1
|
Zhang R, Hu Z, Wei D, Li R, Li Y, Zhang Z. Carboplatin restricts peste des petits ruminants virus replication by suppressing the STING-mediated autophagy. Front Vet Sci 2024; 11:1383927. [PMID: 38812563 PMCID: PMC11133560 DOI: 10.3389/fvets.2024.1383927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that causes the acute and highly pathogenic infectious disease peste des petits ruminants (PPR) in small ruminants and poses a major threat to the goat and sheep industries. Currently, there is no effective treatment for PPRV infection. Here, we propose Carboplatin, a platinum-based regimen designed to treat a range of malignancies, as a potential antiviral agent. We showed that Carboplatin exhibits significant antiviral activity against PPRV in a cell culture model. The mechanism of action of Carboplatin against PPRV is mainly attributed to its ability to block STING mediated autophagy. Together, our study supports the discovery of Carboplatin as an antiviral against PPRV and potentially other closely related viruses, sheds light on its mode of action, and establishes STING as a valid and attractive target to counteract viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Yanmin Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wen B, Qi X, Lv D, Yang L, Tang P, Chang W, Han S, Yu S, Wei S, Xue Q, Wang J. Long noncoding RNA IRF1-AS is associated with peste des petits ruminants infection. Vet Res 2022; 53:89. [PMID: 36307867 PMCID: PMC9617334 DOI: 10.1186/s13567-022-01105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
Peste des petits ruminants (PPR) is an acute and highly contagious disease and has long been a significant threat to small ruminant productivity worldwide. However, the molecular mechanism underlying host-PPRV interactions remains unclear and the long noncoding RNAs (lncRNAs) regulation of PPR virus (PPRV) infection has rarely been reported so far. Here, we first demonstrated that PPRV infection can induce an obvious innate immune response in caprine endometrial epithelial cells (EECs) at 48 h post-infection (hpi) with an MOI of 3. Subsequently, we determined that PPRV infection is associated with 191 significantly differentially expressed (SDE) lncRNAs, namely, 137 upregulated and 54 downregulated lncRNAs, in caprine EECs compared with mock control cells at 48 hpi by using deep sequencing technology. Importantly, bioinformatics preliminarily analyses revealed that these DE lncRNAs were closely related to the immune response. Furthermore, we identified a system of lncRNAs related to the immune response and focused on the role of lncRNA 10636385 (IRF1-AS) in regulating the innate immune response. Interestingly, we found that IRF1-AS was a potent positive regulator of IFN-β and ISG production, which can significantly inhibit PPRV replication in host cells. In addition, our data revealed that IRF1-AS was positively correlated with its potential target gene, IRF1, which enhanced the activation of IRF3 and the expression of ISGs and interacted with IRF3. This study suggests that IRF1-AS could be a new host factor target for developing antiviral therapies against PPRV infection.
Collapse
Affiliation(s)
- Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Daiyue Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,China Institute of Veterinary Drug Control, Beijing, 100000, China
| | - Lulu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pan Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuizhong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengmeng Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaopeng Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, 100000, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Free ISG15 Inhibits the Replication of Peste des Petits Ruminants Virus by Breaking the Interaction of Nucleoprotein and Phosphoprotein. Microbiol Spectr 2022; 10:e0103122. [PMID: 36036587 PMCID: PMC9603952 DOI: 10.1128/spectrum.01031-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes a highly contagious disease in small ruminants and severe economic losses in developing countries. PPRV infection can stimulate high levels of interferon (IFN) and many IFN-stimulated genes (ISGs), such as ISG15, which may play a key role in the process of viral infection. However, the role of ISG15 in PPRV infection and replication has not yet been reported. In this study, we found ISG15 expression to be significantly upregulated after PPRV infection of caprine endometrial epithelial cells (EECs), and ISG15 inhibits the proliferation of PPRV. Further analysis showed that free ISG15 could inhibit PPRV proliferation. Moreover, ISG15 does not affect the binding, entry, and transcription but does suppress the replication of PPRV. A detailed analysis revealed that ISG15 interacts and colocalizes with both viral N and P proteins and that its interactive regions are all located in the N-terminal domain. Further studies showed that ISG15 can competitively interact with N and P proteins and significantly interfere with their binding. Finally, through the construction of the C-terminal mutants of ISG15 with different lengths, it was found that amino acids (aa) 77 to 101 play a key role in inhibiting the binding of N and P proteins and that interaction with the P protein disappears after the deletion of 77 to 101 aa. The present study revealed a novel mechanism of ISG15 in disrupting the activity of the N0-P complex to inhibit viral replication. IMPORTANCE PPRV, a widespread and fatal disease of small ruminants, is one of the most devastating animal diseases in Africa, the Middle East, and Asia, causing severe economic losses. IFNs play an important role as a component of natural immunity against pathogens, yet the role of ISG15, an IFN-stimulated gene, in protecting against PPRV infection is currently unknown. We demonstrated, for the first time, that free ISG15 inhibits PPRV proliferation by disrupting the activity of the N0-P complex, a finding that has not been reported in other viruses. Our results provide important insights that can further understand the pathogenesis and innate immune mechanisms of PPRV.
