1
|
Li C, Holmes EC, Shi W. The diversity, pathogenic spectrum, and ecological significance of arthropod viruses. Trends Microbiol 2025:S0966-842X(25)00081-2. [PMID: 40240215 DOI: 10.1016/j.tim.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Research on arthropod viruses initially focused on those associated with diseases in vertebrates, particularly humans, as well as in plants of economic importance. However, the more recent deployment of metatranscriptomic sequencing of diverse arthropod species has facilitated the discovery of a multitude of novel arthropod viruses, in turn revealing that pathogenic viruses represent only a small component of the arthropod virome. In addition, arthropods may play a pivotal role in viral evolution and ecological dynamics, and have the potential to act as reservoirs for pathogens affecting vertebrates or plants. Due to active interactions between arthropod populations and diverse organisms - including fungi, plants, vertebrates, and even other arthropods in both aquatic and terrestrial ecosystems - there is an increased risk of the spillover of arthropod viruses to other organisms, including mammals. Herein, we review our current understanding of the diversity and ecology of arthropod viruses. We outline what is known about pathogenic arthropod viruses in diverse host types and emphasize the unique niche of arthropods as the source of emerging viral infectious diseases. Finally, we describe the evolutionary interactions between arthropod viruses and their hosts in ecosystems, at the same time highlighting their ecological significance with respect to regulating host populations.
Collapse
Affiliation(s)
- Cixiu Li
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Weifeng Shi
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Sellali S, Lafri I, Garni R, Manseur H, Besbaci M, Lafri M, Bitam I. Epidemiology of Sandfly-Borne Phleboviruses in North Africa: An Overview. INSECTS 2024; 15:846. [PMID: 39590445 PMCID: PMC11595232 DOI: 10.3390/insects15110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Eight sandfly-borne phleboviruses were found to circulate in North Africa. Phleboviruses detected in sandflies were Toscana (TOSV), Sandfly Fever Sicilian (SFSV), Sandfly Fever Naples (SFNV), Cyprus (CYPV), Punique (PUNV), Utique, Saddaguia, and Medjerda Valley (MVV) viruses, yielding an overall infection rate of 0.02-0.6%. Phlebotomus perniciosus and Phlebotomus longicuspis were the most common vector species in the region. TOSV seroprevalence in dogs from Algeria (4.56%) and Tunisia (7.5%) was low and close, unlike SFSV (38.1%) and PUNV (43.5%), which were restricted to Tunisia. SFSV (1.3-21%) and TOSV (3.8-50%) were the most prevalent among humans. TOSV was frequently detected and symptomatically confirmed in both Algeria (3.8%) and Tunisia (12.86%). Other sandfly-borne phleboviruses have also been detected but less importantly, such as SFNV in Morocco (2.9%) and Tunisia (1.1%) and PUNV (8.72%), CYPV (2.9%), and MVV (1.35%) in Tunisia. Their distribution was mainly northern. Overall, 15.9% of the healthy population were seropositive for sandfly-borne phleboviruses, with evidenced cocirculation. Noticeably, studies conducted in Morocco were mostly interested in TOSV in sandflies. Available data from Libya and Egypt were scant or historical. Further elaboration is required to check the sporadic detection of less-prevalent phleboviruses and fully elucidate the epidemiological situation.
Collapse
Affiliation(s)
- Sabrina Sellali
- Institute of Veterinary Sciences, University Blida 1, Blida 09000, Algeria; (S.S.); (H.M.); (M.B.); (M.L.)
- Laboratory of Biotechnologies Linked to Animal Reproduction, Institute of Veterinary Sciences, University Blida 1, Blida 09000, Algeria
| | - Ismail Lafri
- Department of Microbiology and Veterinary Pathology, Institut Pasteur of Algeria, Algiers 16000, Algeria;
| | - Rafik Garni
- Department of Preventive Medicine, Institut Pasteur of Algeria, Algiers 16000, Algeria;
| | - Hemza Manseur
- Institute of Veterinary Sciences, University Blida 1, Blida 09000, Algeria; (S.S.); (H.M.); (M.B.); (M.L.)
