1
|
Burke Ó, Zeden MS, O’Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 PMCID: PMC11178275 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Bie S, Mo Q, Shi C, Yuan H, Li C, Wu T, Li W, Yu H. Interactions of plumbagin with five common antibiotics against Staphylococcus aureus in vitro. PLoS One 2024; 19:e0297493. [PMID: 38277418 PMCID: PMC10817181 DOI: 10.1371/journal.pone.0297493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/06/2024] [Indexed: 01/28/2024] Open
Abstract
Staphylococcus aureus is the main culprit, causing a variety of severe clinical infections. At the same time, clinics are also facing the severe situation of antibiotic resistance. Therefore, effective strategies to address this problem may include expanding the antimicrobial spectrum by exploring alternative sources of drugs or delaying the development of antibiotic resistance through combination therapy so that existing antibiotics can continue to be used. Plumbagin (PLU) is a phytochemical that exhibits antibacterial activity. In the present study, we investigated the in vitro antibacterial activity of PLU. We selected five antibiotics with different mechanisms and inhibitory activities against S. aureus to explore their interaction with the combination of PLU. The interaction of combinations was evaluated by the Bliss independent model and visualized through response surface analysis. PLU exhibited potent antibacterial activity, with half maximal inhibitory concentration (IC50) and minimum inhibitory concentration (MIC) values against S. aureus of 1.73 μg/mL and 4 μg/mL, respectively. Synergism was observed when PLU was combined with nitrofurantoin (NIT), ciprofloxacin (CPR), mecillinam (MEC), and chloramphenicol (CHL). The indifference of the trimethoprim (TMP)-PLU pairing was demonstrated across the entire dose-response matrix, but significant synergy was observed within a specific dose region. In addition, no antagonistic interactions were indicated. Overall, PLU is not only a promising antimicrobial agent but also has the potential to enhance the growth-inhibitory activity of some antibiotics against S. aureus, and the use of the interaction landscape, along with the dose-response matrix, for analyzing and quantifying combination results represents an improved approach to comprehending antibacterial combinations.
Collapse
Affiliation(s)
- Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Qiuyue Mo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Chen Shi
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hui Yuan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Chunshuang Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Tong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Shukla S, Chauhan P, Gaur P, Rana P, Patel SK, Chopra D, Vikram A, Prajapati G, Yadav AK, Kotian SY, Bala L, Dwivedi A, Mishra A. Toxic potential assessment of hair dye developer 2,4,5,6-tetraaminopyrimidine sulfate exposed under ambient UVB radiation. Toxicol Ind Health 2024; 40:1-8. [PMID: 37876040 DOI: 10.1177/07482337231209352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Synthetic cosmetics, particularly hair dyes, are becoming increasingly popular among people of all ages and genders. 2,4,5,6-tetraaminopyrimidine sulfate (TAPS) is a key component of oxidative hair dyes and is used as a developer in several hair dyes. TAPS has previously been shown to absorb UVB strongly and degrade in a time-dependent manner, causing phototoxicity in human skin cells. However, the toxic effects of UVB-degraded TAPS are not explored in comparison to parent TAPS. Therefore, this research work aims to assess the toxicity of UVB-degraded TAPS than TAPS on two different test systems, that is, HaCaT (mammalian cell) and Staphylococcus aureus (a bacterial cell). Our result on HaCaT has illustrated that UVB-degraded TAPS is less toxic than parent TAPS. Additionally, UVB-exposed TAPS and parent TAPS were given to S. aureus, and the bacterial growth and their metabolic activity were assessed via CFU and phenotype microarray. The findings demonstrated that parent TAPS reduced bacterial growth via decreased metabolic activity; however, bacteria easily utilized the degraded TAPS. Thus, this study suggests that the products generated after UVB irradiation of TAPS is considered to be safer than their parent TAPS.