Collapse
|
4
|
Abstract
Peste des petits ruminants virus (PPRV) infection leads to autophagy, and the molecular mechanisms behind this phenomenon are unclear. Here, we demonstrate that PPRV infection results in morphological changes of the endoplasmic reticulum (ER) and activation of activating transcription factor 6 (ATF6) of the ER stress unfolded protein response (UPR). Knockdown of ATF6 blocked the autophagy process, suggesting ATF6 is necessary for PPRV-mediated autophagy induction. Further study showed that PPRV infection upregulates expression of the ER-anchored adaptor protein stimulator of interferon genes (STING), which is well-known for its pivotal roles in restricting DNA viruses. Knockdown of STING suppressed ATF6 activation and autophagy induction, implying that STING functions upstream of ATF6 to induce autophagy. Moreover, the STING-mediated autophagy response originated from the cellular pattern recognition receptor melanoma differentiation-associated gene 5 (MDA5). The absence of MDA5 abolished the upregulation of STING and the activation of autophagy. The deficiency of autophagy-related genes (ATG) repressed the autophagy process and PPRV replication, while it had no effect on MDA5 or STING expression. Overall, our work revealed that MDA5 works upstream of STING to activate ATF6 to induce autophagy. IMPORTANCEPPRV infection induces cellular autophagy; however, the intracellular responses and signaling mechanisms that occur upon PPRV infection are obscure, and whether innate immune responses are linked with autophagy to regulate viral replication is largely unknown. Here, we uncovered that the innate immune sensor MDA5 initiated the signaling cascade by upregulating STING, which is best known for its role in anti-DNA virus infection by inducing interferon expression. We first provide evidence that STING regulates PPRV replication by activating the ATF6 pathway of unfolded protein responses (UPRs) to induce autophagy. Our results revealed that in addition to mediating responses to foreign DNA, STING can cross talk with MDA5 to regulate the cellular stress response and autophagy induced by RNA viruses; thus, STING works as an adaptor protein for cellular stress responses and innate immune responses. Modulation of STING represents a promising approach to control both DNA and RNA viruses.
Collapse
|
5
|
Wen B, Yang L, Guo J, Chang W, Wei S, Yu S, Qi X, Xue Q, Wang J. Peste des petits ruminants virus induces ERS-mediated autophagy to promote virus replication. Vet Microbiol 2022; 270:109451. [PMID: 35594636 DOI: 10.1016/j.vetmic.2022.109451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
Abstract
Peste des petits ruminants virus (PPRV) has long been a significant threat to small ruminant productivity worldwide. Virus infection-induced endoplasmic reticulum (ER) stress (ERS) and the subsequently activated unfolded protein response (UPR) play significant roles in viral replication and pathogenesis. However, the relationship between ERS and PPRV infection is unknown. In this study, we demonstrated that ERS was induced during PPRV infection in caprine endometrial epithelial cells (EECs). Importantly, we demonstrated that the induction of autophagy by PPRV was mediated by ERS. Furthermore, we found that the PERK/eIF2α pathway but not the ATF6 or IRE1 pathway was activated and that the activated PERK/eIF2α pathway participated in regulating ERS-mediated autophagy. Moreover, virus replication was required for PPRV infection-induced ERS-mediated autophagy and PERK pathway activation. Additionally, we revealed that either the viral nucleocapsid (N) or nonstructural protein C was sufficient to elicit ERS and activate the PERK/eIF2α pathway, which further increased autophagy. Taken together, these results suggest that PPRV N and C protein-induced autophagy enhances viral replication through the induction of ERS and that the PERK pathway may be involved in the activation of ERS-mediated autophagy during PPRV infection.
Collapse
Affiliation(s)
- Bo Wen
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lulu Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jiaona Guo
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shaopeng Wei
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shengmeng Yu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing 100000, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Eloiflin RJ, Auray G, Python S, Rodrigues V, Seveno M, Urbach S, El Koulali K, Holzmuller P, Totte P, Libeau G, Bataille A, Summerfield A. Identification of Differential Responses of Goat PBMCs to PPRV Virulence Using a Multi-Omics Approach. Front Immunol 2021; 12:745315. [PMID: 34671358 PMCID: PMC8521192 DOI: 10.3389/fimmu.2021.745315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Peste des petits ruminants (PPR) is an acute transboundary infectious viral disease of small ruminants, mainly sheep and goats. Host susceptibility varies considerably depending on the PPR virus (PPRV) strain, the host species and breed. The effect of strains with different levels of virulence on the modulation of the immune system has not been thoroughly compared in an experimental setting so far. In this study, we used a multi-omics approach to investigate the host cellular factors involved in different infection phenotypes. Peripheral blood mononuclear cells (PBMCs) from Saanen goats were activated with a T-cell mitogen and infected with PPRV strains of different virulence: Morocco 2008 (high virulence), Ivory Coast 1989 (low virulence) and Nigeria 75/1 (live attenuated vaccine strain). Our results showed that the highly virulent strain replicated better than the other two in PBMCs and rapidly induced cell death and a stronger inhibition of lymphocyte proliferation. However, all the strains affected lymphocyte proliferation and induced upregulation of key antiviral genes and proteins, meaning a classical antiviral response is orchestrated regardless of the virulence of the PPRV strain. On the other hand, the highly virulent strain induced stronger inflammatory responses and activated more genes related to lymphocyte migration and recruitment, and inflammatory processes. Both transcriptomic and proteomic approaches were successful in detecting viral and antiviral effectors under all conditions. The present work identified key immunological factors related to PPRV virulence in vitro.