- Laboratory of Biotechnologies Linked to Animal Reproduction, Institute of Veterinary Sciences, University Blida 1, Blida 09000, Algeria
| | - Mohamed Besbaci
- Institute of Veterinary Sciences, University Blida 1, Blida 09000, Algeria; (S.S.); (H.M.); (M.B.); (M.L.)
- Laboratory of Biotechnologies Linked to Animal Reproduction, Institute of Veterinary Sciences, University Blida 1, Blida 09000, Algeria
| | - Mohamed Lafri
- Institute of Veterinary Sciences, University Blida 1, Blida 09000, Algeria; (S.S.); (H.M.); (M.B.); (M.L.)
- Laboratory of Biotechnologies Linked to Animal Reproduction, Institute of Veterinary Sciences, University Blida 1, Blida 09000, Algeria
| | - Idir Bitam
- Center of Research in Agro-Pastoralism, Djelfa 17000, Algeria
| |
Collapse
|
3
|
Wang Y, Xu Z, Zhang H, Zhou Y, Cao J, Zhang Y, Wang Z, Zhou J. Towards modelling tick-virus interactions using the weakly pathogenic Sindbis virus: Evidence that ticks are competent vectors. Front Cell Infect Microbiol 2024; 14:1334351. [PMID: 38567020 PMCID: PMC10985168 DOI: 10.3389/fcimb.2024.1334351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Most tick-borne viruses (TBVs) are highly pathogenic and require high biosecurity, which severely limits their study. We found that Sindbis virus (SINV), predominantly transmitted by mosquitoes, can replicate in ticks and be subsequently transmitted, with the potential to serve as a model for studying tick-virus interactions. We found that both larval and nymphal stages of Rhipicephalus haemaphysaloides can be infected with SINV-wild-type (WT) when feeding on infected mice. SINV replicated in two species of ticks (R. haemaphysaloides and Hyalomma asiaticum) after infecting them by microinjection. Injection of ticks with SINV expressing enhanced Green Fluorescent Protein (eGFP) revealed that SINV-eGFP specifically aggregated in the tick midguts for replication. During blood-feeding, SINV-eGFP migrated from the midguts to the salivary glands and was transmitted to a new host. SINV infection caused changes in expression levels of tick genes related to immune responses, substance transport and metabolism, cell growth and death. SINV mainly induced autophagy during the early stage of infection; with increasing time of infection, the level of autophagy decreased, while the level of apoptosis increased. During the early stages of infection, the transcript levels of immune-related genes were significantly upregulated, and then decreased. In addition, SINV induced changes in the transcription levels of some functional genes that play important roles in the interactions between ticks and tick-borne pathogens. These results confirm that the SINV-based transmission model between ticks, viruses, and mammals can be widely used to unravel the interactions between ticks and viruses.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuqiang Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zedong Wang
- Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Lappe RR, Elmore MG, Lozier ZR, Jander G, Miller WA, Whitham SA. Metagenomic identification of novel viruses of maize and teosinte in North America. BMC Genomics 2022; 23:767. [DOI: 10.1186/s12864-022-09001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Maize-infecting viruses are known to inflict significant agronomic yield loss throughout the world annually. Identification of known or novel causal agents of disease prior to outbreak is imperative to preserve food security via future crop protection efforts. Toward this goal, a large-scale metagenomic approach utilizing high throughput sequencing (HTS) was employed to identify novel viruses with the potential to contribute to yield loss of graminaceous species, particularly maize, in North America.
Results
Here we present four novel viruses discovered by HTS and individually validated by Sanger sequencing. Three of these viruses are RNA viruses belonging to either the Betaflexiviridae or Tombusviridae families. Additionally, a novel DNA virus belonging to the Geminiviridae family was discovered, the first Mastrevirus identified in North American maize.
Conclusions
Metagenomic studies of crop and crop-related species such as this may be useful for the identification and surveillance of known and novel viral pathogens of crops. Monitoring related species may prove useful in identifying viruses capable of infecting crops due to overlapping insect vectors and viral host-range to protect food security.