Collapse
Affiliation(s)
- Saumya Shukla
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Priyanka Chauhan
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute Lucknow, India
| | - Prakriti Gaur
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Priyanka Rana
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Gaurav Prajapati
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Akhilesh Kumar Yadav
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research(CSIR-IITR), Lucknow, India
| | - Sumana Y Kotian
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research(CSIR-IITR), Lucknow, India
| | - Lakshmi Bala
- Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Aradhana Mishra
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute Lucknow, India
| |
Collapse
|
4
|
Krüger-Haker H, Ji X, Bartel A, Feßler AT, Hanke D, Jiang N, Tedin K, Maurischat S, Wang Y, Wu C, Schwarz S. Metabolic Characteristics of Porcine LA-MRSA CC398 and CC9 Isolates from Germany and China via Biolog Phenotype MicroArray TM. Microorganisms 2022; 10:2116. [PMID: 36363707 PMCID: PMC9693340 DOI: 10.3390/microorganisms10112116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 10/02/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is an important zoonotic pathogen, often multi-resistant to antimicrobial agents. Among swine, LA-MRSA of clonal complex (CC) 398 dominates in Europe, Australia and the Americas, while LA-MRSA-CC9 is the main epidemic lineage in Asia. Here, we comparatively investigated the metabolic properties of rare and widespread porcine LA-MRSA isolates from Germany and China using Biolog Phenotype MicroArray technology to evaluate if metabolic variations could have played a role in the development of two different epidemic LA-MRSA clones in swine. Overall, we were able to characterize the isolates' metabolic profiles and show their tolerance to varying environmental conditions. Sparse partial least squares discriminant analysis (sPLS-DA) supported the detection of the most informative substrates and/or conditions that revealed metabolic differences between the LA-MRSA lineages. The Chinese LA-MRSA-CC9 isolates displayed unique characteristics, such as a consistently delayed onset of cellular respiration, and increased, reduced or absent usage of several nutrients. These possibly unfavorable metabolic properties might promote the ongoing gradual replacement of the current epidemic LA-MRSA-CC9 clone in China with the emerging LA-MRSA-CC398 lineage through livestock trade and occupational exposure. Due to the enhanced pathogenicity of the LA-MRSA-CC398 clone, the public health risk posed by LA-MRSA from swine might increase further.
Collapse
Affiliation(s)
- Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Xing Ji
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory, Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Alexander Bartel
- Institute for Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Nansong Jiang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Sven Maurischat
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Congming Wu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Ramirez AM, Beenken KE, Byrum SD, Tackett AJ, Shaw LN, Gimza BD, Smeltzer MS. SarA plays a predominant role in controlling the production of extracellular proteases in the diverse clinical isolates of Staphylococcus aureus LAC and UAMS-1. Virulence 2020; 11:1738-1762. [PMID: 33258416 PMCID: PMC7738309 DOI: 10.1080/21505594.2020.1855923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
Using DNA affinity chromatography we demonstrate that the S. aureus regulatory proteins MgrA, Rot, SarA, and SarS bind DNA baits derived from the promoter regions associated with the genes encoding aureolysin, ScpAB, SspABC, and SplA-F. Three of four baits also bound SarR and SarZ, the exception in both cases being the ScpAB-associated bait. Using the USA300, methicillin-resistant strain LAC and the USA200, methicillin-sensitive strain UAMS-1, we generated mutations in the genes encoding each of these proteins alone and in combination with sarA and examined the impact on protease production, the accumulation of high molecular weight proteins, and biofilm formation. These studies confirmed that multiple regulatory loci are involved in limiting protease production to a degree that impacts all of these phenotypes, but also demonstrate that sarA plays a predominant role in this regard. Using sarA mutants unable to produce individual proteases alone and in combination with each other, we also demonstrate that the increased production of aureolysin and ScpA is particularly important in defining the biofilm-deficient phenotype of LAC and UAMS-1 sarA mutants, while aureolysin alone plays a key role in defining the reduced accumulation of alpha toxin and overall cytotoxicity as assessed using both osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Aura M. Ramirez
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL
| | - Brittney D. Gimza
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
6
|
Liu YC, Lu JJ, Lin LC, Lin HC, Chen CJ. Protein Biomarker Discovery for Methicillin-Sensitive, Heterogeneous Vancomycin-Intermediate and Vancomycin-Intermediate Staphylococcus aureus Strains Using Label-Free Data-Independent Acquisition Proteomics. J Proteome Res 2020; 20:164-171. [PMID: 33058664 DOI: 10.1021/acs.jproteome.0c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid identification of methicillin-sensitive Staphylococcus aureus (MSSA), heterogeneous vancomycin-intermediate S. aureus (hVISA), and vancomycin-intermediate S. aureus (VISA) is important for accurate treatment, timely intervention, and prevention of outbreaks. Here, 90 S. aureus isolates were analyzed for protein biomarker discovery, including MSSA, vancomycin-susceptible S. aureus (VSSA), hVISA, and VISA strains. Label-free data-independent acquisition proteomics was used to identify protein biomarkers that allow for discrimination among MSSA, hVISA, and VISA strains. There were 8786 nonredundant peptides identified, corresponding to 418 different annotated nonredundant proteins. Two VISA protein biomarkers, two hVISA protein biomarkers, and one MSSA protein biomarker with high sensitivities and specificities were discovered and verified. Data are available via MassIVE with identifier MSV000085776.