Collapse
Affiliation(s)
- Roger-Junior Eloiflin
- CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Montpellier, France.,ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France
| | - Gaël Auray
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sylvie Python
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Valérie Rodrigues
- ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France.,CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Petit-Bourg, France
| | - Martial Seveno
- BCM (BioCampus Montpellier), Univ. Montpellier, CNRS (Centre national de la recherche scientifique), INSERM, Montpellier, France
| | - Serge Urbach
- IGF (Institut de Génomique Fonctionnelle), Univ. Montpellier, CNRS (Centre national de la recherche scientifique), INSERM, Montpellier, France
| | - Khadija El Koulali
- BCM (BioCampus Montpellier), Univ. Montpellier, CNRS (Centre national de la recherche scientifique), INSERM, Montpellier, France
| | - Philippe Holzmuller
- CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Montpellier, France.,ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France
| | - Philippe Totte
- CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Montpellier, France.,ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France
| | - Genevieve Libeau
- CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Montpellier, France.,ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France
| | - Arnaud Bataille
- CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Montpellier, France.,ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Jelsma T, Wijnker JJ, Smid B, Verheij E, van der Poel WHM, Wisselink HJ. Determination of Intestinal Viral Loads and Distribution of Bovine Viral Diarrhea Virus, Classical Swine Fever Virus, and Peste Des Petits Ruminants Virus: A Pilot Study. Pathogens 2021; 10:1188. [PMID: 34578220 PMCID: PMC8466767 DOI: 10.3390/pathogens10091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this pilot study was to determine viral loads and distribution over the total length, at short distances, and in the separate layers of the intestine of virus-infected animals for future inactivation studies. Two calves, two pigs, and two goats were infected with bovine viral diarrhoea virus (BVDV), classical swine fever virus (CSFV), and peste des petits ruminants virus (PPRV), respectively. Homogenously distributed maximum BVDV viral loads were detected in the ileum of both calves, with a mean titer of 6.0 log10 TCID50-eq/g. The viral loads in colon and caecum were not distributed homogenously. In one pig, evenly distributed CSFV mean viral loads of 4.5 and 4.2 log10 TCID50-eq/g were found in the small and large intestines, respectively. Mucosa, submucosa, and muscular layer/serosa showed mean viral loads of 5.3, 3.4, and 4.0 log10 TCID50-eq/g, respectively. Homogenous distribution of PPRV was shown in the ileum of both goats, with a mean viral load of 4.6 log10 TCID50-eq/g. Mean mucosa, submucosa, and muscular layer/serosa viral loads were 3.5, 2.8, and 1.7 log10 TCID50-eq/g, respectively. This pilot study provides essential data for setting up inactivation experiments with intestines derived from experimentally infected animals, in which the level and the homogeneous distribution of intestinal viral loads are required.
Collapse
Affiliation(s)
- Tinka Jelsma
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Joris J. Wijnker
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.175, 3508 TD Utrecht, The Netherlands;
| | - Bregtje Smid
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Eline Verheij
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Wim H. M. van der Poel
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Henk J. Wisselink
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| |
Collapse
|
8
|
Tanko P, Mohd Yusoff S, Emikpe BO, Onilude OM, Abdullateef A. Dexamethasone-induced stress exacerbates shedding, tissue antigen distribution, and pathology of caprine Brucellosis. J Immunoassay Immunochem 2021; 42:265-284. [PMID: 33577382 DOI: 10.1080/15321819.2020.1862862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study investigated dexamethasone-treatment, shedding routes, tissue antigen distribution, and pathology of caprine Brucellosis. Eighteen non-pregnant goats were randomly grouped into A, B, and C. Group A was administered dexamethasone for 7 days at 2 mg/kg before inoculating 0.5 mL B. melitensis at 107 CFU ocularly while group B was inoculated 0.5 mL B. melitensis only, and C as control negative. Blood samples, ocular, nasal, and vaginal swabs were obtained for evaluation. Three goats were sacrificed from each group at days 21 and 42 post-inoculation (pi) and selected tissues collected for PCR, histopathology, and immunohistochemistry. Brucella melitensis was detected in the ocular swabs of group A significantly higher than group B. Shedding was prolonged in group A compared to B. The overall shedding was 22.2% in group A and 9.4% in group B. The uterus of both groups A and B revealed mild inflammation and microgranuloma, extensive necrotic lesions in lymph nodes. Liver showed multifocal necrosis predominantly in group A. Lesion scoring showed significantly higher scores in A compared to B. Strong immunostaining was observed in the liver, lungs, and spleen, predominantly at day 21 pi. This study demonstrated dexamethasone prolonged shedding, tissue antigen distribution, and pathology in dexamethasone-treated goats.
