study, these results form the foundation of how the protein component of the lipoprotein interacts with the immune system. Collectively, these data reveal M. paratuberculosis proteins that might play a role in MAPK-p38 pathway activation and hence in survival of this organism within bovine macrophages.
Collapse
Affiliation(s)
- John P. Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, Iowa, United States of America
| | - Judith R. Stabel
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, Iowa, United States of America
| | - Elizabeth Laws
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Maria Clara D. Cardieri
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Cleverson D. Souza
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
47
|
Carvalho NB, Oliveira FS, Marinho FA, de Almeida LA, Fahel JS, Báfica A, Rothfuchs AG, Zamboni DS, Caliari MV, Oliveira SC. Nucleotide-binding oligomerization domain-2 (NOD2) regulates type-1 cytokine responses to Mycobacterium avium but is not required for host control of infection. Microbes Infect 2015; 17:337-44. [DOI: 10.1016/j.micinf.2015.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/23/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
|
48
|
Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets. Microb Pathog 2014; 78:74-86. [PMID: 25435362 DOI: 10.1016/j.micpath.2014.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 11/21/2022]
Abstract
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is the causative agent of porcine pleuropneumonia, a disease that causes serious problems for the swine industry. Successful infection by this bacterium requires breaking the first line of defence in the lungs, the primary alveolar macrophages (PAMs). Therefore, exploring A. pleuropneumoniae-PAM interactions will provide vital groundwork for the scientific control of this infectious disease, which has been little studied up to now. In this work, PAMs were isolated from piglets and co-incubated with A. pleuropneumoniae serovar 5b strain L20 in vitro, and their interaction, PAM cell death, and differential gene expression of A. pleuropneumoniae in response to PAM cell death were observed and analysed using confocal microscopy, electron microscopy, RT-PCR, Western blot, flow cytometry and the use of a gene expression profile chip. A. pleuropneumoniae quickly adhered to and invaded PAMs, inducing apoptosis, which was confirmed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The highest percentage of apoptosis in cells was confirmed using flow cytometry when the cells were infected at a multiplicity of infection (MOI) of 10 and incubated for 5 h, with higher expression of activated caspase-3 as measured by Western blot. Using microarray gene chips with 2868 probes containing nearly all of the genomic sequence of A. pleuropneumoniae serotype 5b strain L20, a total of 185 bacterial genes were found to be differentially expressed (including 92 up-regulated and 93 down-regulated genes) and involved in the process of apoptosis, as compared with the expression of control bacteria cultured without PAMs in BHI medium (mean expression ratios >1.5-fold, p < 0.05). The up-regulated genes are involved in energy metabolism, gene transcription and translation, virulence related gene such as LPS, Trimeric Autotransporter Adhesin, RTX and similar genes. The down-regulated genes are involved in amino acid, cofactor, and vitamin metabolism, and also include ABC transporters. These data demonstrate that A. pleuropneumoniae induces apoptosis of PAMs and undergoes complex changes in gene transcription, including expression changes in known and potential virulence factors. Some potentially novel virulence targets have been identified, suggesting new strategies for the development of vaccines and medicines for both preventive and clinical use.
Collapse
|
49
|
Killick KE, Magee DA, Park SDE, Taraktsoglou M, Browne JA, Conlon KM, Nalpas NC, Gormley E, Gordon SV, MacHugh DE, Hokamp K. Key Hub and Bottleneck Genes Differentiate the Macrophage Response to Virulent and Attenuated Mycobacterium bovis. Front Immunol 2014; 5:422. [PMID: 25324841 PMCID: PMC4181336 DOI: 10.3389/fimmu.2014.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette-Guérin. Differentially expressed genes were identified (adjusted P-value ≤0.01) and interaction networks generated across an infection time course of 2, 6, and 24 h. The largest number of biological interactions was observed in the 24-h network, which exhibited scale-free network properties. The 24-h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1, and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immuno-modulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment.
Collapse
Affiliation(s)
- Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; Systems Biology Ireland, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Stephen D E Park
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; IdentiGEN Ltd. , Dublin , Ireland
| | - Maria Taraktsoglou
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; Biological Agents Unit, Health and Safety Executive , Leeds , UK
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Kevin M Conlon
- UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland ; Science Foundation Ireland (SFI) , Dublin , Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland ; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College , Dublin , Ireland
| |
Collapse
|
50
|
Sridharan H, Upton JW. Programmed necrosis in microbial pathogenesis. Trends Microbiol 2014; 22:199-207. [DOI: 10.1016/j.tim.2014.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 01/14/2023]
|