Collapse
|
5
|
Maqbool M, Sajid MS, Saqib M, Anjum FR, Tayyab MH, Rizwan HM, Rashid MI, Rashid I, Iqbal A, Siddique RM, Shamim A, Hassan MA, Atif FA, Razzaq A, Zeeshan M, Hussain K, Nisar RHA, Tanveer A, Younas S, Kamran K, Rahman SU. Potential Mechanisms of Transmission of Tick-Borne Viruses at the Virus-Tick Interface. Front Microbiol 2022; 13:846884. [PMID: 35602013 PMCID: PMC9121816 DOI: 10.3389/fmicb.2022.846884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ticks (Acari; Ixodidae) are the second most important vector for transmission of pathogens to humans, livestock, and wildlife. Ticks as vectors for viruses have been reported many times over the last 100 years. Tick-borne viruses (TBVs) belong to two orders (Bunyavirales and Mononegavirales) containing nine families (Bunyaviridae, Rhabdoviridae, Asfarviridae, Orthomyxovirida, Reoviridae, Flaviviridae, Phenuviridae, Nyamiviridae, and Nairoviridae). Among these TBVs, some are very pathogenic, causing huge mortality, and hence, deserve to be covered under the umbrella of one health. About 38 viral species are being transmitted by <10% of the tick species of the families Ixodidae and Argasidae. All TBVs are RNA viruses except for the African swine fever virus from the family Asfarviridae. Tick-borne viral diseases have also been classified as an emerging threat to public health and animals, especially in resource-poor communities of the developing world. Tick-host interaction plays an important role in the successful transmission of pathogens. The ticks' salivary glands are the main cellular machinery involved in the uptake, settlement, and multiplication of viruses, which are required for successful transmission into the final host. Furthermore, tick saliva also participates as an augmenting tool during the physiological process of transmission. Tick saliva is an important key element in the successful transmission of pathogens and contains different antimicrobial proteins, e.g., defensin, serine, proteases, and cement protein, which are key players in tick-virus interaction. While tick-virus interaction is a crucial factor in the propagation of tick-borne viral diseases, other factors (physiological, immunological, and gut flora) are also involved. Some immunological factors, e.g., toll-like receptors, scavenger receptors, Janus-kinase (JAK-STAT) pathway, and immunodeficiency (IMD) pathway are involved in tick-virus interaction by helping in virus assembly and acting to increase transmission. Ticks also harbor some endogenous viruses as internal microbial faunas, which also play a significant role in tick-virus interaction. Studies focusing on tick saliva and its role in pathogen transmission, tick feeding, and control of ticks using functional genomics all point toward solutions to this emerging threat. Information regarding tick-virus interaction is somewhat lacking; however, this information is necessary for a complete understanding of transmission TBVs and their persistence in nature. This review encompasses insight into the ecology and vectorial capacity of tick vectors, as well as our current understanding of the predisposing, enabling, precipitating, and reinforcing factors that influence TBV epidemics. The review explores the cellular, biochemical, and immunological tools which ensure and augment successful evading of the ticks' defense systems and transmission of the viruses to the final hosts at the virus-vector interface. The role of functional genomics, proteomics, and metabolomics in profiling tick-virus interaction is also discussed. This review is an initial attempt to comprehensively elaborate on the epidemiological determinants of TBVs with a focus on intra-vector physiological processes involved in the successful execution of the docking, uptake, settlement, replication, and transmission processes of arboviruses. This adds valuable data to the existing bank of knowledge for global stakeholders, policymakers, and the scientific community working to devise appropriate strategies to control ticks and TBVs.