Collapse
Affiliation(s)
- Polycarp Tanko
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | - Sabri Mohd Yusoff
- Department of Microbiology and Pathology, Universiti Putra Malaysia, serdang, Malaysia
| | | | - Opeyemi Mayowa Onilude
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | |
Collapse
|
9
|
Li P, Zhu Z, Cao W, Yang F, Ma X, Tian H, Zhang K, Liu X, Zheng H. Dysregulation of the RIG-I-like Receptor Pathway Signaling by Peste des Petits Ruminants Virus Phosphoprotein. THE JOURNAL OF IMMUNOLOGY 2020; 206:566-579. [PMID: 33380495 DOI: 10.4049/jimmunol.2000432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Peste des petits ruminants virus (PPRV) is a Morbillivirus that causes highly contagious and severe disease in various ruminants. PPRV infection leads to a severe inhibition of host antiviral immune response. Our previous study demonstrated that PPRV V protein blocks IFN response by targeting STAT proteins. In the current study, we identified the phosphoprotein (P) as a novel antagonistic factor of PPRV to counteract host antiviral innate immune response. PPRV P protein significantly suppressed RIG-I-like receptor pathway signaling and impaired IFN-β and ISGs expression by targeting IFN regulatory factor (IRF)3 in both human embryonic kidney 293T cells and primary goat fibroblasts. The 1-102 region of P protein was critical for the antagonistic function of P protein. P protein interacted with IRF association domain (IAD) of IRF3 to block the interaction between TBK1 and IRF3. The interaction between TBK1 and the IAD of IRF3 is responsible for triggering the phosphorylation of IRF3. P protein competed with TBK1 to bind to the IAD of IRF3 that contributed to the decreased phosphorylation of IRF3, which, in turn, interfered with the dimerization of IRF3 and blocked IRF3 nuclear transportation. Besides, we also found that P protein interacted with IRF5 and IRF8. However, the involved mechanism remains unknown. Taken together, our results reveal a novel mechanism by which PPRV P protein antagonizes host antiviral innate immune response by interacting with the transcription factor IRF3, thereby inhibiting the type I IFN production and promoting viral replication.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Xusheng Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Hong Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and.,National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| |
Collapse
|
10
|
Purba FY, Nii T, Yoshimura Y, Isobe N. Translocation of intrauterine-infused bacterial lipopolysaccharides to the mammary gland in dexamethasone-treated goats. Reprod Domest Anim 2020; 55:1688-1697. [PMID: 32930423 DOI: 10.1111/rda.13820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 12/01/2022]
Abstract
Our previous study showed that intrauterine-infused lipopolysaccharide (LPS) can be translocated to the mammary gland to induce weak inflammation. This study aimed to determine whether dexamethasone treatment facilitated the translocation of LPS from the uterus to the mammary gland to induce a heavy inflammatory response. Sixteen goats were divided into control and LPS groups, subjected to daily dexamethasone administration before saline or LPS infusion. Milk and blood samples were collected before and after LPS infusion to determine the milk yield and somatic cell count (SCC) and blood leucocyte count (BLC), cytokines, antimicrobial peptides and serum amyloid A (SAA) concentrations. Mammary gland tissues were collected from two goats before and 24 hr after LPS infusion for immunohistochemical analysis of LPS. The mean SCC in the LPS group was significantly higher, whereas the milk yield was significantly lower than that in the control group after LPS infusion. The mean BLC in the LPS group was significantly lower than in the control group after LPS infusion. Furthermore, milk concentrations of IL-1β, S100A8 and lactoferrin were higher in the LPS group than in the control group after infusion. LPS was detected in the connective tissues and inner alveolar spaces of the mammary glands 24 hr after LPS infusion. We concluded that dexamethasone administration facilitated the translocation of intrauterine-infused LPS to the mammary gland, where it induced an inflammatory response. Therefore, LPS translocated from other organs, such as the uterus, can induce heavy inflammation in the mammary gland under immunosuppressive conditions.
Collapse
Affiliation(s)
- Fika Yuliza Purba
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.,Veterinary Medicine Study Program, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
11
|
Qi X, Li Z, Li H, Wang T, Zhang Y, Wang J. MicroRNA-1 Negatively Regulates Peripheral NK Cell Function via Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK) Signaling Pathways During PPRV Infection. Front Immunol 2020; 10:3066. [PMID: 32038620 PMCID: PMC6989477 DOI: 10.3389/fimmu.2019.03066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) has emerged as a significant threat to the productivity of small ruminants worldwide. PPRV is lymphotropic in nature and induces in the hosts a transient but severe immunosuppression, especially innate immunity. However, it remains largely unknown how NK cells respond and are regulated at the earliest time points after an acute viral PPRV infection in goats. In this study, we revealed that multiple immune responses of goat peripheral NK cells were compromised during PPRV infection, including the cytolytic effector molecule expression and cytokine production. Importantly, we demonstrated that PPRV infection stimulated the expression of TWEAK, a negative regulator of cytotoxic function of NK cells, which may be involved in the suppression of cytotoxicity as well as cytokine production in infected goat NK cells. Furthermore, we found that PPRV infection induced TWEAK expression in goat NK cells involving post-transcription by suppressing miR-1, a novel negative miRNA directly targeting the TWEAK gene. Moreover, replication of virus is required for inhibition of miR-1 expression during PPRV infection, and the non-structural V protein of PPRV plays an important role in miR-1 mediated TWEAK upregulation. Additionally, we revealed that the regulation of NK cell immune responses by TWEAK is mediated by MyD88, SOCS1, and STAT3. Taken together, our results demonstrated that TWEAK may play a key role in regulating goat peripheral NK cell cytotoxicity and cytokine expression levels during PPRV infection.