Collapse
Affiliation(s)
- Yu-Ching Liu
- Graduate Institute of Integrated Medicine, China Medical University, 91, Hsueh-Shih Rd, Taichung 40402, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hsiao-Chuan Lin
- School of Medicine, China Medical University, 91, Hsueh-Shih Rd, Taichung 40402, Taiwan.,Department of Pediatric Infectious Diseases, China Medical University Children's Hospital, Taichung 40447, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, 91, Hsueh-Shih Rd, Taichung 40402, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
7
|
Phenotyping using semi-automated BIOLOG and conventional PCR for identification of Bacillus isolated from biofilm of sink drainage pipes. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.chnaes.2018.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Jałowiecki Ł, Chojniak J, Dorgeloh E, Hegedusova B, Ejhed H, Magnér J, Płaza G. Using phenotype microarrays in the assessment of the antibiotic susceptibility profile of bacteria isolated from wastewater in on-site treatment facilities. Folia Microbiol (Praha) 2017; 62:453-461. [PMID: 28451946 PMCID: PMC5630657 DOI: 10.1007/s12223-017-0516-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 03/06/2017] [Indexed: 11/30/2022]
Abstract
The scope of the study was to apply Phenotype Biolog MicroArray (PM) technology to test the antibiotic sensitivity of the bacterial strains isolated from on-site wastewater treatment facilities. In the first step of the study, the percentage values of resistant bacteria from total heterotrophic bacteria growing on solid media supplemented with various antibiotics were determined. In the untreated wastewater, the average shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria were 53, 56, and 42%, respectively. Meanwhile, the shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria in the treated wastewater were 39, 33, and 29%, respectively. To evaluate the antibiotic susceptibility of the bacteria present in the wastewater, using the phenotype microarrays (PMs), the most common isolates from the treated wastewater were chosen: Serratia marcescens ss marcescens, Pseudomonas fluorescens, Stenotrophomonas maltophilia, Stenotrophomonas rhizophila, Microbacterium flavescens, Alcaligenes faecalis ss faecalis, Flavobacterium hydatis, Variovorax paradoxus, Acinetobacter johnsonii, and Aeromonas bestiarum. The strains were classified as multi-antibiotic-resistant bacteria. Most of them were resistant to more than 30 antibiotics from various chemical classes. Phenotype microarrays could be successfully used as an additional tool for evaluation of the multi-antibiotic resistance of environmental bacteria and in preliminary determination of the range of inhibition concentration.
Collapse
Affiliation(s)
- Łukasz Jałowiecki
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, Katowice, Poland
| | - Joanna Chojniak
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, Katowice, Poland
| | - Elmar Dorgeloh
- Development and Assessment Institute in Waste Water Technology, RWTH Aachen University, Aachen, Germany
| | - Berta Hegedusova
- Development and Assessment Institute in Waste Water Technology, RWTH Aachen University, Aachen, Germany
| | - Helene Ejhed
- Natural Resources and Environmental Effects, IVL Swedish Environmental Research Institute, Stockholm, Sweden
| | - Jörgen Magnér
- Natural Resources and Environmental Effects, IVL Swedish Environmental Research Institute, Stockholm, Sweden
| | - Grażyna Płaza
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, Katowice, Poland.