Collapse
Affiliation(s)
- Mahvish Maqbool
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Faisal Rasheed Anjum
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, Pakistan
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Haleem Tayyab
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Muhammad Rizwan
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Sciences Narowal, Lahore, Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imaad Rashid
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Asif Iqbal
- Section of Parasitology, Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan
| | - Rao Muhammad Siddique
- Section of Parasitology, Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan
| | - Asim Shamim
- Department of Pathobiology, University of the Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Adeel Hassan
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, Collège of Veterinary and Animal Sciences, Jhang, Pakistan
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdul Razzaq
- Agricultural Linkages Program, Pakistan Agriculture Research Council, Islamabad, Pakistan
| | - Muhammad Zeeshan
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Hussain
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | | | - Akasha Tanveer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Younas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Kamran
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Sajjad ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Pitta JLDLP, Vasconcelos CRDS, Wallau GDL, Campos TDL, Rezende AM. In silico predictions of protein interactions between Zika virus and human host. PeerJ 2021; 9:e11770. [PMID: 34513323 PMCID: PMC8395582 DOI: 10.7717/peerj.11770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The ZIKA virus (ZIKV) belongs to the Flaviviridae family, was first isolated in the 1940s, and remained underreported until its global threat in 2016, where drastic consequences were reported as Guillan-Barre syndrome and microcephaly in newborns. Understanding molecular interactions of ZIKV proteins during the host infection is important to develop treatments and prophylactic measures; however, large-scale experimental approaches normally used to detect protein-protein interaction (PPI) are onerous and labor-intensive. On the other hand, computational methods may overcome these challenges and guide traditional approaches on one or few protein molecules. The prediction of PPIs can be used to study host-parasite interactions at the protein level and reveal key pathways that allow viral infection. RESULTS Applying Random Forest and Support Vector Machine (SVM) algorithms, we performed predictions of PPI between two ZIKV strains and human proteomes. The consensus number of predictions of both algorithms was 17,223 pairs of proteins. Functional enrichment analyses were executed with the predicted networks to access the biological meanings of the protein interactions. Some pathways related to viral infection and neurological development were found for both ZIKV strains in the enrichment analysis, but the JAK-STAT pathway was observed only for strain PE243 when compared with the FSS13025 strain. CONCLUSIONS The consensus network of PPI predictions made by Random Forest and SVM algorithms allowed an enrichment analysis that corroborates many aspects of ZIKV infection. The enrichment results are mainly related to viral infection, neuronal development, and immune response, and presented differences among the two compared ZIKV strains. Strain PE243 presented more predicted interactions between proteins from the JAK-STAT signaling pathway, which could lead to a more inflammatory immune response when compared with the FSS13025 strain. These results show that the methodology employed in this study can potentially reveal new interactions between the ZIKV and human cells.
Collapse
Affiliation(s)
| | | | | | - Túlio de Lima Campos
- Bioinformatics Platform, Aggeu Magalhães Institute-FIOCRUZ/PE, Recife, PE, Brasil
| | | |
Collapse
|
7
|
Gondard M, Temmam S, Devillers E, Pinarello V, Bigot T, Chrétien D, Aprelon R, Vayssier-Taussat M, Albina E, Eloit M, Moutailler S. RNA Viruses of Amblyomma variegatum and Rhipicephalus microplus and Cattle Susceptibility in the French Antilles. Viruses 2020; 12:E144. [PMID: 31991915 PMCID: PMC7077237 DOI: 10.3390/v12020144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Ticks transmit a wide variety of pathogens including bacteria, parasites and viruses. Over the last decade, numerous novel viruses have been described in arthropods, including ticks, and their characterization has provided new insights into RNA virus diversity and evolution. However, little is known about their ability to infect vertebrates. As very few studies have described the diversity of viruses present in ticks from the Caribbean, we implemented an RNA-sequencing approach on Amblyomma variegatum and Rhipicephalus microplus ticks collected from cattle in Guadeloupe and Martinique. Among the viral communities infecting Caribbean ticks, we selected four viruses belonging to the Chuviridae, Phenuiviridae and Flaviviridae families for further characterization and designing antibody screening tests. While viral prevalence in individual tick samples revealed high infection rates, suggesting a high level of exposure of Caribbean cattle to these viruses, no seropositive animals were detected. These results suggest that the Chuviridae- and Phenuiviridae-related viruses identified in the present study are more likely tick endosymbionts, raising the question of the epidemiological significance of their occurrence in ticks, especially regarding their possible impact on tick biology and vector capacity. The characterization of these viruses might open the door to new ways of preventing and controlling tick-borne diseases.