Collapse
Affiliation(s)
- Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Huan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Sahoo M, M D, Thakor JC, Baloni S, Saxena S, Shrivastava S, Dhama K, Singh K, Singh R. Neuropathology mediated through caspase dependent extrinsic pathway in goat kids naturally infected with PPRV. Microb Pathog 2019; 140:103949. [PMID: 31875517 DOI: 10.1016/j.micpath.2019.103949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/18/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
Abstract
Peste des petits ruminant (PPR), a highly contagious viral disease of small ruminants, is characterized by erosive stomatitis and pneumo-enteritis. However, its neurovirulence potential as observed with other morbilliviruses has not been fully investigated. The present study describes the neuropathological alterations induced by PPR virus through apoptotic pathway. A total number of 12 carcasses of local breed goat kids of either sex were received for postmortem examination. The clinical history was described as symptoms of mucopurulent nasal discharge, high to low grade fever, erosive stomatitis, dyspnoea and profuse watery diarrhoea followed by mortality of 35 goat kids within a week. The pathoanatomical lesions and immunohistochemical demonstration of PPRV antigen in lungs, intestine, spleen and lymph nodes confirmed PPR disease in goats. Grossly, five brain specimens showed moderate to severe leptomeningeal congestion during necropsy. Microscopically, brain sections showed leptomeningitis and nonsuppurative encephalitis characterized by vascular congestion, haemorrhages in the parenchyma, perivascular cuffing with mild to moderate mononuclear cells (mainly lymphocytes and few macrophages), focal to diffuse microgliosis, neuronal degeneration, satellitosis and neuronophagia. Immunolabelling of viral antigen was observed in the cytoplasm of neurons and glial cells. The RT-PCR amplification of N gene fragment also confirmed the presence of PPRV in the brain. The strong immunoreactivity of Caspase-3, Caspase-8 and comparatively lower expression of caspase-9 along with the absence of any reactivity for Apaf-1 antigen in the brain sections indicated the role of caspase dependent extrinsic pathway in inducing neuropathological changes. The presence of apoptotic neurons in the brain by TUNEL assay further confirmed the apoptosis and strong immunoreactivity of iNOS in neurons which suggested the generation of oxidative stress, that might have induced the apoptosis. The overall findings confirm the neurovirulence potential of PPR virus, via the extrinsic pathway of apoptosis, in natural cases of PPR disease in goat kids.
Collapse
Affiliation(s)
- Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India.
| | - Dinesh M
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | | | - Suraj Baloni
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Karampal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, India
| |
Collapse
|
13
|
Yang B, Xue Q, Guo J, Wang X, Zhang Y, Guo K, Li W, Chen S, Xue T, Qi X, Wang J. Autophagy induction by the pathogen receptor NECTIN4 and sustained autophagy contribute to peste des petits ruminants virus infectivity. Autophagy 2019; 16:842-861. [PMID: 31318632 PMCID: PMC7144873 DOI: 10.1080/15548627.2019.1643184] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy/autophagy is an essential cellular response in the fight against intracellular pathogens. Although some viruses can escape from or utilize autophagy to ensure their own replication, the responses of autophagy pathways to viral invasion remain poorly documented. Here, we show that peste des petits ruminants virus (PPRV) infection induces successive autophagic signalling in host cells via distinct and uncoupled molecular pathways. Immediately upon invasion, PPRV induced a first transient wave of autophagy via a mechanism involving the cellular pathogen receptor NECTIN4 and an AKT-MTOR-dependent pathway. Autophagic detection showed that early PPRV infection not only increased the amounts of autophagosomes and LC3-II but also downregulated the phosphorylation of AKT-MTOR. Subsequently, we found that the binding of viral protein H to NECTIN4 ultimately induced a wave of autophagy and inactivated the AKT-MTOR pathway, which is a critical step for the control of infection. Soon after infection, new autophagic signalling was initiated that required viral replication and protein expression. Interestingly, expression of IRGM and HSPA1A was significantly upregulated following PPRV replication. Strikingly, knockdown of IRGM and HSPA1A expression using small interfering RNAs impaired the PPRV-induced second autophagic wave and viral particle production. Moreover, IRGM-interacting PPRV-C and HSPA1A-interacting PPRV-N expression was sufficient to induce autophagy through an IRGM-HSPA1A-dependent pathway. Importantly, syncytia formation could facilitate sustained autophagy and the replication of PPRV. Overall, our work reveals distinct molecular pathways underlying the induction of self-beneficial sustained autophagy by attenuated PPRV, which will contribute to improving the use of vaccines for therapy. Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG: autophagy-related; BECN1: beclin 1; CDV: canine distemper virus; Co-IP: coimmunoprecipitation; FIP: fusion inhibitory peptide; GFP: green fluorescent protein; GST: glutathione S-transferase; HMOX1: heme oxygenase 1; hpi: hours post infection; HSPA1A: heat shock protein family A (Hsp70) member 1A; HSP90AA1: heat shock protein 90 kDa alpha (cytosolic), class A member 1; IFN: interferon; IgG: immunoglobulin G; INS: insulin; IRGM: immunity related GTPase M; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide-3 kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SDS: sodium dodecyl sulfate; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; UV: ultraviolet.