| |
Collapse
|
9
|
AraC-Type Regulator Rbf Controls the Staphylococcus epidermidis Biofilm Phenotype by Negatively Regulating the icaADBC Repressor SarR. J Bacteriol 2016; 198:2914-2924. [PMID: 27501984 DOI: 10.1128/jb.00374-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/04/2016] [Indexed: 11/20/2022] Open
Abstract
Regulation of icaADBC-encoded polysaccharide intercellular adhesin (PIA)/poly-N-acetylglucosasmine (PNAG) production in staphylococci plays an important role in biofilm-associated medical-device-related infections. Here, we report that the AraC-type transcriptional regulator Rbf activates icaADBC operon transcription and PIA production in Staphylococcus epidermidis Purified recombinant Rbf did not bind to the ica operon promoter region in electrophoretic mobility shift assays (EMSAs), indicating that Rbf regulates ica transcription indirectly. To identify the putative transcription factor(s) involved in Rbf-mediated icaADBC regulation, the ability of recombinant Rbf to interact with the promoter sequences of known icaADBC regulators was investigated. Recombinant Rbf bound to the sarR promoter and not the sarX, sarA, sarZ, spx, and srrA promoters. Reverse transcription (RT)-PCR demonstrated that Rbf acts as a repressor of sarR transcription. PIA expression and biofilm production were restored to wild-type levels in an rbf sarR double mutant grown in brain heart infusion (BHI) medium supplemented with NaCl, which is known to activate the ica locus, but not in BHI medium alone. RT-PCR further demonstrated that although Rbf does not bind the sarX promoter, it nevertheless exerted a negative effect on sarX expression. Apparently, direct downregulation of the SarR repressor by Rbf has a dominant effect over indirect repression of the SarX activator by Rbf in the control of S. epidermidis PIA production and biofilm formation. IMPORTANCE The importance of Staphylococcus epidermidis as an opportunistic pathogen in hospital patients with implanted medical devices derives largely from its capacity to form biofilm. Expression of the icaADBC-encoded extracellular polysaccharide is the predominant biofilm mechanism in S. epidermidis clinical isolates and is tightly regulated. Here, we report that the transcriptional regulator Rbf promotes icaADBC expression by negatively regulating expression of sarR, which encodes an ica operon repressor. Furthermore, Rbf indirectly represses the ica operon activator, SarX. The data reveal complicated interplay between Rbf and two Sar family proteins in fine-tuning regulation of the biofilm phenotype and indicate that in the hierarchy of biofilm regulators, IcaR is dominant over the Rbf-SarR-SarX axis.
Collapse
|
10
|
Gene network analysis reveals the association of important functional partners involved in antibiotic resistance: A report on an important pathogenic bacterium Staphylococcus aureus. Gene 2015; 575:253-63. [PMID: 26342962 DOI: 10.1016/j.gene.2015.08.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/30/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus (S. aureus) is an emerging concern in hospital settings as it causes serious human infections. The multidrug resistance (MDR) in S. aureus is a complicated problem that is difficult to overcome due to the presence of numerous antibiotic resistance genes and it exhibit resistance to most of the currently available antibiotics. Presently, the resistance mechanisms of these genes/proteins are not completely understood. Therefore, identifying and understanding the functional relationship between the antibiotic resistant genes and their associated proteins might provide necessary information on resistance mechanisms and thereby help in designing successful drugs to combat the antibiotic resistance. In this study, we propose a model based on protein/gene network to identify genes/proteins associated with drug resistance in S. aureus. We filtered 50 functional partners in NorA, aacA-aphD (aac6ie), aad9ib (ant), aadd (knt), baca (uppP), bl2a_pc (blaZ), ble, ermA, SAV0052 (ermb), ermc, fosB, mecA (mecI), mecR (mecr1), mepA, msrA1, qacA, vraR (str), tet38 and tetM while 40 functional partners are identified in tet and aphA-3 (aph3iiia). The average shortest path length and betweenness centrality of functional partners in the clusters are calculated and they are functionally enriched with the Gene Ontology (GO) terms with a p-value cut-off ≤0.05. Interestingly, the constructed network reveals many associated antibiotic resistant genes and proteins and their role in resistance mechanisms. Thus, our results might provide a better understanding of the molecular mechanisms of action and their mode of drug resistance that will be useful for researchers exploring in the field of antibiotic resistance mechanisms.