Collapse
Affiliation(s)
- Mathilde Gondard
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
| | - Valérie Pinarello
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Thomas Bigot
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
- Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, USR 3756 CNRS, 75015 Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
| | - Rosalie Aprelon
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
- National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94704 Cedex, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
| |
Collapse
|
8
|
Gondard M, Michelet L, Nisavanh A, Devillers E, Delannoy S, Fach P, Aspan A, Ullman K, Chirico J, Hoffmann B, van der Wal FJ, de Koeijer A, van Solt-Smits C, Jahfari S, Sprong H, Mansfield KL, Fooks AR, Klitgaard K, Bødker R, Moutailler S. Prevalence of tick-borne viruses in Ixodes ricinus assessed by high-throughput real-time PCR. Pathog Dis 2018; 76:5181333. [PMID: 30423120 DOI: 10.1093/femspd/fty083] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Ticks are one of the principal arthropod vectors of human and animal infectious diseases. Whereas the prevalence of tick-borne encephalitis virus in ticks in Europe is well studied, there is less information available on the prevalence of the other tick-borne viruses (TBVs) existing worldwide. The aim of this study was to improve the epidemiological survey tools of TBVs by the development of an efficient high-throughput test to screen a wide range of viruses in ticks.In this study, we developed a new high-throughput virus-detection assay based on parallel real-time PCRs on a microfluidic system, and used it to perform a large scale epidemiological survey screening for the presence of 21 TBVs in 18 135 nymphs of Ixodes ricinus collected from five European countries. This extensive investigation has (i) evaluated the prevalence of four viruses present in the collected ticks, (ii) allowed the identification of viruses in regions where they were previously undetected.In conclusion, we have demonstrated the capabilities of this new screening method that allows the detection of numerous TBVs in a large number of ticks. This tool represents a powerful and rapid system for TBVs surveillance in Europe and could be easily customized to assess viral emergence.
Collapse
Affiliation(s)
- Mathilde Gondard
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Lorraine Michelet
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Athinna Nisavanh
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Sabine Delannoy
- IdentyPath Platform, Food Safety Laboratory, ANSES, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Platform, Food Safety Laboratory, ANSES, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Anna Aspan
- Department of Microbiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Jan Chirico
- Department of Microbiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Sü dufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Fimme Jan van der Wal
- Wageningen Bioveterinary Research (WBVR), Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Aline de Koeijer
- Wageningen Bioveterinary Research (WBVR), Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Conny van Solt-Smits
- Wageningen Bioveterinary Research (WBVR), Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Seta Jahfari
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Karen L Mansfield
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Anthony R Fooks
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Kirstine Klitgaard
- National Veterinary Institute, DTU, Henrik Dams Allé, Building 205B, 2800 Kgs. Lyngby, Denmark
| | - Rene Bødker
- National Veterinary Institute, DTU, Henrik Dams Allé, Building 205B, 2800 Kgs. Lyngby, Denmark
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| |
Collapse
|
9
|
Bigot D, Atyame CM, Weill M, Justy F, Herniou EA, Gayral P. Discovery of Culex pipiens associated tunisia virus: a new ssRNA(+) virus representing a new insect associated virus family. Virus Evol 2018; 4:vex040. [PMID: 29340209 PMCID: PMC5763275 DOI: 10.1093/ve/vex040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In the global context of arboviral emergence, deep sequencing unlocks the discovery of new mosquito-borne viruses. Mosquitoes of the species Culex pipiens, C. torrentium, and C. hortensis were sampled from 22 locations worldwide for transcriptomic analyses. A virus discovery pipeline was used to analyze the dataset of 0.7 billion reads comprising 22 individual transcriptomes. Two closely related 6.8 kb viral genomes were identified in C. pipiens and named as Culex pipiens associated tunisia virus (CpATV) strains Ayed and Jedaida. The CpATV genome contained four ORFs. ORF1 possessed helicase and RNA-dependent RNA polymerase (RdRp) domains related to new viral sequences recently found mainly in dipterans. ORF2 and 4 contained a capsid protein domain showing strong homology with Virgaviridae plant viruses. ORF3 displayed similarities with eukaryotic Rhoptry domain and a merozoite surface protein (MSP7) domain only found in mosquito-transmitted Plasmodium, suggesting possible interactions between CpATV and vertebrate cells. Estimation of a strong purifying selection exerted on each ORFs and the presence of a polymorphism maintained in the coding region of ORF3 suggested that both CpATV sequences are genuine functional viruses. CpATV is part of an entirely new and highly diversified group of viruses recently found in insects, and that bears the genomic hallmarks of a new viral family.
Collapse
Affiliation(s)
- Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| | - Célestine M Atyame
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Fabienne Justy
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| |
Collapse
|
10
|
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, Nuttall PA. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front Cell Infect Microbiol 2017; 7:339. [PMID: 28798904 PMCID: PMC5526847 DOI: 10.3389/fcimb.2017.00339] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.