Collapse
Affiliation(s)
- Bo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinghong Xue
- Department of viral biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Jiaona Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xueping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuying Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianxia Xue
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Gao X, Liu T, Zheng K, Xiao J, Wang H. Spatio-temporal analysis of peste des petits ruminants outbreaks in PR China (2013-2018): Updates based on the newest data. Transbound Emerg Dis 2019; 66:2163-2170. [PMID: 31207143 DOI: 10.1111/tbed.13271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/15/2019] [Accepted: 06/09/2019] [Indexed: 11/29/2022]
Abstract
Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants. The purpose of this study was to investigate the epidemic characteristics of PPR outbreaks in the People's Republic of China (PR China) from 2013 to 2018. A total of 41,876 PPR outbreaks were recorded in small ruminant populations in PR China during that period. Data from February to June 2018 were used to study new developments in the PPR epidemic in PR China. Spatio-temporal clusters and temporal distribution patterns were studied based on PPR notifications. We also used multiple logistic regression to examine the contribution of anthropogenic, climatic and topographic factors to PPR outbreaks. Distance to the nearest road (OR = 1.007 [95% CI: 1.001-1.014]), price of mutton (OR = 1.904 [95% CI: 1.358-2.668]) and mean monthly temperature in July (OR 1.156 = [95% CI: 1.110-1.204]) showed positive effects on PPR outbreaks. Negative effects were observed for number of large-scale farms (OR = 0.962 [95% CI: 0.940-0.985]). We also found that observed patterns of seasonality were characterized by peaks in April of 2014. Spatio-temporal clusters occurred in Yunnan, Jiangsu, Anhui, Heilongjiang province and Chongqing municipality. Hunan province reported PPR occurrences every year from 2014 to June 2018. Yunnan, Jiangsu and Anhui province have 56, 33 and 30 epidemic locations, respectively. PPR infections were first reported as the cause of death for 19 wild bharals in Qinghai province in 2018. All of this suggests that domestic trading of sheep and goats may be closely related to the spread of PPR. Prophylactic immunization in suspected animal populations or areas is recommended for the control of PPR and wild small ruminants should be monitored. Results presented here provide improved knowledge about PPR dynamics in PR China, which could be helpful in designing more effective prevention strategies.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tao Liu
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Keren Zheng
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jianhua Xiao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hongbin Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Tanko PN, Mohd Yusoff S, Emikpe BO, Bejo SK, Salisi S. Effects of resveratrol on shedding and pathological dynamics in experimental B. melitensis infection in dexamethasone-treated nonpregnant Boer goats. J Immunoassay Immunochem 2019; 40:419-438. [PMID: 31154897 DOI: 10.1080/15321819.2019.1620766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Brucellosis constitutes an infectious re-emerging zoonosis. Spread of diseases could be exacerbated by stress-induced immunosuppression. This study evaluated relationship between Brucella melitensis infection, shedding dynamics, dexamethasone-induced stress, pathological alterations and resveratrol ameliorative effects in goats. Twelve nonpregnant goats were divided into four groups A, B, C, and D of three animals each. Groups A and B were administered 107 CFU/mL of B. melitensis ocularly, 21 days prior to 7 days consecutive administration of dexamethasone (2 mg/kg). Group A was further administered resveratrol (5 mg/kg) intravenously for 5 consecutive days from day 31 post B. melitensis inoculation. Group C was administered similar dose of B. melitensis while group D was inoculated normal saline. Blood, nasal, ocular, and vaginal swabs were collected at intervals for analysis. The does were sacrificed at day 42 post inoculation (pi). Tissues were collected for tissue bacterial load determination, histopathology, and immunohistochemistry. Dexamethasone administration from day 21 pi increased the frequency in the shedding dynamics, tissue bacterial load, pathological alterations (frequency of microgranuloma and intensity of immunostaining) in group B while 5 days treatment with resveratrol following dexamethasone administration significantly reduced tissue bacterial load, decline in shedding dynamics, and ameliorate damage by dexamethasone administration/B. melitensis infection.
Collapse
Affiliation(s)
- Polycarp Nwunuji Tanko
- a Veterinary Microbiology and Pathology, Department of Vet Microbiology and Pathology, Faculty of Vet Medicine , University of Jos , Jos , Plateau State Nigeria
| | - Sabri Mohd Yusoff
- b Faculty of Veterinary Medicine, Department of Microbiology and Pathology , Universiti Putra Malaysia , Serdang , Malaysia
| | - Benjamin Obukowho Emikpe
- c Faculty of Veterinary Medicine, Department of Veterinary Pathology , University of Ibadan , Ibadan , Nigeria
| | - Siti Khairani Bejo
- d Faculty of Veterinary Medicine, Veterinary Pathology and Microbiology , Universiti Putra Malaysia , Serdang , Malaysia
| | - Sharom Salisi
- e Faculty of Veterinary Medicine , Universiti Putra Malaysia , Seri Kembangan , Malaysia
| |
Collapse
|
16
|
Development of reverse genetics system for small ruminant morbillivirus: Rescuing recombinant virus to express Echinococcus granulosus EG95 antigen. Virus Res 2019; 261:50-55. [DOI: 10.1016/j.virusres.2018.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/02/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
|
17
|
The effects of PPR on the reproductive health of Black Bengal goats and the possible role played by oxidative stress. Trop Anim Health Prod 2018; 50:1441-1447. [PMID: 29594963 DOI: 10.1007/s11250-018-1578-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Outbreaks of Peste des petits ruminants (PPR) viral disease in Black Bengal goats were investigated from the middle Indo-Gangetic Plains of India. Clinical profile of PPR-affected flocks was recorded from four different outbreak sites of the region. The PPR outbreak was diagnosed serologically using commercially available sandwich ELISA kit. Relatively, low mortality rate (mean 26.75%) for PPR outbreak was recorded due to the endemic status of the disease. To understand the role of oxidative stress in PPR virus pathogenesis, various oxidant and antioxidant parameters in goats infected with PPR were estimated and compared with the uninfected/healthy goats of the same flock. The measured high level of pro-oxidant malondialdehyde (MDA) obtained from lipid peroxidation along with lower levels of anti-oxidants viz. superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in PPR-affected Black Bengal goats suggests oxidative stress as one of the mechanism of pathogenesis of PPR virus. In addition, the correlation of oxidative stress due to PPR and the resulting reproductive disorders in the female goats were evaluated. The abortion in pregnant does observed during PPR outbreak was proportional to debility and oxidative stress manifested during PPR infection. The reproductive performance of recovered female goats in the period of 18 months of monitoring was significantly compromised in terms of kidding and twinning frequency. The mortality rate in kids born from PPR-recovered goats was significantly higher compared to those from health goats in the first 9 months post-recovery. From the present study, it may be concluded that together with the PPR virus, infection in goats and the resulting oxidative stress play a vital role for abortion and reduced post-reproductive performance in Black Bengal female goat.