Collapse
|
11
|
Healthcare- and Community-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) and Fatal Pneumonia with Pediatric Deaths in Krasnoyarsk, Siberian Russia: Unique MRSA's Multiple Virulence Factors, Genome, and Stepwise Evolution. PLoS One 2015; 10:e0128017. [PMID: 26047024 PMCID: PMC4457420 DOI: 10.1371/journal.pone.0128017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/21/2015] [Indexed: 12/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common multidrug-resistant (MDR) pathogen. We herein discussed MRSA and its infections in Krasnoyarsk, Siberian Russia between 2007 and 2011. The incidence of MRSA in 3,662 subjects was 22.0% and 2.9% for healthcare- and community-associated MRSA (HA- and CA-MRSA), respectively. The 15-day mortality rates for MRSA hospital- and community-acquired pneumonia (HAP and CAP) were 6.5% and 50%, respectively. MRSA CAP cases included pediatric deaths; of the MRSA pneumonia episodes available, ≥27.3% were associated with bacteremia. Most cases of HA-MRSA examined exhibited ST239/spa3(t037)/SCCmecIII.1.1.2 (designated as ST239Kras), while all CA-MRSA cases examined were ST8/spa1(t008)/SCCmecIV.3.1.1(IVc) (designated as ST8Kras). ST239Kras and ST8Kras strongly expressed cytolytic peptide (phenol-soluble modulin α, PSMα; and δ-hemolysin, Hld) genes, similar to CA-MRSA. ST239Kras pneumonia may have been attributed to a unique set of multiple virulence factors (MVFs): toxic shock syndrome toxin-1 (TSST-1), elevated PSMα/Hld expression, α-hemolysin, the staphylococcal enterotoxin SEK/SEQ, the immune evasion factor SCIN/SAK, and collagen adhesin. Regarding ST8Kras, SEA was included in MVFs, some of which were common to ST239Kras. The ST239Kras (strain OC3) genome contained: a completely unique phage, φSa7-like (W), with no att repetition; S. aureus pathogenicity island SaPI2R, the first TSST-1 gene-positive (tst+) SaPI in the ST239 lineage; and a super copy of IS256 (≥22 copies/genome). ST239Kras carried the Brazilian SCCmecIII.1.1.2 and United Kingdom-type tst. ST239Kras and ST8Kras were MDR, with the same levofloxacin resistance mutations; small, but transmissible chloramphenicol resistance plasmids spread widely enough to not be ignored. These results suggest that novel MDR and MVF+ HA- and CA-MRSA (ST239Kras and ST8Kras) emerged in Siberian Russia (Krasnoyarsk) associated with fatal pneumonia, and also with ST239Kras, a new (Siberian Russian) clade of the ST239 lineage, which was created through stepwise evolution during its potential transmission route of Brazil-Europe-Russia/Krasnoyarsk, thereby selective advantages from unique MVFs and the MDR.
Collapse
|
12
|
Krzymińska S, Szczuka E, Dudzińska K, Kaznowski A. Virulence and the presence of aminoglycoside resistance genes of Staphylococcus haemolyticus strains isolated from clinical specimens. Antonie van Leeuwenhoek 2015; 107:857-68. [PMID: 25586730 PMCID: PMC4359711 DOI: 10.1007/s10482-015-0378-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/07/2015] [Indexed: 11/15/2022]
Abstract
We examined thirty methicillin-resistant Staphylococcus haemolyticus isolates cultured from clinical specimens for antibiotic resistance, various important interactions of the bacteria with epithelial cells and putative virulence determinants. All strains were resistant to oxacillin and carried the mecA gene. Aminocyclitol-3′-phosphotransferase (aph(3′)-IIIa) gene encoding nucleotidyltransferases was detected in 43 %, aminocyclitol-6′-acetyltransferase-aminocyclitol-2″-phosphotransferase (aac(6′)/aph(2″)) gene encoding bifunctional acetyltransferases/phosphotransferases in 33 %, aminocyclitol-4′-adenylyltransferase (ant(4′)-Ia) gene encoding phosphotransferases in 20 %. The coexistence of resistance to methicillin and aminoglycosides was investigated in multi-resistant strains. Coexisting (aac(6′)/aph(2″)) and (aph(3′)-IIIa) genes were detected in 33 % of isolates, whereas 63 % of isolates had at least one of these genes. All strains revealed adherence ability and most of them (63 %) were invasive to epithelial cells. Electron microscopy revealed that the bacteria were found in vacuoles inside the cells. We observed that the contact of the bacteria with host epithelial cells is a prerequisite to their cytotoxicity at 5 h-incubation. Culture supernatant of the strains induced a low effect of cytotoxicity at the same time of incubation. Cell-free supernatant of all isolates expressed cytotoxic activity which caused destruction of HEp-2 cells at 24 h. None of the strains was cytotonic towards CHO cells. Among thirty strains, 27 % revealed lipolytic activity, 43 % produced lecithinase and 20 % were positive for proteinase activity. Analyses of cellular morphology and DNA fragmentation exhibited typical characteristic features of those undergoing apoptosis. The Pearson linear test revealed positive correlations between the apoptotic index at 24 h and percentage of cytotoxicity. Our results provided new insights into the mechanisms contributing to the development of S. haemolyticus-associated infections. The bacteria adhered and invaded to non-professional phagocytes. The invasion of epithelial cells by S. haemolyticus could be similar to phagocytosis that requires polymerization of the actin cytoskeleton. The process is inhibited by cytochalasin D. Moreover, they survived within the cells by residing in membrane bound compartments and induced apoptotic cell death.
Collapse
Affiliation(s)
- Sylwia Krzymińska
- Department of Microbiology, Faculty of Biology, A.Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland,
| | | | | | | |
Collapse
|