Collapse
Affiliation(s)
- Mária Kazimírová
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Meghan Hermance
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Patricia A. Nuttall
- Department of Zoology, University of OxfordOxford, United Kingdom
- Centre for Ecology and HydrologyWallingford, United Kingdom
| |
Collapse
|
11
|
Kuno G, Mackenzie JS, Junglen S, Hubálek Z, Plyusnin A, Gubler DJ. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses 2017; 9:E185. [PMID: 28703771 PMCID: PMC5537677 DOI: 10.3390/v9070185] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
The rapid succession of the pandemic of arbovirus diseases, such as dengue, West Nile fever, chikungunya, and Zika fever, has intensified research on these and other arbovirus diseases worldwide. Investigating the unique mode of vector-borne transmission requires a clear understanding of the roles of vertebrates. One major obstacle to this understanding is the ambiguity of the arbovirus definition originally established by the World Health Organization. The paucity of pertinent information on arbovirus transmission at the time contributed to the notion that vertebrates played the role of reservoir in the arbovirus transmission cycle. Because this notion is a salient feature of the arbovirus definition, it is important to reexamine its validity. This review addresses controversial issues concerning vertebrate reservoirs and their role in arbovirus persistence in nature, examines the genesis of the problem from a historical perspective, discusses various unresolved issues from multiple points of view, assesses the present status of the notion in light of current knowledge, and provides options for a solution to resolve the issue.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Control and Prevention, Fort Collins, CO, USA.
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
- Division of Microbiology & Infectious Diseases, PathWest, Nedlands, Western Australia 6009.
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Helmut-Ruska-Haus, Chariteplatz 1, 10117 Berlin, Germany.
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of Czech Republic, 60365 Brno, Czech Republic.
| | - Alexander Plyusnin
- Department of Virology, University of Helsinki, Haartmaninkatu 3, University of Helsinki, 00014 Helsinki, Finland.
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd., Singapore 169857 Singapore.
| |
Collapse
|
12
|
Huemer H, Prudhomme J, Amaro F, Baklouti A, Walder G, Alten B, Moutailler S, Ergunay K, Charrel RN, Ayhan N. Practical Guidelines for Studies on Sandfly-Borne Phleboviruses: Part II: Important Points to Consider for Fieldwork and Subsequent Virological Screening. Vector Borne Zoonotic Dis 2017; 17:81-90. [PMID: 28055572 DOI: 10.1089/vbz.2016.1965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this series of review articles entitled "Practical guidelines for studies on sandfly-borne phleboviruses," the important points to be considered at the prefieldwork stage were addressed in part I, including parameters to be taken into account to define the geographic area for sand fly trapping and how to organize field collections. Here in part II, the following points have been addressed: (1) factors influencing the efficacy of trapping and the different types of traps with their respective advantages and drawbacks, (2) how to process the trapped sand flies in the field, and (3) how to process the sand flies in the virology laboratory. These chapters provide the necessary information for adopting the most appropriate procedures depending on the requirements of the study. In addition, practical information gathered through years of experience of translational projects is included to help newcomers to fieldwork studies.