Collapse
|
18
|
Wani SA, Sahu AR, Saxena S, Rajak KK, Saminathan M, Sahoo AP, Kanchan S, Pandey A, Mishra B, Muthuchelvan D, Tiwari AK, Mishra BP, Singh RK, Gandham RK. Expression kinetics of ISG15, IRF3, IFNγ, IL10, IL2 and IL4 genes vis-a-vis virus shedding, tissue tropism and antibody dynamics in PPRV vaccinated, challenged, infected sheep and goats. Microb Pathog 2018; 117:206-218. [PMID: 29476787 DOI: 10.1016/j.micpath.2018.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
Here, we studied the in vivo expression of Th1 (IL2 and IFN gamma) and Th2 (IL4 and IL10) - cytokines and antiviral molecules - IRF3 and ISG15 in peripheral blood mononuclear cells in relation to antigen and antibody dynamics under Peste des petits ruminants virus (PPRV) vaccination, infection and challenge in both sheep and goats. Vaccinated goats were seropositive by 9 days post vaccination (dpv) while in sheep idiosyncratic response was observed between 9 and 14 dpv for different animals. Expression of PPRV N gene was not detected in PBMCs of vaccinated and vaccinated challenged groups of both species, but was detected in unvaccinated infected PBMCs at 9 and 14 days post infection. The higher viral load at 9 dpi coincided with the peak clinical signs of the disease. The peak in viral replication at 9 dpi correlated with significant expression of antiviral molecules IRF3, ISG15 and IFN gamma in both the species. With the progression of disease, the decrease in N gene expression also correlated with the decrease in expression of IRF3, ISG15 and IFN gamma. In the unvaccinated infected animals ISG15, IRF3, IFN gamma and IL10 expression was higher than vaccinated animals. The IFN gamma expression predominated over IL4 in both vaccinated and infected animals with the infected exhibiting a stronger Th1 response. The persistent upregulation of this antiviral molecular signature - ISG15 and IRF3 even after 2 weeks post vaccination, presumably reflects the ongoing stimulation of innate immune cells.
Collapse
Affiliation(s)
- Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - M Saminathan
- Division of Veterinary Pathology, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - Aditya Prasad Sahoo
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - Sonam Kanchan
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - Bina Mishra
- Division of Biological Products, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - D Muthuchelvan
- Division of Virology, ICAR-IVRI, Mukteshwar Campus, Nainital, 263138, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, 243122, India.
| |
Collapse
|
19
|
Liu F, Li J, Li L, Liu Y, Wu X, Wang Z. Peste des petits ruminants in China since its first outbreak in 2007: A 10-year review. Transbound Emerg Dis 2018; 65:638-648. [PMID: 29322642 DOI: 10.1111/tbed.12808] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 11/30/2022]
Abstract
Peste des petits ruminants (PPR) is a highly infectious disease of small ruminants and caused by small ruminant morbillivirus (SRMV), formerly called peste-des-petits-ruminants virus (PPRV). This disease is circulating in Africa (except most countries in southern Africa), the Arabian Peninsula, the Middle East, and Central, East and South-East Asia. Peste des petits ruminants is still regarded as an exotic disease in China, where its first outbreak was reported in the Ngari region of Tibet in 2007, but effectively controlled by slaughter, vaccination and animal movement restriction in PPR-infected areas. However, PPR re-emerged in Xinjiang of China in December 2013, rapidly spread into much of China in the first half of 2014, but since then was substantially inhibited countrywide. Phylogenetic analysis shows that SRMVs from China share the highest homology with others from its neighbouring countries, possibly indicating the transboundary transmission of SRMVs. In 2015, a national eradication program for PPR was issued and has been being implemented in China, expecting to achieve a PPR-eradicating aim countrywide by 2020. Here, we reviewed a 10-year history (2007-2017) of PPR in China, including two major outbreaks, its infection in wild species, development of diagnostics and vaccines, and implementation of the national eradication program.