Collapse
Affiliation(s)
- Hartwig Huemer
- 1 Division for Human Medicine, Austrian Agency for Health and Food Safety (AGES) , Vienna, Austria
| | - Jorian Prudhomme
- 2 Centre IRD, UMR MIVEGEC (IRD 224-CNRS 5290-Universite Montpellier) , Montpellier, France
| | - Fatima Amaro
- 3 Centre for Vectors and Infectious Diseases Research, National Institute of Health Ricardo Jorge , Aguas de Moura, Portugal
| | - Amal Baklouti
- 4 UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University-IRD 190-INSERM 1207-EHESP) , Marseille, France .,5 Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille, France
| | | | - Bulent Alten
- 7 EBAL-VERG Laboratories, Ecology Division, Department of Biology, Faculty of Science, Science and Engineering Institute, Hacettepe University , Ankara, Turkey
| | - Sara Moutailler
- 8 UMR BIPAR, Animal Health Laboratory , ANSES, Maisons-Alfort, France
| | - Koray Ergunay
- 9 Department of Medical Microbiology, Faculty of Medicine, Hacettepe University , Ankara, Turkey
| | - Remi N Charrel
- 4 UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University-IRD 190-INSERM 1207-EHESP) , Marseille, France .,5 Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille, France .,10 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Nazli Ayhan
- 4 UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University-IRD 190-INSERM 1207-EHESP) , Marseille, France .,5 Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille, France
| |
Collapse
|
13
|
Pereira A, Figueira L, Nunes M, Esteves A, Cotão AJ, Vieira ML, Maia C, Campino L, Parreira R. Multiple Phlebovirus (Bunyaviridae) genetic groups detected in Rhipicephalus , Hyalomma and Dermacentor ticks from southern Portugal. Ticks Tick Borne Dis 2017; 8:45-52. [DOI: 10.1016/j.ttbdis.2016.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 01/22/2023]
|
14
|
Kaur N, Hasegawa DK, Ling KS, Wintermantel WM. Application of Genomics for Understanding Plant Virus-Insect Vector Interactions and Insect Vector Control. PHYTOPATHOLOGY 2016; 106:1213-1222. [PMID: 27442532 DOI: 10.1094/phyto-02-16-0111-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began <150 years ago and investigations into the virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.
Collapse
Affiliation(s)
- Navneet Kaur
- First and fourth authors: USDA-ARS, Crop Improvement and Protection Research, Salinas, CA 93905; second author: USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414; Boyce Thompson Institute, Cornell University, Ithaca, NY 14853; and third author: USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414
| | - Daniel K Hasegawa
- First and fourth authors: USDA-ARS, Crop Improvement and Protection Research, Salinas, CA 93905; second author: USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414; Boyce Thompson Institute, Cornell University, Ithaca, NY 14853; and third author: USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414
| | - Kai-Shu Ling
- First and fourth authors: USDA-ARS, Crop Improvement and Protection Research, Salinas, CA 93905; second author: USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414; Boyce Thompson Institute, Cornell University, Ithaca, NY 14853; and third author: USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414
| | - William M Wintermantel
- First and fourth authors: USDA-ARS, Crop Improvement and Protection Research, Salinas, CA 93905; second author: USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414; Boyce Thompson Institute, Cornell University, Ithaca, NY 14853; and third author: USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414
| |
Collapse
|
15
|
Sébastien A, Lester PJ, Hall RJ, Wang J, Moore NE, Gruber MAM. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen. Biol Lett 2016; 11:20150610. [PMID: 26562935 DOI: 10.1098/rsbl.2015.0610] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader.
Collapse
|
16
|
Serra OP, Cardoso BF, Ribeiro ALM, dos Santos FAL, Slhessarenko RD. Mayaro virus and dengue virus 1 and 4 natural infection in culicids from Cuiabá, state of Mato Grosso, Brazil. Mem Inst Oswaldo Cruz 2016; 111:20-9. [PMID: 26784852 PMCID: PMC4727432 DOI: 10.1590/0074-02760150270] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023] Open
Abstract
This study aimed to verify the diversity of Culicidae species and their frequency of infection with flaviviruses and alphaviruses in Cuiabá, state of Mato Grosso, Brazil. Mosquitoes were captured with Nasci aspirators and hand net in 200 census tracts, identified alive at species level and pooled in one-20 (11,090 mosquitoes, 14 species). Female pools (n = 610) were subjected to multiplex seminested-reverse transcription-polymerase chain reaction (RT-PCR) for 11 flavivirus and five alphavirus. Positive pools were tested by single RT-PCR followed by nucleotide sequencing, by RT-PCR for E1 gene [Mayaro virus (MAYV)] and by inoculation in Vero cells (MAYV) or C6/36 cells (flaviviruses). One/171 Aedes aegypti was positive for dengue virus (DENV)-1, 12/403 Culex quinquefasciatus, and four/171Ae. aegypti for MAYV, which was isolated from two pools containing two nonengorged females of Ae. aegypti and two of Cx. quinquefasciatus. DENV-4 was detected in 58/171 pools of Ae. aegytpi, 105/403 Cx. quinquefasciatus, two/five Psorophora sp., two/11 Psorophora varipes/Psorophora albigenu, one/one Sabethes chloropterus, two/five Culex bidens/Culex interfor, and one/one Aedes sp. DENV-4 was isolated from two pools containing three and 16 nonengorged Cx. quinquefasciatus females. Phylogenetic analysis revealed MAYV belongs to genotype L, clustering with human samples of the virus previously identified in the city. Cuiabá has biodiversity and ecosystem favourable for vector proliferation, representing a risk for arbovirus outbreaks.