Collapse
Affiliation(s)
- F Liu
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - J Li
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - L Li
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Y Liu
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - X Wu
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Z Wang
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| |
Collapse
|
20
|
Influence of dexamethasone-induced stress on oxidative stress biomarkers in non-pregnant does experimentally infected with Brucella melitensis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-016-2395-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Liu F, Wu X, Li L, Zou Y, Liu S, Wang Z. Evolutionary characteristics of morbilliviruses during serial passages in vitro: Gradual attenuation of virus virulence. Comp Immunol Microbiol Infect Dis 2016; 47:7-18. [DOI: 10.1016/j.cimid.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 02/05/2023]
|
22
|
Dhanasekaran S, Biswas M, Vignesh AR, Ramya R, Raj GD, Tirumurugaan KG, Raja A, Kataria RS, Parida S, Subbiah E. Toll-like receptor responses to Peste des petits ruminants virus in goats and water buffalo. PLoS One 2014; 9:e111609. [PMID: 25369126 PMCID: PMC4219731 DOI: 10.1371/journal.pone.0111609] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/06/2014] [Indexed: 12/16/2022] Open
Abstract
Ovine rinderpest or goat plague is an economically important and contagious viral disease of sheep and goats, caused by the Peste des petits ruminants virus (PPRV). Differences in susceptibility to goat plague among different breeds and water buffalo exist. The host innate immune system discriminates between pathogen associated molecular patterns and self antigens through surveillance receptors known as Toll like receptors (TLR). We investigated the role of TLR and cytokines in differential susceptibility of goat breeds and water buffalo to PPRV. We examined the replication of PPRV in peripheral blood mononuclear cells (PBMC) of Indian domestic goats and water buffalo and demonstrated that the levels of TLR3 and TLR7 and downstream signalling molecules correlation with susceptibility vs resistance. Naturally susceptible goat breeds, Barbari and Tellichery, had dampened innate immune responses to PPRV and increased viral loads with lower basal expression levels of TLR 3/7. Upon stimulation of PBMC with synthetic TLR3 and TLR7 agonists or PPRV, the levels of proinflammatory cytokines were found to be significantly higher while immunosuppressive interleukin (IL) 10 levels were lower in PPRV resistant Kanni and Salem Black breeds and water buffalo at transcriptional level, correlating with reduced viralloads in infected PBMC. Water buffalo produced higher levels of interferon (IFN) α in comparison with goats at transcriptional and translational levels. Pre-treatment of Vero cells with human IFNα resulted in reduction of PPRV replication, confirming the role of IFNα in limiting PPRV replication. Treatment with IRS66, a TLR7 antagonist, resulted in the reduction of IFNα levels, with increased PPRV replication confirming the role of TLR7. Single nucleotide polymorphism analysis of TLR7 of these goat breeds did not show any marked nucleotide differences that might account for susceptibility vs resistance to PPRV. Analyzing other host genetic factors might provide further insights on susceptibility to PPRV and genetic polymorphisms in the host.
Collapse
Affiliation(s)
- Sakthivel Dhanasekaran
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Moanaro Biswas
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ambothi R. Vignesh
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - R. Ramya
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Gopal Dhinakar Raj
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Krishnaswamy G. Tirumurugaan
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Angamuthu Raja
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Ranjit S. Kataria
- Animal Genetics Division, National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Satya Parida
- Head of FMD Vaccine Differentiation Group, The Pirbright Institute, Surrey, United Kingdom
- * E-mail: (SP); (ES)
| | - Elankumaran Subbiah
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (SP); (ES)
| |
Collapse
|
23
|
Kumar N, Maherchandani S, Kashyap SK, Singh SV, Sharma S, Chaubey KK, Ly H. Peste des petits ruminants virus infection of small ruminants: a comprehensive review. Viruses 2014; 6:2287-327. [PMID: 24915458 PMCID: PMC4074929 DOI: 10.3390/v6062287] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022] Open
Abstract
Peste des petits ruminants (PPR) is caused by a Morbillivirus that belongs to the family Paramyxoviridae. PPR is an acute, highly contagious and fatal disease primarily affecting goats and sheep, whereas cattle undergo sub-clinical infection. With morbidity and mortality rates that can be as high as 90%, PPR is classified as an OIE (Office International des Epizooties)-listed disease. Considering the importance of sheep and goats in the livelihood of the poor and marginal farmers in Africa and South Asia, PPR is an important concern for food security and poverty alleviation. PPR virus (PPRV) and rinderpest virus (RPV) are closely related Morbilliviruses. Rinderpest has been globally eradicated by mass vaccination. Though a live attenuated vaccine is available against PPR for immunoprophylaxis, due to its instability in subtropical climate (thermo-sensitivity), unavailability of required doses and insufficient coverage (herd immunity), the disease control program has not been a great success. Further, emerging evidence of poor cross neutralization between vaccine strain and PPRV strains currently circulating in the field has raised concerns about the protective efficacy of the existing PPR vaccines. This review summarizes the recent advancement in PPRV replication, its pathogenesis, immune response to vaccine and disease control. Attempts have also been made to highlight the current trends in understanding the host susceptibility and resistance to PPR.
Collapse
Affiliation(s)
- Naveen Kumar
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Shoor Vir Singh
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India.
| | - Kundan Kumar Chaubey
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Hinh Ly
- Veterinary and Biomedical Sciences Department, University of Minnesota, 1988 Fitch Ave., Ste 295, Saint Paul, MN 55108, USA.
| |
Collapse
|
24
|
Clinicopathological evaluation of intranasal, subcutaneous and intramuscular routes of vaccination against intratracheal challenge of Peste des petits ruminants virus in goats. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
A reliable and reproducible experimental challenge model for peste des petits ruminants virus. J Clin Microbiol 2012; 50:3738-40. [PMID: 22915602 DOI: 10.1128/jcm.01785-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental challenge protocols that consistently reproduce clinical signs of peste des petits ruminants in Alpine goats infected with a tissue culture-passaged peste des petits ruminants virus are described. The protocols can be used to carry out quality-controlled vaccine efficacy and pathogenesis studies under experimental conditions.
Collapse
|