Collapse
Affiliation(s)
- Otacília Pereira Serra
- Universidade Federal de Mato Grosso, Centro de Ciências Básicas da Saúde
I, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT,
Brasil
| | - Belgath Fernandes Cardoso
- Universidade Federal de Mato Grosso, Centro de Ciências Básicas da Saúde
I, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT,
Brasil
| | - Ana Lúcia Maria Ribeiro
- Universidade Federal de Mato Grosso, Centro de Ciências Básicas da Saúde
I, Faculdade de Medicina, Laboratório de Entomologia Médica, Cuiabá, MT, Brasil
| | - Fábio Alexandre Leal dos Santos
- Universidade Federal de Mato Grosso, Centro de Ciências Básicas da Saúde
I, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT,
Brasil
| | - Renata Dezengrini Slhessarenko
- Universidade Federal de Mato Grosso, Centro de Ciências Básicas da Saúde
I, Faculdade de Medicina, Laboratório de Virologia, Cuiabá, MT, Brasil
| |
Collapse
|
17
|
Datta S, Budhauliya R, Das B, Chatterjee S, Vanlalhmuaka, Veer V. Next-generation sequencing in clinical virology: Discovery of new viruses. World J Virol 2015; 4:265-276. [PMID: 26279987 PMCID: PMC4534817 DOI: 10.5501/wjv.v4.i3.265] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/23/2015] [Accepted: 05/08/2015] [Indexed: 02/05/2023] Open
Abstract
Viruses are a cause of significant health problem worldwide, especially in the developing nations. Due to different anthropological activities, human populations are exposed to different viral pathogens, many of which emerge as outbreaks. In such situations, discovery of novel viruses is utmost important for deciding prevention and treatment strategies. Since last century, a number of different virus discovery methods, based on cell culture inoculation, sequence-independent PCR have been used for identification of a variety of viruses. However, the recent emergence and commercial availability of next-generation sequencers (NGS) has entirely changed the field of virus discovery. These massively parallel sequencing platforms can sequence a mixture of genetic materials from a very heterogeneous mix, with high sensitivity. Moreover, these platforms work in a sequence-independent manner, making them ideal tools for virus discovery. However, for their application in clinics, sample preparation or enrichment is necessary to detect low abundance virus populations. A number of techniques have also been developed for enrichment or viral nucleic acids. In this manuscript, we review the evolution of sequencing; NGS technologies available today as well as widely used virus enrichment technologies. We also discuss the challenges associated with their applications in the clinical virus discovery.
Collapse
|
18
|
Large-scale recoding of an arbovirus genome to rebalance its insect versus mammalian preference. Proc Natl Acad Sci U S A 2015; 112:4749-54. [PMID: 25825721 DOI: 10.1073/pnas.1502864112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein synthesis machineries of two distinct phyla of the Animal kingdom, insects of Arthropoda and mammals of Chordata, have different preferences for how to best encode proteins. Nevertheless, arboviruses (arthropod-borne viruses) are capable of infecting both mammals and insects just like arboviruses that use insect vectors to infect plants. These organisms have evolved carefully balanced genomes that can efficiently use the translational machineries of different phyla, even if the phyla belong to different kingdoms. Using dengue virus as an example, we have undone the genome encoding balance and specifically shifted the encoding preference away from mammals. These mammalian-attenuated viruses grow to high titers in insect cells but low titers in mammalian cells, have dramatically increased LD50s in newborn mice, and induce high levels of protective antibodies. Recoded arboviruses with a bias toward phylum-specific expression could form the basis of a new generation of live attenuated vaccine candidates.
Collapse
|
19
|
Raoult D. Special section: methods in pathogen discovery. Microb Pathog 2014; 77:113. [PMID: 25481241 DOI: 10.1016/j.micpath.2014.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Didier Raoult
- URMITE UMR 7278, Faculté de Médecine, 27 Boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|